optimalisatie van optimisation of fabric formed concrete

34
17.04.2015 1 1 Optimalisatie van textielgevormde betonconstructies Optimisation of fabric formed concrete structures ir. Diederik Veenendaal, TEKTONIEK, TU Delft, 07.04.2015 2 Contents (Structural) optimization and form finding NEST HiLo floor system Bidirectional evolutionary structural optimization (BESO) Genetic algorithms Fabric formworks Fabric formed shells NEST HiLo roof 3 Guggenheim Museum Bilbao, Spain, 1997 4 Vitra Fire Station, Weil am Rhein, Germany, 1993

Upload: others

Post on 02-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

17.04.2015

1

1

Optimalisatie van textielgevormde betonconstructiesOptimisation of fabric formed concrete structures

ir. Diederik Veenendaal, TEKTONIEK, TU Delft, 07.04.2015

2

Contents

(Structural) optimization and form finding

NEST HiLo floor system

Bi‐directional evolutionary structural optimization (BESO)

Genetic algorithms

Fabric formworks

Fabric formed shells

NEST HiLo roof

3

Guggenheim Museum Bilbao, Spain, 1997

4

Vitra Fire Station, Weil am Rhein, Germany, 1993

17.04.2015

2

5

Chris Williams, University of Bath

6

Disney Concert HallHeydar Aliyev Center

7

Mark West, University of Manitoba, CanadaMike Xie, RMIT, Australia

8

(Structural) optimization and form finding

17.04.2015

3

9

What is optimal?

Mathematically speaking:

Minimize a function f of n variables x, subject to m+p constraints g and h.

10

What do we minimize?

Structural engineer might say:

• material / weight• deflections / vibrations• ‘compliance’ (maximize stiffness)• buckling• … etc.

11

Michell, 1904

12

Gatti Wool Mill, Roma, Pier Luigi Nervi, 1951Palazzetto dello Sport, Rome, Pier Luigi Nervi, 1958

17.04.2015

4

13

Varignon, 1725

14

Magazzini Generali, Robert Maillart, 1924

15

eQUILIBRIUM, BLOCK Research Group, ETH Zurich

16

Hooke (1676) Poleni (1748)

“As hangs the flexible line, so but inverted will stand the rigid arch.”

17.04.2015

5

17

St. Paul's Cathedral, London, Christopher Wren, Robert Hooke, c. 1675, 31m

18

Colonia Guell, Tomlow, 1989

19

Heinz Isler

20

Motorway Service Station, Deitingen, Switzerland, Heinz Isler, 1968, 31.6m, 9cm

17.04.2015

6

21

H1

H2

22

H1

H2

H1

H2

23

← G  :  THRUST NETWORK

GEOMETRY ()   ↔   FORCES (*)

24

Force DiagramForm Diagram

17.04.2015

7

25RHINOVAULT

RhinoVAULT (video removed from presentation): 

http://player.vimeo.com/video/75312554

http://www.block.arch.ethz.ch/brg/tools/rhinovault

26

NEST HiLo – Research & Innovation UnitEMPA, Dübendorf, Switzerland, 2013 ‐ present

BLOCK  Research Group, ETHZProf. Dr. Philippe BlockDiederik VeenendaalDr. Tom Van MeleDavid López López

Dr. Tomás Méndez Echenagucia

Collaboratorssupermanoeuvre

ZJA Zwarts & Jansma Architects

SuAT, ETHZProf.Dr. Arno Schlüter

Gearoid LydonDr. Zoltan NagyAnja WillmanJohannes Hofer

Bratislav SvetozarevicPrageeth Jayathissa

ConsultantsGruner Roschi, HHM

Hämmerle + Partner, HSSPReflexion, Wichser Akustik

Bollinger+Grohmann Ingenieure

27

EMPA NEST ‐ Future living and working lab, EMPA‐EAWAG, Dübendorf, Switzerland | © Empa / Gramazio & Kohler  

28

Main innovations

Integrated, multifunctional shell

Lightweight, flexible formwork system

Ultra‐lightweight, integrated funicular floor

Adaptive solar façade system

Intelligent building control

17.04.2015

8

Floor system• funicular (= compression-only) 2cm shell• stiffened by diaphragm 2cm ribs• unreinforced concrete• 70% saving of material • according to SIA building codes

Thin-tile floor of the SUDU project in Addis Ababa, Ethiopia, 2010

17.04.2015

9

Flowchart for the three optimization steps.

Shape optimization

Topology optimization

Size optimization

17.04.2015

10

17.04.2015

11

42

Ramaswamy & Chetty, 1961

43

Eschmann Company, Heinz Isler, 1958

44

Monolithic Dome, 85m spanMonolithic Dome formwork ‘Airform’

17.04.2015

12

45

Bi‐directional Evolutionary Structural Optimisation(BESO)

46

Michell, 1904Veenendaal, 2008

47RHINOVAULT

BESO in ANSYS (video removed from presentation):

https://youtu.be/J9cyYP‐mzBA

https://youtu.be/LkTam7bev14 

48

Cui et al., 2003

17.04.2015

13

49

Qatar Convention Center, Arata Isozaki, 2011

50

51

Mark West, University of Manitoba, CanadaMike Xie, RMIT, Australia

52

Mark West, University of Manitoba, Canada

17.04.2015

14

53

Mark West, University of Manitoba, Canada

54

University of Bath, Tim Ibell et al.

55

Genetic algorithms

56

17.04.2015

15

57

Form finding / structural analysisusing dynamic relaxation

Structural evaluation ofresulting beam

Evolutionary optimizationusing ‘differential evolution’

58

Design variables x

keel width

pinch point

prestress

width

keel height

concrete pressure

59

Design variables x

60

17.04.2015

16

61

deflection

hh

w

same volume, same w/h ratio

91% less deflection

same volume, same height

78% less deflection

same height, same deflection

58% less volume

Comparison with rectangular beam

62

Structural analysis, optimisation, form findingKangarooKarambaMillipedeBullantDonkeyDodoetc.

