shear strength of grouted reinforced masonry … · shear strength of grouted reinforced masonry...

of 6 /6
4.c .2 SHEAR STRENGTH OF GROUTED REINFORCED MA SO NRY BE AMS G,T, SU TER Ph . D. , P. Eng . Associate Pr ofessor of Ci vil Engi neeri ng H, K ELL ER B. Eng . , M. Eng . Research En gin ee r De partme nt of Civil En gi neering , Ca r leton Unive r sit y , Ottawa, C an ada SHEAR STRENGTH OF GROUTED REINFORCED MAC;ONRY BEAMS The authors carried out a systematic experimental study to answer tha questi on: Can the shear design of grout ed r einforc3d mrlS0nry b eams be treated as a combined case of einforced concre te and reinforced masonr-y? The investl:gation ir,volved a t otal of six - teen beams in which aU test parametel's e: ccept the rati o of shear span to effe ctive depth were hald con- stant . The papel' presents det ails of the test pro - gram and sh ows t hat the shear design of grouted rrasonry beams can indeed be consider-ed as a combined case of reinforce â con:n' et e and reinforced masonry . RESISTANCE AU CISATLLEMENT DES POunES EN M4CONNERIE' ARMEE Les auteurs ont développé W1e étude systématique et expéri . -rentale pour f'ouvoi r répoil dre à la question suivante: Est-ce que la contra'in te de cisailZemant de po utres en terre cui te armée peut être calculée cOmrle un cas corrbiné de bétan arme et de maçonnerie armee? La recherche portait sur un total de seize poutres dans lesqu& lZes tous les parametres étaient mainte - nus (?(JYl stants, excepté le rapport ent re la portée et la hauteur e fre cti ve . L' art i cle nous mont re MS diJtails du prograrrone des essX1:s et démont re C/ U ?> le calcul de la cantrainte de cisaillemant de poutres en te rre c mte année peut en effet être considépé co= un co,g c.ombiné de béton arrré e t maç anneri e arrrée. S CHUBFESTIGl(f;IT A USBETONIERTER BFWEHRTER MAUERwERKS2'R!JEGER Die Ve rfasser filhrten eine syst ematische lIersuchs - s tudie durch, um die Frage zu beanr..Jc rten : Kann de r Schubnachweis von ausbetoni el't en, bewehr- ten Maue rwe rkstriigern so gefiJhr·t w erde"l , als handle es sich um einen KombinationsfaZl lion St ch Zb etcrn zmd bewehrtem Maue rw erk? Die Unte rs uchung be stand aus 16 Balken, bei we lchen alle Testpal'aJilJ ter , ausgenom- men das Verhãltnis von Schu b spanYl1Jeite zup ef f ekti ve"l Hohe , konstant gehalten uJ urden. Der Beitrag bringt Einze lheiten des Ve .1''Buchsprogn:vI1mG !lnd zeigt , doss der Schubnachweis ausbetonierter !.J , werw9rks triige r tatsãchlich als von Stahlbeton bewehrtem Maw rwer'k betrachtet werden kann. DE SCHUIFSTERKTE VAN MET BETON GEI'ULDE GEW,4PENDE Mf:TSELWE8KLIGGERS De auteurs hebben een systematische experime nte?e studie uitgevoerd om de vr'aag te beantwoor den. : kan de schuifsterkte van met beton gevulde metselwer'kliggers behandeZd worden als een geKomb?:- neerd geval van gewapend metse lwe rk en geUlapend be - ton? Het onder zo ek omvatte in tot aal aestien lig - gers, ulaarin aUe testparameters met uitzondering van de veY'houding overspanning tot effaktieve hoogte konstant wel'den gehouden . De mededeling gee ft de tails van het ondeY'zoeksprogram- ma en toont aan dat de berekening van schuifsf'amzi ngen deze liggers inderdaad m oeten beschouwd wcrden als een kombinatie van gewapend betonZ igg ers en Zigger s in gewapend metselwel'k.

