fe-i4 chip design

39
FE-I4 Chip Design Marlon Barbero, Bonn University Vertex 2009, Putten, The Netherlands Feb. 17 th 2009

Upload: moanna

Post on 31-Jan-2016

54 views

Category:

Documents


0 download

DESCRIPTION

FE-I4 Chip Design. Marlon Barbero, Bonn University Vertex 2009, Putten , The Netherlands Feb. 17 th 2009. Contents. IBL (sensor damage) / sLHC (increased luminosity). From FE-I3, current ATLAS pixel FE, to FE-I4, new ATLAS pixel FE for IBL & sLHC. Analog pixel. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: FE-I4 Chip Design

FE-I4 Chip Design

Marlon Barbero, Bonn University

Vertex 2009, Putten, The NetherlandsFeb. 17th 2009

Page 2: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 2

Contents

• IBL (sensor damage) / sLHC (increased luminosity).From FE-I3, current ATLAS pixel FE, to FE-I4, new ATLAS pixel FE for IBL & sLHC.

• Analog pixel.• Digital pixel and digital Double-Column.• Periphery.• Yield.• Conclusion and milestones.

Page 3: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 3

FE-I4 for IBL & sLHC • IBL (~2014): inserted layer @ 3.7cm in current pixel

detector.

Present beam pipe & B-Layer

Existing B-layer

New beam pipe

IBL mounted on beam pipe

r~37

m

m

FE-I4

Tobias

Flick’s

tentative ID layout for sLHC?

ATLAS present Inner Detector (ID)

- All Silicon.- Long Strips/ Short Strips / Pixels.- Pixels:

- 2 or 3 fixed layers at ‘large’ radii (large area at 16 / 20 / 25 cms?)-2 removable layers at ‘small’ radii

• sLHC tentative layout (>2017): 4 to 5 pixel layers, small radii / large(r) radii (note: Discussion on boundary pixel /

short strips, …).

Page 4: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 4

Motivation for Redesign of FE

• Need for a new FE?• Smaller b-layer radius + potential luminosity increase higher hit rate.

FE-I3 column-drain architecture saturated.

FE-I4 new digital architecture: local regional memories,stop moving hits around (unless RO).

FE-I4 has smaller pixel (reduced cross-section).

• New technology: Higher integration density for digital circuits, rad-hard, availibility.

0.25 μm130 nm

FE-I3FE-I4

EOC

Hit prob. / DCIn

eff

icie

ncy

[%

]

LH

C

IBL sL

HC

FE-I3 at r=3.7 cm!

The “inefficiency wall”

100

80

60

40

20

0

Page 5: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 5

Future FE-I4-Based Module (& Consequences for FE-I4)

FE-Chip FE-Chip

Sensor

MCC

FE-Chip

Sensor

Flex

11

22

33

4

1) Big chip (periphery on one side of module).2) Reduce size of periphery (2.8 mm2 mm).3) Thin down FE chips (190 μm90 μm).4) Thin down the sensor (250 μm 200 μm)?5) Less cables (powering scheme)?

5

• Increased active area: from less than 75 % to ~90 %: Reduced periphery; bigger IC; cost down for sLHC (main driver is flip-chip costs per chip).

• No MCC: More digital functionality in the IC.

• Power: Analog design for reduced currents; decrease of digital activity (digital logic sharing for neighbor pixels); new powering concepts. 8 metal layers [2 thick Alu.] power routing.

challenging: power (routing, start-up), clk. distrib., simulation / management, yield

4

Page 6: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 6

Some Target Specs for FE-I4

• Rad.-hardness: >200 MRad ionizing dose (FE-I3: >50 Mrad).

• Minimal guidelines: no ELT, NMOS guard rings for analog & sensitive digital circuitry.

• ToT coded 4 bits.• DC leakage current tolerant to > 100 nA.

  FE-I3 FE-I4Pixel Size [μm2] 50×400 50×250Pixel Array 18×160 80×336

Chip Size [mm2] 7.6×10.820.2×19.

