design requirements hvdc - usaid sari/energy...

38
Design Of HVDC System Page 1 23.08.2011 ET-PS Energy Transmission

Upload: vuonglien

Post on 11-Apr-2018

231 views

Category:

Documents


3 download

TRANSCRIPT

Design Of HVDC System

Page 1 23.08.2011 ET-PS Energy Transmission

Objectives for Design Of HVDC SystemSystem

Maximum reliability / availability y y High Flexibility. Low Maintenance Safety

Page 2 23.08.2011 ET-PS Energy Transmission

System Consideration for Design Of HVDC SystemHVDC System

Outage risks for planning High capacity Links.g p g g p y Inter-tripping Schemes to take care of HVDC pole/Bipole

outages. Minimum and Maximum Fault levels. Reactive Power Exchange with System.

N d f E t l D i t Need for External Dynamic support. Load rejection Over voltages (TOV). Recovery from AC and DC faults Recovery from AC and DC faults. Commutation failure performance.

Page 3 23.08.2011 ET-PS Energy Transmission

COMMUNICATIONCOMMUNICATION

Highly reliable and effective telecommunication systemshould be available between the terminals.

Telecommunication link can be either PLCC or OPGWTelecommunication link can be either PLCC or OPGW.

Optical Ground Wire (OPGW) can be installed on one ofth k f th HVDC lithe peaks of the HVDC line.

Page 4 23.08.2011 ET-PS Energy Transmission

System SpecificationSystem Specification

Configuration

Main Power Requirements and modes of operation

System Parameters and main requirements

VoltageVoltageFrequencyHarmonic ImpedanceReactive Power ExchangeReactive Power ExchangeShort Circuit LevelEnvironmental Conditions – temp, soil, location etc.

Page 5 23.08.2011 ET-PS Energy Transmission

AC SYSTEM CONFIGURATIONAC SYSTEM CONFIGURATION

AC system 400kV; The HVDC system shall be designed yvoltage

; y gfor voltages from 360 to 440kV but the performance shall be guaranteed for voltages from 380 to 420 kVfrom 380 to 420 kV

Frequency 50Hz; The HVDC system shall be designed for frequencies ranging from 47.5 Hz to 52.5 g gHz but the performance shall be guaranteed for frequencies from 48.5 Hz to 51.5 Hz

Short Circuit Levels

Ranges to be given for both rectifier and inverter side.

Page 6 23.08.2011 ET-PS Energy Transmission

Levels

Single Line Diagram for a Bipolar Transmission SystemTransmission System

AC SystemAC System HVDC Station DC Overhead Line HVDC Station

Page 7 23.08.2011 ET-PS Energy Transmission

Single Line Diagram for a Back-to-Back SystemBack System

AC S t HVDC St ti ACAC System HVDC Station AC System

Page 8 23.08.2011 ET-PS Energy Transmission

Bipolar HVDC TerminalBipolar HVDC Terminal

ACSystem 1 System 2

ACACACAC

1 AC Switchyard

2 AC Filters

Controls, Protection, MonitoringTo/ fromotherterminal

3 Transformers

4 Converter Valves

Pole 1

ACfilter

DCfilter

5 Smoothing Reactorsand DC Filters

6 DC Switchyard

Pole 2

6611 22 33 44 55

DCfilter

Page 9 23.08.2011 ET-PS Energy Transmission

Basic Design ProcessBasic Design Process

S p e c i f i c a t i o nS p e c i f i c a t i o n Main transmission Data

Pdc Udc Idc etc.AC-Network Load flow study

St bilit t d

Simulator Computer

Stability studyMain data of converter station (U, I, , Q)

DC H i AC Harmonics

Insulationcoordination Thyristor

Simulation study

DC FiltersSmoothingDC Li AC-Filters Converter

DC-Harmonics AC-Harmonics

coordinationand arresters

yvalves

DC-Filtersgreactor DC-Line AC Filters Converter

transformer

Page 10 23.08.2011 ET-PS Energy Transmission

Design data for all equipment of the HVDC-system

Main Data of Converter Station

Basic Control ConceptBasic Control ConceptDC-Voltage, DC-Current, ...