Author: ngoxuyen

Post on 26-Jun-2018

231 views

Category:

Documents


2 download

Embed Size (px)

TRANSCRIPT

  • 4 . c .2

    SHEAR STRENGTH OF GROUTED REINFORCED MA SO NR Y BE AMS

    G, T , SUTER Ph . D. , P . Eng .

    Associate Pr ofessor of Civil Engineer i ng

    H, KELL ER B. Eng . , M. Eng.

    Research Engineer Department of Civil Engineering, Car leton Unive r sity , Ottawa, Canada

    SHEAR STRENGTH OF GROUTED REINFORCED

    MAC;ONRY BEAMS

    The authors carried out a systematic experimental

    study to answer tha question : Can the shear design

    of grouted r einforc3d mrlS0nry beams be treated as

    a combined case of yeinforced concrete and reinforced

    masonr-y? The investl:gation ir,volved a t otal of six-

    teen beams in which aU test parametel's e:ccept the

    ratio of shear span to effe ctive depth were hald con-

    stant . The papel' presents details of the test pro-

    gram and shows t hat the shear design of grouted

    rrasonry beams can indeed be consider-ed as a combined

    case of reinforce con:n'ete and reinforced masonry .

    RESISTANCE AU CISATLLEMENT

    DES POunES EN M4CONNERIE' ARMEE

    Les auteurs ont dvelopp W1e tude systmatique et

    expri.-rentale pour f'ouvoi r rpoildre la question

    suivante: Est-ce que la contra'in te de cisailZemant

    de poutres en terre cui te arme peut tre calcule

    cOmrle un cas corrbin de btan arme et de maonnerie

    armee?

    La recherche portait sur un total de seize poutres

    dans lesqu& lZes tous les parametres taient mainte -

    nus (?(JYlstants, except le rapport entre la porte et

    la hauteur e fre cti ve .

    L ' art i cle nous montre MS diJtails du prograrrone des

    essX1:s et dmontr e C/ U ?> le calcul de la cantrainte de

    cisaillemant de poutres en t erre cmte anne peut en

    effet tre considp co= un co,g c.ombin de bton

    arrr e t ma anneri e arrre.

    SCHUBFESTIGl(f;IT A USBETONIERTER

    BFWEHRTER MAUERwERKS2'R!JEGER

    Die Verfasser filhrten eine systematische lIersuchs -

    s tudie durch , um die Frage zu bean r..Jc rten :

    Kann der Schubnachweis von ausbetonie l't en, bewehr-

    ten Mauerwerkstriigern so gefiJhrt werde"l , als handle

    es sich um einen KombinationsfaZl lion Stch Zb etcrn zmd

    bewehrtem Maue rwerk? Die Unters uchung bestand aus

    16 Balken, bei we lchen alle Testpal'aJilJ ter , ausgenom-

    men das Verhltnis von Schub spanYl1Jeite zup eff ekti ve"l

    Hohe, konstant gehalten uJurden. Der Beitrag bringt

    Einze lheiten des Ve .1''Buchsprogn:vI1mG !lnd zeigt, doss

    der Schubnachweis ausbetonierter !.J,werw9rks triiger

    tatschlich als KorrbiYl~tiansfaZZ von Stahlbeton

    bewehrtem Maw rwer'k betrachtet werden kann.

    DE SCHUIFSTERKTE VAN MET BETON GEI'ULDE

    GEW,4PENDE Mf:TSELWE8KLIGGERS

    De auteurs hebben een systematische experimente?e

    studie uitgevoerd om de vr'aag te beantw oor den. :

    kan de schuifsterkte van met beton gevu lde ge~pende

    metselwer'kliggers behandeZd worden als een geKomb?:-

    neerd geval van gewapend metse lwerk en geUlapend be-

    ton? Het onderzoek omvatte in totaal aestien lig-

    gers, ulaarin aUe testparameters met uitzondering

    van de veY'houding overspanning tot effaktieve hoogte

    konstant wel'den gehouden .

    De mededeling geeft details van het ondeY'zoeksprogram-

    ma en toont aan da t de berekening van schuifsf'amzingen

    deze liggers inderdaad moeten beschouwd wcrden als

    een kombinatie van gewapend beton Ziggers en Zigger s

    in gewapend metselwel'k .