0Active Fraction 74 % 89 %Analog Current [μA/pix] 26 10Digital Current [μA/pix] 17 10Analog Voltage [V] 1.6 1.5Digital Voltage [V] 2 1.2pseudo-LVDS out [Mb/s] 40 160

biggest in HEP to date

analog / digital power

tuned for IBL occupancy

Page 7: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 7

Analog Pixel• In FE-I4_proto1 (FE-I4 prototype

submitted in 2008):

• 2-stage architecture optimized for low power, low noise, fast rise time. regul. casc. preamp. nmos input. folded casc. 2nd stage pmos input. Additional gain, Cc/Cf2~6. 2nd stage decoupled from leakage related DC potential shift. Cf1~17fF (~4 MIPs dyn. range).

• 12b configuration: FDAC: tuning feedback current. TDAC: tuning of discriminator threshold. Local charge injection circuitry.

50

m

Cc

Cf2Cf1

Preamp Amp2

feedbox feedbox

Inj0

Inj1

injectIn

Cinj1

Cinj2

+local

feedback tune

FDAC

4 Bit

Vfb

+local

thresholdtune

TDAC

5 Bit

Vfb2

+

-

HitOutNotKill

Vth

150 m

Preamp

Am

p2

FDAC

TDAC

Config Logic

discri

Page 8: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 8

Analog Pixel: Noise & Irradiation

• Dose received: ~200 Mrad Low I (10 μA): noise increases ~20 %.

Low current (which is target value) is 10 μA/pixel for preamp+amp2+comparatorCurrent for minimum noise: 17 μA/pixel

(12μA)

m~65 e-

• Excellent un-tuned threshold dispersion.

m~100 e-

(17μA)

m~65 e-

m~90 e-

(loaded ~400fF)(loaded ~400fF)

~200 Mrad

0Mrad 100Mrad 200Mrad0

20

40

60

80

100

120

140

160

Chip #2 diodeChip #2 no-loadChip #3 diodeChip #3 no-load

Dose +/- 20%

EN

C (

ele

ctro

ns)

+/-

20

%

Page 9: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 9

Digital Pixel: Regional Architecture

Control

ClusteringLogic

Shared Digital Part

Local Buffer

DA

TA

TriggerLogic

local storage

• Store hits locally in region until L1T.• Only 0.25% of pixel hits are shipped to

EoC DC bus traffic “low”. • Each pixel is tied to its neighbors -time

info- (clustered nature of real hits). Small hits are close to large hits! To record small hits, use space instead of time. Handle on TW.

low traffic on DC bus

• Consequences:• physics simulation shows

efficient architecture.• lowers digital power

consumption.• spatial association of digital hit

to recover lower analog performance.

disc. top left

disc. bot. left

disc. top right

disc. bot. right

5 ToT memory /pixel

5 latency counter / region

hit proc.: TS/sm/big/ToT

Read & Trigger

Neighbor

Token

L1T Read

Digital Region4-Pixel Unit

Page 10: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 10

Performance / EfficiencyIBL: charge sharing in Z comparable with r/phi.

MemoriesSimulation Analytical

IBL 10xLHC IBL 10xLHC

50.047

% 2.19% 0.029% 2.25%

60.011

% 0.65% 0.003% 0.57%

7<0.01

% 0.16% <0.01% 0.13%

η=0

Mean ToT = 4

0.6%

Regional Buffer Overflow

@ IBL rate, pile-up inefficiency is the dominant source of inefficiency • Inefficiency:

• Pile-up inefficiency (related to pixel x-section and return to baseline behavior of analog pixel) ~ 0.5%.

• Regional Buffer overflow ~0.05%• Inefficiency under control for IBL

occupancy

Page 11: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 11

Digital Column Architecture• 168 regions + CLK + buffering scheme 1 digital DC

Page 12: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 12

Digital Power

4-pixel region

for 21 regions <7mV

• Digital power:• at IBL occupancy,

digital power < 10μW/pixel.

Drop on Vdd

Page 13: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 13

Pixel Layout

Note: Digital ground tied to substrate, mixed signal environment BUT digital region placed in “T3” deep n-well.