Thyristor TypeShort Circuit Current Capability

Main DataDC Voltage V and DC Current IDC Voltage Vdc and DC Current Idc

Reactive Power QFiring Angles AC B V lt (T Ch )

Page 11 23.08.2011 ET-PS Energy Transmission

AC-Bus Voltage (Tap Changers)

Main design parametersMain design parameters

P t T l h K lParameter Talcher Kolar

Min AC Voltage (normal/extreme) 380/360kV 380/360kV

Max AC Voltage (normal/extreme) 420/440kV 420/440kV

Min Frequency(normal/extreme) 48.5/47.5Hz 48.5/47.5Hz

Max Frequency(normal/extreme) 50.5/52.5Hz 50.5/52.5Hz

Min SCR for Pdc > 1000 MW 2.5 2.5

Min SCR for 500 MW < Pdc < 1000 MW

3 3

Mi SCR f Pd < 500 MW 1500 1500

Page 12 23.08.2011 ET-PS Energy Transmission

Min SCR for Pdc < 500 MW 1500 1500

Salient FeaturesSalient Features

Rectifier Talcher, OrissaI t K l K t kInverter Kolar, KarnatakaDistance 1400 kmRated Power 2000 MWOperating Voltage 500 kV DCReduced Voltage 400 kV DCOverloadTwo Hour, 50C 1.1 pu per poleTwo Hour, 33C 1.2 pu per poleHalf an hour 50/33C 1 2/1 3 pu per poleHalf an hour, 50/33 C 1.2/1.3 pu per poleFive Seconds 1.47 pu per pole

Page 13 23.08.2011 ET-PS Energy Transmission

Reactive Power of HVDC ConverterReactive Power of HVDC Converter

600

400

500

Q [MVAr]

Q rect.

200

300

Q filter

0

100delta Q

+80

-200

-100

0 0 2 0 4 0 6 0 8 1 1 2 1 4

-80

Page 14 23.08.2011 ET-PS Energy Transmission

power in p.u.0 0,2 0,4 0,6 0,8 1 1,2 1,4

Reactive PowerReactive Power

R ti t ll t t t ti l lReactive power controller operates at station level

Reactive power requirements are met byAC h i filAC harmonic filtersCapacitor banks and reactors

Sizing of RP elements is influenced by

The reactive power exchange capabilities of the ac system at given dc power levelReactive power consumption of converter at given dc

power level

Page 15 23.08.2011 ET-PS Energy Transmission

… contd

Reactive PowerReactive Power

Various sub-banks can be connected either in automatic or manual modeTwo closed loop automatic control modes are possibleAC Voltage controlReactive power exchange controlSwitching hierarchy isSwitching hierarchy isAC voltageHarmonic performanceHarmonic performanceReactive power exchange

…contd

Page 16 23.08.2011 ET-PS Energy Transmission

AC FiltersAC Filters

C l l ti M th dCalculation Method

Step 1 Calculate AC Harmonics,S l t M i l V l

Step 2 Calculate AC SystemImpedance (Locus)

pSelect Maximal Values

Step 3 Split up Reactive Power,Define Filter Parameters

Step 4 Check Filter Performance

Step 5Calculate Filter Performanceand Component Stresses forDifferent Load Conditions

p

Page 17 23.08.2011 ET-PS Energy Transmission

AC Filter PerformanceAC Filter Performance

Dn individual Distortion = 100[%]1

UnU

Dtot total Distortion = 50 2n=2 nD

TIF Telephone Interference Factor

THFF Telephone Harmonic Form Factor

Page 18 23.08.2011 ET-PS Energy Transmission

AC Harmonic CurrentsAC Harmonic Currents

dc current (Id/IdN) dc voltage (Du/UdN)( )

1.0

0.5

0.0

-0.5

5 10 15 20

0.0 -1.05 10 15 20

t (ms)current [%]

t (ms)

100

1

10

1 2 3 4 5 6 7 8 9 10 11 13 23 25 35 37 47 49

1

0.1

0.01

Page 19 23.08.2011 ET-PS Energy Transmission

1 2 3 4 5 6 7 8 9 10 11 13 23 25 35 37 47 49order of harmonic

Page 20 23.08.2011 ET-PS Energy Transmission

Design Aspects - Insulation DesignDesign Aspects Insulation Design

I n s u l a t i o n C o o r d i n a t i o n

A i r C l e a r a n c e &F l h D i tF l a s h o v e r D i s t a n c e

C r e e p a g e D i s t a n c e

Page 21 23.08.2011 ET-PS Energy Transmission

Design Aspects- Insulation DesignDesign Aspects Insulation Design

Air Clearance / Flashover DistanceAir Clearance / Flashover Distance C l e a r a n c e s / F l a s h D i s t a n c e s i n H V D C S t a t i o n s

are determined based on impulse overvoltages,normally of the switching impulse type

