clase 2 ea

Upload: aocu

Post on 30-May-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 clase 2 Ea

    1/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 1

    Energa de activacin

    UNACH-campus IV

  • 8/14/2019 clase 2 Ea

    2/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 2

    Energa en un sistema qumico mientras la reaccin procede

    Una reaccin espontnea generalmente libera energa

    los reactantes contienen ms energa que los productos.

    La energa se entiende como energa qumica potencial

    La diferencia entre energas potenciales se denomina entalpa de lareaccin

    Energa potencial qumica de reactantes y productos. La diferencia es la entalpa de la reaccin.

    http://www.science.uwaterloo.ca/~cchieh/cact/c123/eactivat.html

  • 8/14/2019 clase 2 Ea

    3/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 3

    Driving Force

    La diferencia en la energa qumica potencial es la fuerza que impulsa

    (driving force) a una reaccin qumica a efectuarse. Despus de la

    reaccin, se libera energa. Los productos estn en un nivel energticoms estable que los reactantes.

    http://www.science.uwaterloo.ca/~cchieh/cact/c123/eactivat.html

  • 8/14/2019 clase 2 Ea

    4/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 4

    Energa de activacin, Ea

    Una mezcla de H2 y O2 no reaccionar a menos que su temperatura alcance

    el punto de ignicin, a pesar de la gran cantidad de energa que se libera

    durante una reaccin de oxidacin.

    Este fenmeno se explica a travs del requerimiento de una energa de

    activacin, Ea. La relacin entre Ea y la energa potencial qumica en una

    reaccin es:

    http://www.science.uwaterloo.ca/~cchieh/cact/c123/eactivat.html

  • 8/14/2019 clase 2 Ea

    5/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 5

    Si se aplica suficiente energa a la roca para empujarla sobre la colina

    (barrera de energa de activacin), rodar espontaneamente lamontaa, liberando energa mientras se mueve a un estado ms bajo de

    energa potencial. La tasa de rocas aventadas desde el risco depender

    de la altura de la barrera de energa de activacin.

    Barrera de la energa de activacin

    http://www.ucdsb.on.ca/tiss/stretton/chem2/rate03.htm

  • 8/14/2019 clase 2 Ea

    6/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 6

    En cualquiera de los casos se requiere la Ea

    Energa de Activacin

    http://www.ucdsb.on.ca/tiss/stretton/chem2/rate03.htm

  • 8/14/2019 clase 2 Ea

    7/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 7

    1. Energa es la capacidad de hacer un trabajo, o calor o cualquier cosa

    que se transforme en calor

    2. La actividad celular esta basada en la energa proporcionada por el sol

    o por enlaces qumicos

    3. Los cambios en la energa estn gobernados por la primera y la

    segunda ley de la termodinmica

    4. La diferencia en la energa libre entre reactantes y productos determina

    que una reaccin sea espontanea o que no lo sea.

    5. Para que una reaccin se lleve a cabo se requiere energa de activacin

    6. Las enzimas disminuyen la energa de activacin necesaria en rxs

    biolgicas

    7. Las enzimas interactuan con el sustrato

    Conceptos bsicos

    http://www.blc.arizona.edu/courses/181gh/rick/energy/default.html

  • 8/14/2019 clase 2 Ea

    8/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 8

    Primera Ley

    La energa no se crea ni se destruye; las diferentes formas de energa son

    interconvertibles

    Leyes de la Termodinmica

    http://www.blc.arizona.edu/courses/181gh/rick/energy/default.html

  • 8/14/2019 clase 2 Ea

    9/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 9

    Segunda Ley

    En un sistema cerrado, la cantidad de desorden se mantiene estable o aumenta.

    Entropa es una magnitud del desorden. La energa se convierte de maneraespontnea a formas menos ordenadas. Esto implica que la relacin entre molculasse hace ms desordenada.

    Los procesos de ensamble biolgico como la formacin de membranas, plegamientode protenas, formacin de la doble hlice son dirigidos por entropa primeramente.