Preamp A

mp

2FDAC

TDAC

Config Logic

discri

50

m

250 m

synthezised digital region (1/4th )

Page 14: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 14

FE-I4 PeripheryPix Array:

data formatting

/ compressi

on

80×336 pixel array

Asynch. FIFO (hamming code)

‘LVDS’-out

160Mb/s

2

monitoring

config.Periphery:

PLL, 40MHz in, 160MHz

out

40MHz

digital ctrl block

interface

L1Tglobal

configglobal register

bank

pixel confi

g

trigger FIFO

EoC

Powering

clk select

160MHz

aux

L1T, token, read, …

L1T, token, read, …

EoC

tokenEoC

token28 b × 40 DC

The pixel array + End of Column logic (triple redundant token)

pixel config

Data formatting block

readout FIFO

digital ctrl block

Command decoder: configuration, reset & L1T

8b10b encoder unit

PLL (40MHz 160MHz), high speed serializer…

LVDS output, 160 Mb/s, suited for IBL occupancy

Powering: DC-DC converters, Shunt-LDO

Page 15: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 15

Yield• Estimated from:

– Small analog test chips.– 8 fully tested wafers of Medipix 3 ICs, assuming same

defect density for synthesized logic.

• Expect of order ~39% digitally perfect chips.

• Yield enhancement:– Triple redundant read tokens.– Hamming coded pixel data and address (w. minimal # of

gates).– Redundant configuration shift register.

• Fully functional chips yield might be as high as 76%.(with isolated dead pixels at level <0.1%).

Page 16: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 16

Test Chip SubmissionFE-I4-P1FE-I4-P1

LDORegulator

ChargePump

CurrentReference

DACs

Con

trol

Blo

ck

Cap

aci

tan

ceM

easu

rem

en

t

3mm3mm

4mm4mm

61x14 array

SEU test IC

4-LVDS Rx/Tx

ShuLDO+trist LVDS/LDO/10b-DAC

turboPLL: PLL core + PRBS + 8b10b coder + LVDS driv

low power discri.

Page 17: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 17

FE-I4 Collaboration• Meeting 1 time a week.• Collaborate remotely using

Cliosoft platform.

• Participating institutes:Bonn: D. Arutinov, M. Barbero, T. Hemperek, A. Kruth, M. Karagounis.CPPM: D. Fougeron, M. Menouni.Genova: R. Beccherle, G. Darbo.LBNL: S. Dube, D. Elledge, M. Garcia-Sciveres, D. Gnani, A. Mekkaoui.Nikhef: V. Gromov, R. Kluit, J.D. SchipperSchedule: Submission planned for November

2009(with submission readiness review 3-4 Nov. 2009)

160

18FE-I3

FE-I4

Page 18: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 18

backup

BACKUP SLIDES

Page 19: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 19

Existing B-layer

Newbeam pipe

IBL mounted on beam pipe

Present beam pipe through present B-Layer

Page 20: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 20

Preamp. & Leakage Compensation

Vin

Vbp

Vbn

Vout

vfb

VbnLcc

Cf1=17fF

I_leakage compensation

Cst I feedback

• Regulated cascode preamp. high gain. less crosstalk path through biasing voltage.

• Triple well NMOS input. shield from substrate noise.

• Feedback capacitor discharged by NMOS feedback transistor.

• Leakage current compensation scheme based on differential amplifier.

2ke<Qin<22ke100nA leakage 10mV DC shift

Vout[V]

t[s]

Vout[V]

t[s]

200m

250m

225m

0.1 0.5

0.1 0.5

200m

300m

380m

Page 21: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 21

2nd stage & Comparator• PMOS input folded regulated cascode (straight

cascode in futur?).• Negative going output.• Classic 2-stage comparator.

Vbp

Vbn

VinVbpbuf

Vout

Cf2=6.86fF

Vbpff

20ns timewalk for 2ke- < Qin < 52ke- & threshold @1.5ke-

ENC=160e- @ Cd=0.4p & Il=100nA

DisOut

Unbias

DisIn

VthIn

ENC[e-]

Cd[F]

Qin[C]

tLE[s]

100f 200f 300f

60

100

150

10k 20k 30k 40k

Il=0nA

20n

10n

0

2nd stage amplif.

Discriminator

Il=100nA

Page 22: FE-I4 Chip Design

Clock Distribution

Physical implementation Differential Logic. Single Ended.