Genetic algorithmsGalapagosOctopus

63

Fabric formwork

64

Gustav Lilienthal, Berlin, Germany

1899

17.04.2015

17

65

Gustav Lilienthal et al., Konigin Elisabeth Hospital, 1910

66

67

1899

1937

1934

1917

1928

Centro de Rehabilitacion Para La MUPAG, Madrid, Spain, Miguel Fisac, 1969

17.04.2015

18

Andrew Kudless, 2013, Roka Akor RestaurantAndrew Kudless, PWall, 2009 Hanil Guest House, Byoung Soo Cho Architects, 2009

stair, Vergennes, Vermont, 2013Black Treehouse, Warren, Vermont, 2007 Umi AA, Stone House, 2013

17.04.2015

19

73

Kenzo Unno, Zero Waste Formwork

74

MEVA´s Mammut Heavy‐duty Formwork and STB 450 frameUniversity of Sydney, 1995, Redjvani & Wheen

75

Richard Bush, Remo Pedreschi, 2010, University of Edinburg, 

76

University of Michigan, Kyle Sturgeon, Chris Holzwart, Kelly Raczkowski , 2010

17.04.2015

20

77

Cloud 9, Enric Ruiz Geli, 2014

78

Fabric formed shells

79

James H. de W. Waller (1884‐1968)

80

Ctesiphon System, James Waller, 1953

17.04.2015

21

81

Waller, Locke's Bonded Distillery Warehouse, UK

82

83

Queen’s Hall, Port of Spain, Trinidad andTobago, 1950, Colin Laird, David Key

84

Chivas Distillery Warehouse, J. Waller et al., 1959, 30.5m span, 64mm thickness

17.04.2015

22

85

ARC Wildlife BridgeVail, Colorado, United States, 2010‐2011

Zwarts & Jansma ArchitectsIv‐groep

CollaboratorsDiederik Veenendaal, ETH Zurich

86

ZJA Zwarts & Jansma Architects

87

1st opinion

88

17.04.2015

23

89 90

ZJA Zwarts & Jansma ArchitectsLandshape, ARC competition, USA, 2011

91 92

Chapel Lomas de Cuernavaca, Mexico, Felix Candela, 1958, min. span 18m, 4cm

17.04.2015

24

93

Chapel Lomas de Cuernavaca, Mexico, Felix C d l 1958

94

Joseph A. Kersavage, University of Tennessee, 1975

95

TSC Global, Port‐au‐Prince, Haiti, 2011

96

University of Edinburgh, 2012

Barnaby Ghaui et al., Remo Pedreschi

WTCB, Centexbel, VUB, 2009

Cauberg, N., Janssen, D, Mollaert, M.

Universiteit Eindhoven, 2006

Arno Pronk et al.

17.04.2015

25

97

Cable‐net formworks

98

Purdue Golf Clubhouse, Indiana, 1962, 13.8m span, 89mm thicknessPurdue University, J. Waling et al.

99

former Bay Refining Gas Station and Carwash in Midland, Michigan, 1961

100

former Trinity School Assembly Hall, London, 22mFlint & Neill, Flint, A.R. & Low , A.E., 1960

17.04.2015

26

101 102

103 104

Hybrid cable‐net and fabric formwork

17.04.2015

27

105

ZJA Zwarts & Jansma Architects

106

107

Concept

Cable‐net falsework with fabric shuttering

Lightweight and compact

Non‐uniform prestress distribution 

‘Freeform’, anti‐clastic shell design

Large‐span, affordable formwork

No scaffolding directly underneath

Construction tolerances?

108

First prototype

17.04.2015

28

109

1.8m x 1.8m x 1.2m2.55m span25mm uniform thickness

110

Geometry(final, loaded state)

Forces(final, loaded state)

Forces(initial, prestressed state)

Geometry(initial, prestressed state)

Target shape

Cable‐nettopology

Cuttingpatterns

Best‐fit optimization

Design external frame

Target loads

Materialization

Static analysis

111 112

17.04.2015

29

113 114

115

Second prototype

116

17.04.2015

30

117 118

119

mean deviation ±standard deviation [mm]

Unloaded state Loaded state

Initial comparison 7.8 ±2.5 10.0 ±2.6

(1) Remapped boundaries 7.0 ±3.1 7.0 ±3.3

(2) Perpendicular to surface 2.6 ±1.4 2.0 ±1.5

(3) Recomputed digital model 1.3 ±0.8

120

17.04.2015

31

121 122

123 124

17.04.2015

32

125

Main innovations

Integrated, multifunctional shell

Lightweight, flexible formwork system

Ultra‐lightweight, integrated funicular floor

Adaptive solar façade system

Intelligent building control

126

127 128

Topology and boundarygeneration

Form finding Load generation Thicknessoptimisation

Shape optimisation

Nonlinear structuralanalysis

Target geometry forformwork design

17.04.2015

33

129

Shell design process

Swiss code for loads, ACI code for ferrocement, IASS recommendations for shell

Optimise thickness for stresses < 20 MPa, deflections > L/500 = 18mm

Four objectives: internal elastic energy vs buckling load; head clearance vs glazing area

Current shape: 9m max. span; 6‐11cm average concrete thickness; 20‐45 metric tonnes

130

Shell design process

Buckling versus weight Clearance versus glazing

131 132

17.04.2015

34

133 134

http://block.arch.ethz.ch

http://hilo.arch.ethz.ch

http://nest.empa.ch/en