fe-i4 architecture & performance

47
FE-I4 Architecture & Performance Marlon Barbero, Universität Bonn 2 nd ATLAS CMS Electronics for SLHC, CERN Mar. 04 th 2009

Upload: doli

Post on 04-Jan-2016

63 views

Category:

Documents


5 download

DESCRIPTION

FE-I4 Architecture & Performance. Marlon Barbero, Universität Bonn 2 nd ATLAS CMS Electronics for SLHC, CERN Mar. 04 th 2009. FE-I4 for IBL & sLHC. IBL (~2014) : inserted layer @ 3.7cm in current pixel detector. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: FE-I4 Architecture & Performance

FE-I4 Architecture & Performance

Marlon Barbero, Universität Bonn

2nd ATLAS CMS Electronics for SLHC, CERN Mar. 04th 2009

Page 2: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 2

FE-I4 for IBL & sLHC

• IBL (~2014): inserted layer @ 3.7cm in current pixel detector.

• sLHC tentative layout (>2017): pixel layers at 3.7cm, 7.5cm, 16cm, 20cm (note: Discussion on boundary pixel / short

strips, …).

tentative ID layout for sLHC

2 layers long strips

3 layers short strips

fixedremovable

4 layers pixels

IBL

IBL

R~37

FE-I4

M. Garcia-Sciveres, ACES Mar. 03rd 09

Page 3: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 3

FE-I4: Some Specifications– Pixel size: 50×250μm2.– Pixel array: 80 columns×336 rows = 26880 pixels/FE.– Dimensions FE-I4: ~ 20×19 mm2.– Analog goals: 1.5V, 10μA/pixel. Digital goals: 1.2V,

10μA/pixel.– Analog information: ToT coded on 4 bits.– pseudo-LVDS output: 160Mb.s-1. – Rad.-hardness: >200MRad ionizing dose (FE-I3:

>50Mrad).– Minimal guidelines: no ELT, nmos guard rings for analog

& sensitive digital circuitry.– Sensor capacitance: 0-0.5pF.– Low noise at low cap. (~100e-).– DC leakage I tolerant to Ileak > 100nA.

A. Mekkaoui, ACES Mar. 04th 09

Page 4: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 4

Digital Readout Architecture

Digital Part

DA

TA

Control

Fre

eze

Hit

EO

C B

uff

er

TriggerLogic

Control

ClusteringLogic

Shared Digital Part

Local Buffer

DA

TA

TriggerLogic

FE-I3

bottleneck

Both FE readout based on Both FE readout based on double column (DC) double column (DC)

structurestructure

EOC

FE-I4

local storage

• All hit pixels are shipped to EoC buffer.• A hit pixel need to transfer its data to EoC

before accepting new hit congestion.• Each pixel is logically independent inside

the DC.

• Store data locally in DC until L1T.• Only 0.25% of pixel hits are shipped

to EoC DC bus traffic “low”. Warning: Local Buffer Congestion???

• Each pixel tied to its neighbors -time info- (real hits clustered). TW out.

low traffic on DC bus

Page 5: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 5

Simulation• Pile-up inefficiency: α (hit rate; mean(ToT); area).

untie neighbor pixels if needed & aggressive return to baseline.• Local buffer overflow: increase Logic Unit / Local Buffer Region

(averaging out effect) & increase # of cells per Local Buffer.

Two sources of inefficiencies are identified in the FE-I4 architecture

#?; ;

David Arutinov - Bonn

LHC0.13%

3xLHC 0.56%

sLHC 1.9%

Mean ToT = 4

n – true interaction ratem – recorded count rateτ - mean ToT

nm = 1+n τ

Simulation Analytical

Pile-up inefficiency.