Possible structures simple H-tree with skew balancing

22

Page 23: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 23

Clock Multiplier• For IBL, need to transmit data out at BW of 160Mb/s• 2 options:

– send a 80MHz CLK to the FE and use both edges to transmit

• Needs modification of BOC / ROD to produce higher speed TTC

• Needs synchronization protocol on the FE between 80MHz clock & beam crossing.

• A new DORIC needs to decode CLK at twice frequency

– send a 40MHz CLK to the FE and multiply clock on FE• Needs a clock multiplier on chip• Note: synergy with what the strip MCC need

• In FE-I4, we will provide both options:– Clock multiplier from the 40MHz input clock– AUX: possibility to send the 80MHz to the FE

I/O choices for ATLAS IBL, ATLAS Pixel System Design Task Force

Page 24: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 24

8b10b encoder• For IBL, need to transmit data out at BW of 160Mb/s• At BOC/ROD:

– Data rate 4 times the clock rate– Phase adjustment

• Use Clock Data Recovery mechanism• CDR requires an output data stream with good

engineering properties• 8b10b:

– adequate for this purpose, enough transitions for reliable CDR

– widely used easy to implement– provides some level of error detection– provides comma for frame identification & synchronization

I/O choices for ATLAS IBL, ATLAS Pixel System Design Task Force

Page 25: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 25

SEU-hardened latch• CPPM has studied the influence of various layout of a DICE

latch on the SEU x-section.

Latch5.1 and latch5.2 ; Area :12µm × 4µm = 48 μm2

nMos separation : 7µm ; pMos separation : 3 µm

Physical separation of sensitive node pairs.

Calin et al, IEEE Trans. Nucl. Sci. vol43, n.6, 1996

1.a

1.b

2.a

2.b

3.a

3.b

1.a

1.b

2.a

2.b

3.a

3.b

Triple Redundant Logic with Interleaved Layout.

X-section [cm2.bit-1]:- Standard Latch: ~ 5.10-14

- DICE w. improved layout: ~ 3.10-16

X-section : < 1.10-17

Page 26: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 26

PLL OverviewCharge Pump

Voltage ControlledOscillator

Phase Frequency Detector

FrequencyDivider

Loop Filter

Conversion and Buffering

40 MHz 640 MHz

Page 27: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 27

Upset detection II

3 pC upset charge in fast divider

Feedback too fast signal

Feedback too slow signal

Page 28: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 28

Settling BehaviourControl Voltage

Frequency of single-ended 40 MHz clock

Frequency of single-ended 640 MHz clock

3 pC upset charge in fast divider

Page 29: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 29

3×LHC / b-layer replacement

40

80

120

160

200

1000

0 200 300 400 500 600

r [mm]

z [mm]

37

50.5

88.5

122.5

6.30 6.46 6.03 5.85 5.91 6.46 6.11

2.55 2.56 2.54 2.55 2.64 2.65 2.64

1.41 1.24 1.26 1.26 1.37 1.34 1.33

12.10 11.53 12.01 11.85 11.72 12.11 8.02

rates given in [pixel hits.bx-1cm-

2]

FE-I3, 50μm×400μm.FE-I4 simul., 50μm×250μm.

η=0.1 η=0.2 η=0.3 η=0.4 η=0.5 η=0.6 η=0.7 η=0.8 η=0.9 η=1.0

η=1.2

η=1.5

η=2.0

η=2.5

η=3.0

η=3.5

Page 30: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 30

Pixel occupancy Data bandwidth

• Pixel hit rate FE output bandwidth:– # bits / pixel transmitted?

» address 7+9 bits, analog info 4+2 bits 22b?» data output protocol?

• Reduce data output by taking into account clustered nature of real physics hits.

NU

MB

ER

OF

PIX

EL

S

FE-I4, central module, 21cm layer

FE-I4, central module, 3.7cm layer

10xLHC

FE-I4, central module, 3.7cm layer

3xLHC

3xLHC

Page 31: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 31

Pixel occupancy Data bandwidth

• Example 3: clustered data out with fixed format.