  • INTRooUCTIoN

    Gr outed rei.nforced masonry (GRM) beams are genera lly bui 1 t up fro;;; two oro more wythes Df brickwork wi th cavi ties between the wythes; these cavities co nta in the reinf orcement and are filled with grout, the grout normally :::o,l sisting Df high slump pegrvel concrete p~u red OI' pumped into place , After hardening Df the concrete , t he grouted reinforced beam i5 considered as a com;Josite unit in which both the masonry Ivythes and the grouted c oncrete saction resist applied moments and sh ears. The shear design Df such members is generally bas ed on stresses which are identical to the case Df rei.nforce d masonry (RM) beams, i . e . members that do not contain a grouted section ; in Canada an allovJabl e at ress Df 0 . 7~:: 50 psi (0 . 35 N/mm 2 ) is specified for both types mof members , where f' denotes t he compressive strength Df the br ickwork . m

    A review Df the shear strength Df r einforced concrete (RC) and RM beams shows that a RC member exhibits a s hea r resistance wh ich is typically two to three times that Df a RM member . The question then arises : Is the shear resis tn ce Df a GRM beam significantly greater than that of a non -grouted RM beam and moreover, can this resistance be considered as the combined strength of the brick~o rk wy thes and the grouted section? Since little published evidence i s available on grouted beams 1 , a systematic experimental investi-gation was undertaken to answer this question o

    TEST PRoGRAM

    Ge neral

    To determine if the shear resistance of GRM beams is grea ter than that of RM beams and can also be treated as the combined shear strength of the brickwork wythes and the grouted conc rete section, three separate series of beam tests dealing with GRM , RM, and RC beams are requi red . Since r eliab l e published evidence on RC beams is available 2 , the test program described in this papeI' comp rised two beam series of GRM and RM beams . Each be am series consisted of eight beams as shovJn in Figure 1 . For a constant cross section con-taining a pe rc entage of reinforcement p Df abou t 1.4%, the only test va riable was the ratio of shear span to effective depth a/do The a/d ratio was selected as the single test variab le for the following reasons: the shear resistance of PC beams depends mainly on a/d and p , and to a minor degree on f ', the compressive strength 2 , , Si.nce the shear capgcity of RM beams is infl ue nced primarily by a/d and only to a negligible degree by p' , a / d is the one common key variable on which the shea r strangth of both RC and RM beams de-pends and r,ence can be assumed to have a major in-fluence also in the case of GRM beams . The a/d ratio was varied between 1 and 7; a f airly large p value of about 1 . 4% was selected to obtain pronounced shear failures.

    Test 8aem Oetails

    oetails Df the GRM and RM beams cros s sections are shown i n Figure 1. A two - point loading set - up was adopted for alI beam test s except beams 15 and 16 . 8eams 15 and 16 were tested unde r a central single point load to accommodate the se l ong beams in the testing machine. For the GRM beams , the width of the gr out cavity was chosen to ac commodate the steel and to provide space for the plac emen t of web reinforce-ment in a later investigation .

    ThroughOlJ t t he test progr em 3-corod bricks Df the type "Red Supertex " were used . IUthough the front face of the bricks WS roughly textured , the opposite face, which i n the case of GRM beams serves as the form for the grout, was relati vely smooth . The bricks had

    4 . c.2-1

    nominal dimensions of 203 x 95 x 75 mm and a specified comp ressive strerlgth Df 69 N/mm 2 Average crushing strengths were 92 and 33 N/mm~ for sing le bric ks and five course brick prisms, respectively .

    A 1 : 0 . 5 : 4 . 5 normal Portland cement:lime:sand mortar mix by volume was used in accordance with CanBdian re qu irements for GRM construction s . At the time Df beam testing , the average mortar strength was 14 . 7 N/mm 2 Oesign mortar joint thicknesses we re 22 mm for the first bed joint at the steel leveI and 10 mm for alI othe r joints. For the GRM beams , a grout mix of one part normal Portland cement to four parts sand was used . At the time of beam testing, average grout strength s of 15.1 and 27 . 5 N/mm 2 were obtained for 75 x 150 mm cylinders and 50 x 50 x 114 mm prisms , re-spectively . Since the prisms we re made by pouring the grout into a space formed by bricks and lined wi th permeable papeI' , the prism results reflect more close-ly the true grout strength in the beams .