Page 6: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 6

Local Buffer Overflow (2x2)• Local Buffer Overflow Inefficiency for the 3.7cm

layer

0.5% - 5 cells

0.01% ~ 7-8 cells

0.1% - 6 cells

3xLHC

Latency 120 BX

Latency (BX)

x6

sLHC

3xLHC

120 BX

p60

3

j

q ( )j

j6 2 j

6 2 j( )

0

3

j 0

6 2 j

v

q ( )j

jv

v

Simulation Analytical

Page 7: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 7

Inefficiency FE-I4 2x2

Mean ToT = 4

0.6%

x6

At 3 times LHC luminosity, r~3.7cm, FE-I4 inefficiencies should be in acceptable range

Page 8: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 8

Towards a reference design

disc

discdisc

ToT Memories

disc

Latency Counters

control data

ToT Counter ToT Counter

ToT CounterToT Counter

ToT Memories

ToT Memories

ToT Memories

DC

4 pixel region

Now all pixels in buffer area are ‘semi’-tied together.Due to the smaller radius (3.7 cm vs. 5.05 cm)

charge sharing in Z becomes comparable with r/phi.

MemoriesSimulation Analytical

3xLHC 10xLHC 3xLHC 10xLHC

5 0.047 2.19 0.029 2.25

6 0.011 0.65 0.003 0.57

7 <0.01 0.16 <0.01 0.13

η=0 η=2.5

n: buffer occupied.k: total # of buffer.ρ=λμ, withλ: hit probability.μ: busy time.

Erland-B function

pn=

Page 9: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 9

Region Schematic• A 4-pixel unit with these functionalities:

• Time-Stamping (up to 5 stored at a time).• ToT coded on 4 bits: no hit, small hit, long hit, analog

values.• Neighbor bit.• Small hit Available to Neighbor Region .disc. top left

disc. bot. left

disc. top right

disc. bot. right

5 ToT memory /pixel

5 latency counter / region

hit proc.: TS/sm/big/ToT

Read & Trigger

Neighbor

Token

L1T Read

Page 10: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 10

Digital Column Architecture• 168 regions + CLK + buffering scheme 1 Double-

Column

• Simple buffer.• H-tree.• Delay compensated

for skew balancing.

Page 11: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 11

Work in progress

188m94

m

5050

x8

delay matching - clk

addresses

region layout

region symbol

DC schem.

drop on vdd

Tomasz Hemperek - Bonn

Page 12: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 12

FE-I4 Performance• Inefficiency 3.7cm @ 3xLHC:

0.56% (double-hit) + 0.05% (5-deep buffer overflow).( ~0.35%+~0.0065% for 16cm sLHC -50ns bx-)

• Area: cells from provider, 100 x 102 um2.

• Power: 1 hit/bx/DC, 100kHz L1T, 2.6uW / pixel. Warning: This is before adding any buffering, clock distribution… 5-6uW digital total?

Page 13: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 13

Needs in Periphery

• Focus needs to shift to periphery.

• Command decoder L1T / configuration.• Ctrl block handles token pass, read request to DC,

readout from DC.• Data Formatting Data Output Protocol, compression,

8b10b.• Data transmission pseudo-LVDS output from fast CLK.• Power blocks regulator.• Pad frame.

Page 14: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 14

Status of FE-I4 PeripheryPix Array:

data compressi

on

80×336 pixel array

data formatting (protocol) with error detection

(parity/CRC?)

‘LVDS’-out

160Mb/s

2

monitoring

config.Periphery:

Asynch. FIFO

PLL, 40MHz in, 160MHz

out

40MHz

ctrl block

interface

L1Tglobal

config

DACs

pixel confi

g

trigger FIFO

Bypass-able

Bypass-able

EoC

Powering

clk select

160MHz

aux

L1T, token, read, …

L1T, token, read, …

EoC

tokenEoC

token28 b × 40 DC

: in “advanced stage”: “effort needed”

Page 15: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 15

Summary FE-I4 Architecture

• Lot of work performed during last 4-6 months on digital region + digital Double-Column. will remain high in priority list in coming months (performance studies, improvements, optimization) .

• Focus has started shifting to FE periphery. Much effort needed there (interface, data output protocol, control block…).

• Validation, testability.

• Milestones 2009:• Reviews foreseen for 2009, March and early summer. • Full scale design completed: fall 2009.

Needless to say, this is an aggressive schedule.