• compression factor (all at 3×LHC)3.7cm (vs. 21cm), η=0

• indiv pixels: 4.09 (0.25)×(7+9+4+2)= 1.00 (1.00) A.U.• static 1×2: 3.45 (0.18)×(7+8+2×4+2)=0.96 (0.83) A.U.• dynamic 1×2: 3.02 (0.15)×(7+9+2×4+2)= 0.87 (0.74) A.U.• static 1×4: 2.86 (0.17)×(6+8+4×4+4)=1.08 (1.08) A.U.• dyn. in-DC 1×4: 2.43 (0.15)×(6+9+4×4+4)= 0.95 (0.95) A.U.• dynamic 1×4: 2.13 (0.14)×(7+9+4×4+4)= 0.85 (0.94) A.U.

DC (×40)

row

(×336)colum

nrow ToT

NL

assumption: 100kHz L1T, 336×80 pixels FE-I4

Disclaimer: no header, trailer, DC-balancing, error correction…

106.count.FE-

1.s-1

preliminary

Page 32: FE-I4 Chip Design

19.05.2009 7th International Meeting on Front-End Electronics – Shunt-LDO Regulator

Slide 32

Shunt Regulator (FE-I3 approach)

• Shunt regulator generates a constant output voltage out of the current supply

• current that is not drawn by the load is shunted by transistor M1

• Very steep voltage to current characteristic

• Mismatch & process variation will lead to different Vref and Vout potentials

• Most of the shunt current will flow to the regulator with lowest Vout potential

• Potential risk of device break down at turn on

• Using an input series resistor reduces the slope of the voltage to current characteristic I=f(V)

• RSLOPE helps distributing the shunt current between the parallel placed regulators

• RSLOPE does not contribute to the regulation and consumes additional power

+

-Vref

Vout

R1

R2

M1

Iin

Iout

IsupplyRload

Rslope

without resistorIin[mA]

with resistor

Vout[V]

0 0.5 1 1.5 2

750

500

250

0

Page 33: FE-I4 Chip Design

19.05.2009 7th International Meeting on Front-End Electronics – Shunt-LDO Regulator

LDO Regulator with Shunt Transistor (ShuLDO)

Simplified Schematic

• Combination of LDO and shunt transistorCombination of LDO and shunt transistor

• M4 shunts the current not drawn by the M4 shunts the current not drawn by the loadload

• Fraction of M1 current is mirrored & Fraction of M1 current is mirrored & drained into M5drained into M5

• Amplifier A2 & M3 improve mirroring Amplifier A2 & M3 improve mirroring accuracyaccuracy

• Ref. current defined by resistor R3 & Ref. current defined by resistor R3 & drained into M6drained into M6

• Comparison of M5 and ref. current leads Comparison of M5 and ref. current leads to constant to constant current flow in M1 current flow in M1

• Ref. current depends on voltage drop VRef. current depends on voltage drop VIinIin which again depends on supply current Iin which again depends on supply current Iin

• „Shunt-LDO“ regulators having completely different output voltages Shunt-LDO“ regulators having completely different output voltages can be placed in can be placed in parallelparallel without any without any problem regarding mismatch & shunt current distribution problem regarding mismatch & shunt current distribution

• Resistor R3 mismatch will lead to some variation of shunt current (10-20%)Resistor R3 mismatch will lead to some variation of shunt current (10-20%)

• „ „Shunt-LDO“ Shunt-LDO“ can cope with an increased supply current can cope with an increased supply current if one FE-I4 does not if one FE-I4 does not contribute to shunt current contribute to shunt current e.g. disconnected wirebond e.g. disconnected wirebond ref current goes up ref current goes up

• Can be used as an Can be used as an ordinary LDO when shunt is disabledordinary LDO when shunt is disabled+ -

+

-

+

-

Iin

Iout

Vref

Vout

A1

A2

A3

M1M2

M3

M4

M5

R1

R2

Vin

Iload

R3

M6

Ishunt

Slide 33

Page 34: FE-I4 Chip Design

19.05.2009 7th International Meeting on Front-End Electronics – Shunt-LDO Regulator

Isupply

+ -

+

-

+

-

Iin

Iout

Vref

Vout

A1

A2

A3

M1M2

M3

M4

M5

R1

R2

Vin

Iload

R3

M6

Ishunt

Slide 34

Parallel Regulator Operation

• 2 regulators placed in parallel with Vout1=1.2 and Vout2=1.5

• Output voltages settle at different potentials

• Current flowing through the regulator stays the same

Vout=1.2Vout=1.5

Simulation

Page 35: FE-I4 Chip Design

01.07.2009 FE-I4 Design Collaboration Meeting - LVDSSlide 35

LVDS Driver

Vbn

Io

600u600u 1800u

M11 M14

M1

M2 M3VcmVofs

Vbp

Vbn

• Standard LVDS architecture for Standard LVDS architecture for 320MHz320MHz clockclock rate and adapted to low rate and adapted to low supply voltage supply voltage 1.5-1.2V1.5-1.2V