    Steel reinforcement was furnished by 6-16 mm bars and 2-16 mm bars for the GRM and RM beam series, respec-tively . The average yield stress was determined as 445 N/mm 2 To prevent bond anchorage failure wh ich might obscure the true shear capacity of beams, 10 mm thick anchorage plates (100 x 100 mm for RM be ams and 100 x 305 mm for GRM beams) were welded tc the ends Df the reinforcing steel . This method obviated the need for large beam overhangs to provide sufficient a ncho r-age length .

    Manufactu re and Testing of 8eams

    A typical daily production consi sted of the manufac -ture of two baams Df equal a/d together with the associated contraI specimens for compression, mortar and grout st rength tests . For each type of control specimen , five samples were produced . The wo r \

  • 4 . c . 2- 2

    cross section approximates the cross sections of the author~' investigetion . Since Kani used p values of 0 . 8 and 1 . 88% rath e r than th e 1 . 41% of the GRM beams , l jnear lnterpolati on was 8n~loye d to ar r i v8 at the RC beam shear capaci ties shown in laole 1 for p = 1 . 41% . Altllough nis test pro~ram included three f ' val ues and his result s showed merely a minor dependen~e of shea r str8r1gth un f ', only t he 17 beams tests for f ' = 26 N/mm 2 are repres e nt~d in l ab le 1, 5ince tllis corlcrete s trengt h appr Cl xJ mates th e grout st rength of the GRM beams . Kani did not test beams with a n a/d value gr eat er t han 6 , hen ce U,e result for a/d = 7 in lable 1 denot es a shear strRngth ost imat ed by the authors .

    CracKing rnd Fai 1 ure Mo des

    Sinc8 th e naturc Bnd ex ten t of flexural and shear crackin i of the GRM beams WBS s imilor to that Df RM b8 ems ", no a dd i tional comlnents nec d be made here. It is of i ntereS , hOlol8ver, to examine fai lure nlodes and unusu=:l behaviour of the GR M bea ms . 1.10 typ es of Shp.6r f ai lu re mode s were observed and classified as 5

    s1 and 5

    su in l able 1, where

    5 su

    refers to a slow s hear f ai lure where the b8am exhibi ts-addItio nal strength beyond its diagonal cracking capacity , and

    refer s to a sudden shear foil ure whe re ultima te beamcapac:Cty is r eaehed upon s udden progression Df a diago nal crack aeross thR web of the shear span.

    lhese shear failure rrdes a re common to RC 2 , RM 4, and [,RM bearre . Frolfl lal1 1e 1 1 t can be seen that in ge r, e r al t hR shorter bealT.s ex!bi.ted a slOloJ typ c and the longer beams a s udden typ e Df failu r e . lhe slow type o"f fai lu re for lJeams of low a/d val ues is olJ-tairled lJec.3use aft e r s ucld an diagonal el'ack ing s llch members are typically transfo rrned into a ticd a rch which exhibits additional strength .

    Unus ua l behaviour was exhjbtted in the final failure Df lJeam GRM-7 with an a/d value of 1 . For beam GRM-7 it was observed th a t just prior to r eaching the ulti-mate l oad the stee l ane ho ragE plate at one end of the beam started to be nd , resulti ng in a differential ti e force Df th e arc h aeross t he width of ~h e beam . Wi t h additional load and time , the deform~tion Df the plate bacame se large ( up t o 10 mm ) that vi r tually complete separation of the brick wythes from the concrete core r esulted i n that e nd Df t he beam. At this s tage a l I load was transferred to th e r ei nforced conc ret e sec-tion and rapid failure ensue d due to web compression failur e . However, the other lJeam e nd s howed no dis-treso and upon bandaging of the failed en d was able to withstand a high e r l oad . Since no other GRM beam failed prernaturflly in a marlner similar to GRM-7 , the composit e behavi our achievecl by th e a nchorage plates as well as by th e interaction between brickwork s ur-fa ces with t he gro ut ed cor e was generally satisfac -tory. Note that in practicR the plates would l ikely be omitted in favour Df beam extensio ns to develop the reinforcement. 5inc8 beam ends would f rame for in-stance i nto adjoini ng wall sec tions , the possibility of brea kdown Df comp03ite action vJ ou l d be remote .