    Leyes de la Termodinmica

    http://www.blc.arizona.edu/courses/181gh/rick/energy/default.html

    2003 B D f l !

    Slid 10

  • 8/14/2019 clase 2 Ea

    10/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 10

    En cualquier sistema, la energa total incluye la energa usable quepuede hacer un trabajo y la energa que se pierde en eldesorden:

    Energa total = energa usable + energa inusable

    Esta relacin se puede describir con termodinamicamente como:

    H (Energa total ) = G ( energa libre) + TS (entropa)

    Esta ecuacin se reordena para enfatizar la importancia de laenerga libre:

    G = H - TS

    El cambio en la energa libre durante el proceso de una reaccin auna tempertaura constante es definido en trminos de el

    cambio en energa total y el cambio en entropa. La energalibre se mide en joules or kilocalorias

    G = H - TS

    Ecuacin para relacionar energa usable e inusable

    http://www.blc.arizona.edu/courses/181gh/rick/energy/energy.html

    2003 B D f lt!

    Slid 11

  • 8/14/2019 clase 2 Ea

    11/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 11

    Only a small fraction of the collisions between reactant molecules convert the reactants into the

    products of the reaction. This can be understood by turning, once again, to the reactionbetween ClNO2 and NO.

    ClNO2(g) + NO(g) NO2(g) + ClNO(g)

    In the course of this reaction, a chlorine atom is transferred from one nitrogen atom to another.In order for the reaction to occur, the nitrogen atom in NO must collide with the chlorineatom in ClNO2.

    The Activation Energy of Chemical Reactions

    http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch22/activate.html

    2003 B D f lt!

    Slid 12

  • 8/14/2019 clase 2 Ea

    12/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 12

    Reaction won't occur if the oxygen end of the NO molecule collides with the chlorine atom on

    ClNO2.

    The Activation Energy of Chemical Reactions

    http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch22/activate.html

    Nor will it occur if one of the oxygen atoms on ClNO2 collides with the nitrogen atom on NO

    2003 B D f lt!

    Slid 13

  • 8/14/2019 clase 2 Ea

    13/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 13

    But, before the reactants can be converted into products, the free energy of the system must

    overcome the activation energy for the reaction, as shown in the figure below. The verticalaxis in this diagram represents the free energy of a pair of molecules as a chlorine atom istransferred from one to the other. The horizontal axis represents the the sequence ofinfinitesimally small changes that must occur to convert the reactants into the products ofthis reaction.

    The Activation Energy of Chemical Reactions

    http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch22/activate.html

    2003 By Default!

    Slide 14

  • 8/14/2019 clase 2 Ea

    14/15

    2003 By Default!

    A Free sample background from www.powerpointbackgrounds.com

    Slide 14

    The Activation Energy of Chemical Reactions

    http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch22/activate.html

    To understand why reactions have an activation energy, consider what has to happen in order forClNO2 to react with NO. First, and foremost, these two molecules have to collide, therebyorganizing the system. Not only do they have to be brought together, they have to be held inexactly the right orientation relative to each other to ensure that reaction can occur. Both ofthese factors raise the free energy of the system by lowering the entropy. Some energy alsomust be invested to begin breaking the Cl-NO2 bond so that the Cl-NO bond can form.

    NO and ClNO2 molecules that collide in the correct orientation, with enough kinetic energy toclimb the activation energy barrier, can react to form NO2 and ClNO. As the temperature ofthe system increases, the number of molecules that carry enough energy to react when theycollide also increases. The rate of reaction therefore increases with temperature. As a rule,the rate of a reaction doubles for every 10oC increase in the temperature of the system.

    2003 By Default!

    Slide 15

  • 8/14/2019 clase 2 Ea

    15/15

    2003 By Default!

    A Free sample background from www powerpointbackgrounds com

    Slide 15

    The Activation Energy of Chemical Reactions

    http://www chem vt edu/RVGS/ACT/notes/act energy html

    NOT EVERY COLLISION LEADS TO REACTION!!!!!

    It is possible to calculate the rate at which molecules collide with each other by using the kinetictheory.

    Consider a mixture of CO and NO2 at 700 K and a concentration of 0.10 mol/L

    every molecule would collide with about a billion other molecules in one second!

    if every collision resulted in a reaction, then the whole mixture would be reacted in afraction of a second.

    the actual reaction takes about 20 seconds.

    In order for collisions to be effective, there must be considerable force in the colllisions. Theslower moving molecules do not have enough kinetic energy to react when theycollide...they bounce off one another and retain their identity.

    Only those molecules moving at high speed have enough energy for collisions to result in areaction.

    Every reaction requires a certain minimum energy for the reaction to occur--it is called activationenergy, Ea, and is expressed in kJ.

    The CO + NO2 mixture from above has an Ea = 134 kJ. This means that the colliding moleculesmust have a total KE of 134 kJ/mol if they are to react.