• Current is routed to/from the output by Current is routed to/from the output by four four switches M3-M6 switches M3-M6

• Common-mode voltage is measured by Common-mode voltage is measured by a a resistive divider and controlled by a resistive divider and controlled by a common-common- mode feedback circuit mode feedback circuit

• Output currentOutput current is switchable between is switchable between 0.6 -3mA0.6 -3mA

Boni et al., IEEE JSSC VOL. 36 NO. 4, 2001

M3 M4

M5 M6

CMFBCMOSdriver

D

D

D

VofsVcm

Vbp

Vbn

5pF

5pF

100k 100k

TX

TX

Dn

DD

Page 36: FE-I4 Chip Design

01.07.2009 FE-I4 Design Collaboration Meeting - LVDSSlide 36

LVDS Receiver

M11M12 M13

M14

M8

M9 M10

M4 M5 M6M7

M1

M2 M3

IN1 IN2M14

M15M16

M18M17

OUT

M20M19

M21 M22

Tyhach et al., Tyhach et al., A 90-nm FPGA I/O Buffer Design With 1.6-Gb/s Data Rate for Source-Synchronous

System and 300-MHz Clock Rate for External Memory Interface, IEEE JSSC, Sept. 2005

• parallel PMOS/NMOS comparator input parallel PMOS/NMOS comparator input stagesstages allow operation in a allow operation in a wide range of wide range of common-modecommon-mode voltages voltages

• cross coupled positive feedback cross coupled positive feedback structure allowsstructure allows introduction of hysteresis introduction of hysteresis

• second stage sums singals from both second stage sums singals from both input stage input stage and converts them to a CMOS output and converts them to a CMOS output signalsignal

Page 37: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 37

LVDS transciever• For IBL and outer layers sLHC, need for a

320Mb.s-1 BW/ LVDS i/0.

• LVDS transciever IC irradiated up to ~180Mrad.No degradation observed.

IBM 130nm

0.8mm0.8mm

1.8mm1.8mm

40MHz

160MHz

320MHz

Clock-Rate

Common Mode Voltage

1050mV

600mV

150mV

TX output Chained RxTx output @ 320 MHz Clock

tests with differential probe and 100 Ω on board term. @ 1.2V supply

Page 38: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 38

Output data protocol

24-bit Record Word

Acro -nym

Field 1 Field 2 Field 3 Field 4Field

5Comments

Data Header

DH 11101 001 xxxx[3:0] trigID

[7:0] bcID

xxxx reserved for later use

Data Record

DR[6:0]

Column[8:0]Row

[3:0] ToTtop

[3:0] ToTbot

 

Column numbering: 0000001 to

1010000

Address

RecordAR 11101 010 Type

[14:0] Addres

Type 0: Global Register /

Type 1: Shift Register Position

Value Record

VR 11101 100[15:0] Value

   

Value Record without previous Address Record allowed

Service Record

SR 11101 111[15:0]

Message 

Service Message (e.g. error codes)

Empty Record

ER0000000

00000000

00000000

0   

Idle = K.28.1 commas

(8b10b coding case)

• 8b10b frame: SOF (K.28.7), followed by 24 bits record word(s) and an EOF (K.28.5) + idle (K.28.1)

Table: possible data words

Page 39: FE-I4 Chip Design

Marlon Barbero, FE-I4 Chip Design, Vertex09, Putten, The Netherlands, Sep. 17th 2009 39

Future Directions Still higher rate capability Need smaller, faster pixel Yet need more memory per pixel to buffer higher rate Two directions to explore: 3D and 65nm

FE-I4 region placed on 2 130nm tiers would have 60% pixel size and 50% more logic/memory

Goal

FE-I3 pixel -- 3.2 bits

FE-I4 -- 25 bits

~35 bits