E l e c t r o d e S h a p e s o f t h e E q u i p m e n t

are important; favorable electrode shapes (especially indoors) allow to reduce clearances / flash distances, compared to commonly used design based on a rod-planeconfiguration

Page 22 23.08.2011 ET-PS Energy Transmission

configuration

Design Aspects - Insulation DesignDesign Aspects Insulation Design

Creepage DistanceCreepage Distance Indoors (Valve Hall)

l d d i tclean and dry environment

typical values: 1.2 ~ 1.4 cm/kV

O u t d o o r s

decisive influences:degree of pollutionmaterial / surface of equipmentdecisive influences:

Typical values for largedi t

material / surface of equipmentdiameter of equipment

4 cm/kV (normal pollution) 5 cm/kV (heavier pollution)

Page 23 23.08.2011 ET-PS Energy Transmission

diameters: 5 cm/kV (heavier pollution)up to 6 cm/kV (Bushings, porcelain)

Insulation Co-ordination with ZnO-ArrestersArresters

Arrester Protection Level and Energy CapabilityArrester Protection Level and Energy Capability

Step 1 Define Arrester Rating for Maximum

Step 2

Calculate Protection Levels forSwitching Surges (Lightning)Dynamic Overvoltages

Step 1Continuous Operating Voltage (MCOV)

Check Energy CapabilityIf Energy Capability exceeded,

Dynamic Overvoltages Fault Conditions

Step 3 increase MCOV or increase Number of Parallel Columns and repeat Calculation

Page 24 23.08.2011 ET-PS Energy Transmission

Page 25 23.08.2011 ET-PS Energy Transmission

Page 26 23.08.2011 ET-PS Energy Transmission

Insulation Co-ordination with ZnO-ArrestersInsulation Co-ordination with ZnO-Arresters

Arrester Arrangement

AC-Bus Arrester

Valve Unit Arrester

Valve Group Arrester

DC Line Arrester

Neutral Bus Arrester

Filter Arrester

Page 27 23.08.2011 ET-PS Energy Transmission

Arrester ArrangementArrester Arrangement

AC-Filter Bus

C1 1ArrB1

8 9

ArrD

Lsmooth

DC Line

C1 13

L1AC-Bus 2

B1

ArrB2

7

6 Arr

D

F FL14Fachv

L2

ArrA

ArrB2

Arr

6

5

C Fdc Fdc

FacIv

C2ArrB2

10 11

ArrE1

ArrE2

neutral

AC-Filter

Page 28 23.08.2011 ET-PS Energy Transmission

Page 29 23.08.2011 ET-PS Energy Transmission

Page 30 23.08.2011 ET-PS Energy Transmission

Page 31 23.08.2011 ET-PS Energy Transmission

Energy Unavailability

Energy unavailability is a measure of the energy which could not have been transmitted due to (scheduled & forced)not have been transmitted due to (scheduled & forced) outages.

E U il bilit % (EU) EOH/PH 100Energy Unavailability % (EU) = EOH/PH x 100

Forced Energy Unavailability % (FEU) = EFOH/PH x 100

Scheduled Energy Unavailability % (SEU) = ESOH/PH x 100

Page 32 23.08.2011 ET-PS Energy Transmission

Energy AvailabilityEnergy Availability

A measure of the energy which could have been transmitted except for limitations of capacity due to outages, arising from any cause, either forced or scheduled.

Energy Availability % (EA) = (100 - EU)

Page 33 23.08.2011 ET-PS Energy Transmission

ReliabilityReliability

Reliability is expressed in terms of the number of forced outages of curtailment occurrences of poles and Bipole per unit of time, usually one year.

EOF is the equivalent outage frequency which shall be calculated as follows:

EOF = number of one pole outages x 1+ number of other pole outages x 1+ number of bipole outages x 2

Page 34 23.08.2011 ET-PS Energy Transmission

Normally specified ValuesNormally specified Values

Energy Availability: 97%

FEU: 0.7 %

Reliability: Not more than 10 forced outages

Page 35 23.08.2011 ET-PS Energy Transmission

Outage StatisticsOutage Statistics

Page 36 23.08.2011 ET-PS Energy Transmission

HVDC Station Losses

Losses calculated as per IEC-61803

No load losses and load losses are guaranteed

Page 37 23.08.2011 ET-PS Energy Transmission

THANK YOU

Page 38 23.08.2011 ET-PS Energy Transmission