    Ultimate 5hea r 5tresses

    Ultimate s hear stresses for "RM , GRM , and RC beams are present ed in lable 1 and Figu r e 2 . Fo r the RM and GRM beams , twCl separate ultimate values were ob tained for the two shear spans Df eaeh beam with the ex-ception cf beams GRM-7 and 12 .

    lhe in fluenee of the main shear parameter a/ d on ul-timate s l1 (0)r B r ess v is shown in Figure 2 . lhe in-divjdua l failurE valu~s and avelBge failure l i nas cle3rly i ndicate that v increases signifi cantly with decreasi ng a/d values fgr al I three types of beams , RM, RC and GRM . Most important , it can also be s een

    that the average GRM beam shear resis tanee is greater than that of RM beams and falls between that Df RC and RM beams . lhe increas ed s hear capac ity of GR M beams ove r RM beams amo unt s t o ab out 50 per cant and hence is significant . lhe question still remains if the GRM shear capacity ean be considered as t he combined shear strength Df RM a nd RC beams . lo answer th is question , th e RM beam results of this investigation ware first eompa r ed to other publishe d Evid8nce in Figure 3. It can be seen f r om Fi gure 3 that the authors ' RM results falI with i n the band of other experi mental data and tha t the overall average curv e including the authors ' RM results alters th e average curve defined by 5uter and Hendry4 only alightly . l he nsw ove r all average curve then represent s the depe ndence Df v on a/d for RM beams in general, and in conjunction w~th the average RC c urve Df Figure 2 hos been used to obtain ' derived ' GRM shear capacities . Derived GRM shear strengths , based on the relative widths Df tt. e grout and brick sections, a r e depicted i~ Figure 4 togethe r with the exp e r ilnent61 RC , RM Clnd GRM res ult s . For convenience alI shear capacities are expressed as a functi on Df th e RC strengths . A comparison of the deri ved ver sus t he e xperi mental GRM s hea r strength ratios of Fi gure 4 shows raltive ly good agl"eernent for alI a/d values except 1. 5 and 2 . Here it must be recognised that s ince the RM and RC shear st rengths are based on a large rlumb ar :) f test r es ul ts , their re-spective lines i n Figure 4 a r e esta~ llshed witn much greater certainty t han the experimenta l GRM li ne . Addi tional GRM test data eould be expected to falI with in a scatt er band similar to tl13t SllOV,'11 In Figure 3 f or RM beams . Moreove r', due to the variabi li ty of th e t ied arch strength, the scatter i s known to be widest fo r beams with low a/d va luBs , henc8 thi s may explai n the differenee be t waen experimell "L

  • REFERENCES

    1 . Keller , H. "Shear Strength Df Grou t ed Reinf orc ed Mas on r y Beams ", M. Eng . Thesis , Carleton Un i vers ity Septembe r 1975 .

    2 . Kan i, G. N. J . "The Riddle Df Shear Failure and its Solution ", ACI Journal , Vo l. 61 , No . 4 , April 1964 , p . 441 .

    3 . Bri ti s h Standards Inst i tution , "Code Df Practice f or thB St r uct ura l Use Df Co ncre te ", CP1 10 , Part November 1972 .

    4 . Suter , G. 1. and HendT'lJ , A. W. "Sheflr Strength Df Reinforceo Brich'orl< Bearr,s ", Th" Str uctura I Engi neer , Vol . 53 , No . 6 , June 1975 .

    5 . Nat i onal Building Code Df Canada. "Supplement No . 4" , Part 1, P lain and Rei nforced Masonry , 1975 .