Page 16: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 16

FE-I4_proto1 collaboration• Participating institutes:

Bonn, CPPM, Genova, LBNL, Nikhef.Bonn: D. Arutinov, M. Barbero, T. Hemperek, M. Karagounis.CPPM: D. Fougeron, M. Menouni.Genova: R. Beccherle, G. Darbo.LBNL: R. Ely, M. Garcia-Sciveres, D. Gnani, A. Mekkaoui.Nikhef: R. Kluit, J.D. Schipper

FE-I4-P1FE-I4-P1

LDORegulator

ChargePump

CurrentReference

DACs

Con

trol

Blo

ck

Cap

aci

tan

ceM

easu

rem

en

t

3mm3mm

4mm4mm

61x14 array

SEU test IC

4-LVDS Rx/Tx

ShuLDO+trist LVDS/LDO/10b-DAC

Page 17: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 17

backup

BACKUP SLIDES

Page 18: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 18

FE-I4• Originally developed as an IC for b-layer upgrade.• Similar bandwidth for IBL and outer layers at sLHC

~2017 + schedule construction sLHC outer layers sooner than insertable inner layers FE-I4 a good fit for both projects.

• FE-I4 for IBL requires:– hit rate ×4-5 wrt FE-I3, 5cm.– small pixel & big chip (active fraction).– compatible w. present RO & ctrl.– compatible w. different sensor types.

• FE-I4 for outer layers @ sLHC requires:– big chip for costs reduction.– compatible w. sLHC RO & ctrl.– lower current & compatible new powering schemes.

Page 19: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 19

Motivation for re-design of FE

• Need for new FE:• Smaller b-layer radius + potential luminosity increase higher hit rate FE-I3 column-drain architecture saturated. FE-I4 has new digital architecture. FE-I4 has smaller pixel (reduced

cross-section).

• Enhancements brought to FE-I4:• Improved active area ratio (<¾0.9): Bigger IC; reduced periphery; cost.• Power:Analog design for reduced currents; decrease of digital activity

(digital logic sharing for neighbor pixels); new powering concepts.

• Adapt to sensor technologies with different cap. / leak.

• New technology: Availability, rad-hard, higher integration density for digital circuits.

0.25μm130nm

FE-I3FE-I4

EOC

Hit prob. / DC

ineff

icie

ncy

LH

C3

xLH

C sLH

C

FE-I3 (5cm)

Page 20: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 20

4-pixel / 8-pixel• Local Buffer Overflow Inefficiency Quadri-pixel vs.

Octo-pixel.

Averaging out effect.

Page 21: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 21

FE-I4 geometry• 250 μm × 50 μm.• Array: 80 columns × 336 rows.• No bricking.

7.6mm

8mm active active

2.8mm

16.8mm

20.2mm

~2mm

~200μm

FE-I374%

FE-I4~89%

Cha

rte

red

re

ticu

le (

24

x 3

2)

IBM

re

ticu

le

vendor’s max chip size: 21mm×19.5mm (review when above 20mm)

~19 mm

Page 22: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 22

Some target specs for FE-I4

• Rad.-hardness: >200MRad ionizing dose (FE-I3: >50Mrad).

• Minimal guidelines: no ELT, nmos guard rings for analog & sensitive digital circuitry.

• Sensor capacitance: 0-0.5pF.• Low noise at low cap. (~100e-).• DC leakage I tolerant to > 100nA.  FE-I3 FE-I4

Pixel Size [μm2] 50×400 50×250Pixel Array 18×160 80×336

Chip Size [mm2] 7.6×10.820.2×19.

0Active Fraction 74% 89%Analog Current [μA/pix] 26 10Digital Current [μA/pix] 17 10Analog Voltage [V] 1.6 1.5Digital Voltage [V] 2 1.2pseudo-LVDS out [Mb/s] 40 160

Page 23: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 23

Clock Multiplier• For IBL, need to transmit data out at BW of 160Mb/s• 2 options:

– send a 80MHz CLK to the FE and use both edges to transmit

• Needs modification of BOC / ROD to produce higher speed TTC

• Needs synchronization protocol on the FE between 80MHz clock & beam crossing.