    4 . c . 2- 3

    3'6

    3 ' 2

    2 8

    2-4

    2 0 -

    1' 6

    1' 2

    0 8

    0 4

    o ~--~----~--~----~--~----~--~--~ o/d O 2 3 4 5 6 7

    Fig . 2 Beam Gross Section and Brick Bonding Arrange-ment

    TABLE 1 - SU MMARY OF BEMI TEST RESIH,TS

    f aiJure Mode Total Ultim"te v ~', ~lort ar Brick Prism Grout OI' 2. vu1

    'I u Strength St r ength Concr2te Beam Beam p 1. u2

    Serie5 No. (perc~nt) a/d f ai l ure Failure CH /mm2 ) (N /mm 2 ) O;/ mm 2 ) (N/mm2 ) fi ( N/mm2 ) c

    RI1 1 1.49 1 Ss l Ssl 1. 70 2.13 18 . 58 28.77

    2 1. 5 SSl Ssl 1. 19 1. 49 18. 53 28. 77

    3 2 Ssl Ssl 0 .93 0.97 18. 05 36 . 31

    4 3 S Ssl 0 .80 1. 03 11.711 3'1.15 su 5 4 S S 0.56 0.61 13 . 91 33.37 s u su 6 5 S S 0.44 0.47 14 . 29 31. 97 su su 13 6 S S 0 ,'11 0 . 46 9 . 17 34.54

    su su 15 7 S S 0 , 32 0.37 13.53 32.49

    su su -

    GRI1 7 1.41 1 Ssl - 2.68 >2 . 95",,', 18. 58 28.77 28.82

    8 1. 5 Ssl Ssl 2.51 2.75 18. 58 28.77 28.02

    9 2 Ssl Ssl 1. 54 1.85 10.05 36.31 26.22

    10 3 Ss l Ssl 0.86 0.91 11 . 74 34.15 17.46

    11 4 S S 0.71 0.78 13.91 33.37 24 . 37 su su

    12 5 S - 0 . 65 >0 . 65'''''' 14.29 31. 97 28 .5 6 su 14 6 S S 0. 57 0 . 62 9.17 34. 54 31.54

    su su 16 7 S S 0 , G5 0 . 69 13 ,53 32,49 34 , 22

    su su

    RC 1.41 1 Ssl 4. 93 25.03

    1.5 Ssl 3 . 26 26 . 32

    2 Ssl 1. 83 25 . 61

    3 S 1. 09 27 .93 su

    4 S 0 . 97 25.86 su

    5 S 0.09 26.99 su

    6 S su

    Q, 81 24.17

    7 S 0.79 -su

    NOTES; I'Shear force div i derl hy brl; includes beam self-wel ght ,",,', Bandaging of f ailed end not sufficiently eHective t o achieve ultima te failure of second end .

  • 4.c.2-4

    -150 a 610 a

    RM - BEAM ELEVATION

    - 150 a 610 a

    ~, ~F

    I I J 1 I I I I I I 1 J 1 I j

    I 1 1 1 I I I 1 l .l J .l .l J .l

    1 ] j j 1 1 ]

    t GRM - BEAM ELEVATION

    - 150

    ~I 50

    1 1 .l j

    ]

    f IF=

    ~ = 1. 4 9%

    SECTI ON

    ~ rrn

    ~ = I .'4 I%

    SECTION

    Fig . 1 Beam Cross Sect ion and Brick Bonding Arrangement

    ' Vu N/mrn2

    1-4

    1-2

    l -O

    o-e 8

    06 -

    0 -4

    0 -2

    o o

    8 OVERALL AVERAGE INCLUDING AUTHORS' RESULTS

    o o

    00

    Fig. 3

    '

    T o o o

    o

    o

    o",;--,~ o o o

    o o 8

    o

    3 4

    Influence of a/i!. on V u f or RM beams

    l -O

    o-e o f= .. o: I 0-6 t-e> z

    ~ OA -o: .. w I

    0 -2

    o /d O O 4 5 6

    Fig . 4 Shear strength r atio versus a/d

    o /d