• A new DORIC needs to decode CLK at twice frequency

– send a 40MHz CLK to the FE and multiply clock on FE• Needs a clock multiplier on chip• Note: synergy with what the strip MCC need

• In FE-I4, we will provide both options:– Clock multiplier from the 40MHz input clock– AUX: possibility to send the 80MHz to the FE

I/O choices for ATLAS IBL, ATLAS Pixel System Design Task Force

Page 24: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 24

8b10b encoder• For IBL, need to transmit data out at BW of 160Mb/s• At BOC/ROD:

– Data rate 4 times the clock rate– Phase adjustment

• Use Clock Data Recovery mechanism• CDR requires an output data stream with good

engineering properties• 8b10b:

– adequate for this purpose, enough transitions for reliable CDR

– widely used easy to implement– provides some level of error detection– provides comma for frame identification & synchronization

I/O choices for ATLAS IBL, ATLAS Pixel System Design Task Force

Page 25: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 25

PLL OverviewCharge Pump

Voltage ControlledOscillator

Phase Frequency Detector

FrequencyDivider

Loop Filter

Conversion and Buffering

40 MHz 640 MHz

Page 26: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 26

Analog Readout Chain• In FE-I4_proto1 (FE-I4 prototype

submitted spring 2008):

• 2-stage architecture optimized for low power, low noise, fast rise time. Additional gain, Cc/Cf2~6. More flexibility on choice of Cf1. Qcoll less dependant on Cdetect.

2nd stage decoupled from leakage related DC potential shift.

• 12b configuration: FDAC: tuning feedback current. TDAC: tuning of discriminator threshold. Local charge injection circuitry.

Preamp

Am

p2

FDAC

TDAC

Config Logic

discri

50 m

Cc

Cf2Cf1

Preamp Amp2

feedbox feedbox

Inj0

Inj1

injectIn

Cinj1

Cinj2

+local

feedback tune

FDAC

4 Bit

Vfb

+local

thresholdtune

TDAC

5 Bit

Vfb2

+

-

HitOutNotKill

Vth

145 m

Page 27: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 27

Irradiation in 2008• Sept. Los Alamos 800MeV p+

FE-I4-Proto1 FE, #1 (50Mrad) & #2 (100Mrad)• Oct. CERN 20GeV p+

SEU test chip + LVDS test chip (used for interface and received a low parasitic dose )

• Dec. Los Alamos 800Mev p+FE-I4-Proto 1 chips #2 (an additional 100MRad) and #3

(200MRad)LVDS chips #1,#2 and #3,#4

Laser along beam line

Beam stopFE-I4-proto1

LVDS RxTx

Page 28: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 28

SEU-hardened latch• CPPM has studied the influence of various layout of a DICE

latch on the SEU x-section.

Latch5.1 and latch5.2 ; Area :12µm × 4µm = 48 μm2

nMos separation : 7µm ; pMos separation : 3 µm

Physical separation of sensitive node pairs.

Calin et al, IEEE Trans. Nucl. Sci. vol43, n.6, 1996

1.a

1.b

2.a

2.b

3.a

3.b

1.a

1.b

2.a

2.b

3.a

3.b

Triple Redundant Logic with Interleaved Layout.

X-section [cm2.bit-1]:- Standard Latch: ~ 5.10-14

- DICE w. improved layout: ~ 3.10-16

X-section : < 1.10-17

Page 29: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 29

LVDS transciever• For IBL and outer layers sLHC, need for a

320Mb.s-1 BW/ LVDS i/0.

• LVDS transciever IC irradiated up to ~180Mrad.No degradation observed.

IBM 130nm

0.8mm0.8mm

1.8mm1.8mm

40MHz

160MHz

320MHz

Clock-Rate

Common Mode Voltage

1050mV

600mV

150mV

TX output Chained RxTx output @ 320 MHz Clock

tests with differential probe and 100 Ω on board term. @ 1.2V supply

Page 30: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 30

Output Stage: PLL & 8b10b• Compatibility w. current BOC / ROD.• Clock multiplier from the 40MHz input clock– Classic PLL design: Phase Freq. Detector, Loop Filter,

Voltage Controlled Oscill., Freq. Divider.– Phase Frequency Detector w. Upset Detection Unit.– Settling in 1.2μs; fast recovery from SEU in divider &

Vctrl.

• 8b10b:– higher frequency clk & data recover clk from data.– balanced coding for Clock Data Recovery in BOC / ROD.– some nice features (error detection, frame alignment).

• Both blocks by-passable for maximum flexibility.

I/O choices for ATLAS IBL, ATLAS Pixel System Design Task Force

Page 31: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 31

Out-Stage: tri-state pseudo-LVDS

• MUXing FE output for outer layers.• M3-M6 steered by tri-state logic

block all switch can be left open hZ.

• tri-state LVDS submitted. Testing is starting.M1

M2

M3 M4

M5 M6

Iout

IoutN

TristateLogic

Nn

Pn

EN

DI P

N

DI EN N Nn P Pn Out

0 0 0 0 1 1 hZ

1 0 0 0 1 1 hZ

0 1 0 1 0 1 0

1 1 1 0 1 0 1

Transmission Line

TX+

-

TX+

-

TX+

-

TX+

-

Tri-State logic

Page 32: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 32

Others• Note:

– Low power comparator.– Failsafe mechanism of LVDS receiver.– Pad-frame.– LDO with new 0-cell.

– ShuLDO.

+

-

Vin

Vref

Vout

R1

R2

Cout

M1

i=sCVout

• Zero is introduced in the open loop transfer function by a frequency dependent voltage controlled current source• Less peaking of Vout in comparison with compensation by RESRof Cout output.

Talk M. Karagounis -ID Powering -Tue. 24th 2009

• Vin= 1.6V• Vout= 1.2V1.5V

Page 33: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 33

MC events• Events: (Pythia generator)

– WH(120GeV); Hbb.– overlaid with: 24 / 75 / 240 / 400 events pileup. “LHC”/“3×LHC”/ “sLHC” (25ns / 50ns

bx)

• Sensor: Un-irradiated planar sensor, 260μm width. Note: 3D simulation in progress

• Geometry: (Geant3 simulation package)– pixel size: FE-I3: 400×50μm2; FE-I4: 250×50μm2.– first: 4 barrels, 3.7 (FE-I4) & 5.05/8.85/12.25 cm radius FE-I3.– new: 6 barrels, 3.7/5.05/8.85/12.25/16/21 cm radius FE-I4.

• Threshold: first 3750e-. New down to 1000e-.

_

V. Kostyukhin -3D Si- Mon. 23rd 2009

Page 34: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 34

Foreword: Minimal Bias events

• FE-I4 for:

- b-layer upgrade: luminosity? radius? 75 ev pile-up & 3.7cm.

- s-LHC: lumi.? radius? 240/400 ev pile-up & outer layer. • Extrapolation to LHC energy:

extrapolation @ 14TeV: uncertainty ~ 30%? (1st years operation crucial to feedback simulation)

<# charged particles> / interaction

<pt charged particle> at η=0

Page 35: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 35

3×LHC / b-layer replacement

40

80

120

160

200

1000

0 200 300 400 500 600

r [mm]

z [mm]

37

50.5

88.5

122.5

6.30 6.46 6.03 5.85 5.91 6.46 6.11

2.55 2.56 2.54 2.55 2.64 2.65 2.64

1.41 1.24 1.26 1.26 1.37 1.34 1.33

12.10 11.53 12.01 11.85 11.72 12.11 8.02

rates given in [pixel hits.bx-1cm-

2]

FE-I3, 50μm×400μm.FE-I4 simul., 50μm×250μm.

η=0.1 η=0.2 η=0.3 η=0.4 η=0.5 η=0.6 η=0.7 η=0.8 η=0.9 η=1.0

η=1.2

η=1.5

η=2.0

η=2.5

η=3.0

η=3.5

Page 36: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 36

10×LHC (25ns bx) / sLHC

40

80

120

160

200

1000

0 200 300 400 500 600

r [mm]

z [mm]

324 524

37/37

70

131

201

50.5

88.5

122.5

36.89 35.76 35.97 36.46 35.94 33.26 23.23mean: 35

mean: 19.5

mean: 7.8

mean: 4.7

mean: 2.3

210

150

FE-I4, 50μm×250μm.FE-I4 simul., 50μm×250μm.FE-I4 Nigel, 50μm×250μm.FE-I4 sdtf 220908, 50×250μm2.

rates given in [pixel hits.bx-1cm-

2]

η=0 η=0.1 η=0.2 η=0.3 η=0.4 η=0.5 η=0.6 η=0.7 η=0.8 η=0.9 η=1.0

η=1.2

η=1.5

η=2.0

η=2.5

η=3.0

η=3.5

Page 37: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 37

10×LHC (50ns bx) / sLHC

40

80

120

160

200

1000

0 200 300 400 500 600

r [mm]

z [mm]

324 524

37/37

70

131

201

50.5

88.5

122.5

mean: 60

mean: 34

mean: 13.4

mean: 8.4

mean: 3.9

210

150

FE-I4, 50μm×250μm.FE-I4 simul., 50μm×250μm.FE-I4 Nigel, 50μm×250μm.FE-I4 sdtf 220908, 50×250μm2.

rates given in [pixel hits.bx-1cm-

2]

η=0 η=0.1 η=0.2 η=0.3 η=0.4 η=0.5 η=0.6 η=0.7 η=0.8 η=0.9 η=1.0

η=1.2

η=1.5

η=2.0

η=2.5

η=3.0

η=3.5

55.10 38.6759.1560.1260.0258.7461.18

Page 38: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 38

Extrapolations to other radius

Reasonable fit with:exp(1.34-0.57*R)+0.15-0.0053*R

sLHC, 50ns bx / 400 events pileup

Hit

s/m

m2

r [cm]

Hit

s/m

m2

r [cm]

sLHC, 25ns bx / 240 events pileup

Reasonable fit with:exp(0.86-0.58*R)+0.088-0.0031*R

sLHC (25ns) sLHC (50ns)

Radius layer [mm] [pix.bx-1.cm-2] [pix.bx-1.cm-2]37 35 60

50.5 19.5 3470 10.6 18.4

88.5 7.8 13.4122.5 4.7 8.4

131 4.7 8.3150 4.2 7.1201 2.5 4.4210 2.3 3.9

Page 39: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 39

Pixel occupancy Data bandwidth

• Pixel hit rate FE output bandwidth:– # bits / pixel transmitted?

» address 7+9 bits, analog info 4+2 bits 22b?» data output protocol?

• Reduce data output by taking into account clustered nature of real physics hits.

NU

MB

ER

OF

PIX

EL

S

FE-I4, central module, 21cm layer

FE-I4, central module, 3.7cm layer

10xLHC

FE-I4, central module, 3.7cm layer

3xLHC

3xLHC

Page 40: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 40

Pixel occupancy Data bandwidth

• Example 3: clustered data out with fixed format.

• compression factor (all at 3×LHC)3.7cm (vs. 21cm), η=0

• indiv pixels: 4.09 (0.25)×(7+9+4+2)= 1.00 (1.00) A.U.• static 1×2: 3.45 (0.18)×(7+8+2×4+2)=0.96 (0.83) A.U.• dynamic 1×2: 3.02 (0.15)×(7+9+2×4+2)= 0.87 (0.74) A.U.• static 1×4: 2.86 (0.17)×(6+8+4×4+4)=1.08 (1.08) A.U.• dyn. in-DC 1×4: 2.43 (0.15)×(6+9+4×4+4)= 0.95 (0.95) A.U.• dynamic 1×4: 2.13 (0.14)×(7+9+4×4+4)= 0.85 (0.94) A.U.

DC (×40)

row

(×336)colum

nrow ToT

NL

assumption: 100kHz L1T, 336×80 pixels FE-I4

Disclaimer: no header, trailer, DC-balancing, error correction…

dyn. 1×4 better at small R? (larger η!) dyn. 1×2 at large R?

106.count.FE-

1.s-1

preliminary

For reference in backup slides: same at higher η

Page 41: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 41

Pixel occupancy Data bandwidth

• Example 3: clustered data out with fixed format.

• compression factor (all at 3×LHC)3.7cm mod.4 (vs. 21cm mod.6),

• indiv pixels: 3.96 (0.26)×(7+9+4+2)= 1.00 (1.00) A.U.• static 1×2: 3.38 (0.20)×(7+8+2×4+2)=0.97 (0.87) A.U.• dynamic 1×2: 3.05 (0.18)×(7+9+2×4+2)= 0.91 (0.79) A.U.• static 1×4: 2.28 (0.17)×(6+8+4×4+4)= 0.89 (1.01) A.U.• dyn. in-DC 1×4: 2.00 (0.15)×(6+9+4×4+4)= 0.80 (0.91) A.U.• dynamic 1×4: 1.88 (0.14)×(7+9+4×4+4)= 0.78 (0.85) A.U.

DC (×40)

row

(×336)colum

nrow ToT

NL

assumption: 100kHz L1T, 336×80 pixels FE-I4

Disclaimer: no header, trailer, DC-balancing, error correction…

dyn. 1×4 better at small R? (larger η!) dyn. 1×2 at large R?

106.count.FE-

1.s-1

preliminary

Page 42: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 42

Data BW for IBL @ 3.7cmTrigger rate 100 kHz

Interactions per crossing 75

Sensor model 260um planar, unirradiated

Comparator threshold 4000e

Output format for analog data 3.7cm: Single pixel / Fixed frame dynamic 2 pixel phi pairing

Bits / pixels per analog output frame 21 / 1 (single pix) ; 26 / 2 (analog-2)

Output format for binary data 3.7cm layer: Fixed frame dynamic 2 pixel phi pairing /Fixed frame dynamic 4 pixel group

Bits / pixels per binary output frame 20 / 2 (Bin-2) ; 24 / 4 (Bin-4)

Encoding, parity, redundancy or headers

NoneLayer comp.

firing per cm^2 per BX

Required bandwidth per chip (Mb/s)

3.7cm

12.0 Analog: 85

3.7cm

12.0 Analog-2: 75

3.7cm

12.0 Bin-2: 57.7

3.7cm

12.0 Bin-4: 45.8

Page 43: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 43

Data BW for sLHCTrigger rate 100 kHz

Interactions per crossing 400

Sensor model 260um planar, unirradiated

Comparator threshold 4000e

Output format for analog data Fixed frame dynamic 2 pixel phi pairing

Bits / pixels per analog output frame 26 / 2

Output format for binary data Fixed frame dynamic 2 pixel phi pairing (L2, L3) Fixed frame dynamic 4 pixel group (L0, L1)

Bits / pixels per binary output frame 24 / 4 (L2, L3) ; 20 / 2 (L0, L1)

Encoding, parity, redundancy or headers

None

Design margin Factor of 2Layer comp.

firing per cm^2 per BX

Required bandwidth per chip (Mb/s) (analog / binary)

chips/ module

320Mb/s LVDS outputs / module(analog / binary)

EOS card data volume (Gb/s)(analog / binary)

FE-I4 chip data losses (*) %

0 60.0 749 / 454 1 3 / 2 12.0 / 7.3 n/a + 0.05

1 18.4 230 / 140 4 3 / 2 5.5 / 3.4 n/a + 0.02

2 6.6 75 / 58 4 1 / 1 2.4 / 1.8 0.18 + 0.01

3 3.9 42 / 32 4 1 / 1 2.7 / 2.1 0.10 + 0

disks 80 max? 4 1 2.9? 0.1-0.2?

Page 44: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 44

Page 45: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 45

Page 46: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 46

Page 47: FE-I4 Architecture & Performance

Marlon Barbero, FE-I4 Architecture & Performance , 2nd ACES, CERN, Mar. 04th 2009 47