mixed method

Post on 06-Dec-2014

879 Views

Category:

Education

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

mixed method for ecuations solving. algorrithm description and implementation in Pascal

TRANSCRIPT

MIXED METHOD FOR EQUATIONS SOLVING

SERGIU CORLAT, “ORIZONT” LYCEUM

Algebraic equations

Necessary conditions

Let the equation f (x)=0 is givenTo solve the equation on [a,b] the following conditions are necessary:

1. f(x) – continious on [a,b]2. f(a) f(b) < 03. f ’(x), f ”(x) on [a,b]4. The sign of f ’(x), f ”(x) on [a,b] is constant.

Used methods

Chords Method Finding fixed extreme

point Finding solutions using

chords proprieties and the formula:

1

( )( )

( ) ( )i

i i ii

f xx x e x

f e f x

Newton’s Method

Finding initial approximation

Finding solutions using tangent’s proprieties and the formula:

1

( )

( )i

i ii

f zz z

f z

x0 x1 x2

… … z2 z1

z0

Uuupppsss….

1 11

1i i

M mx x

m

221 1

1

( )2i i i

Mx x x

m

Error approximation in Chord’s Method

Error approximation in Newton’s Method

Error approximation in mixed Method i ix z

Method description

Find first approximation x1, using chords method

Find first approximation z1, using Newton’s method

The exact solution is placed between x1 and z1

Repeat previous steps until | xi – zi | becomes less then given precision , or a given number of times.

Illustration

x0 x1 x2

z0 z1z2

Algorithm

1. Finding starting point z0 for Newton’s method: c a - (f(a))/(f(b) - f(a))(b - a); If f(c)f(a)>0 then z0 b; x0 a; else z0 a; x0 b;

2. i 0

3. Calculating

4. Calculating

5. i i + 1

6. If |zi – xi| > Then go to step 3, else – to step 7.

7. The final solution s will be . END.

1

( )

( )i

i ii

f zz z

f z

1 11

( )( );

( ) ( )i

i i i ii i

f xx x z x

f z f x

2i ix z

s

Example:

Let we have the equation

Find the approximate solution of equation on [2; 6] with precision = 0.00001, using mixed method.

2( ) 1 7.f x x x

Solving. 1. Math processing:

1 1 1 1 1 22 2 2 2 2 22 2 2 2 2

2

2 1( ) ( 1) ( 1) ( 1) ( 1) ( 1)

1

xf x x x x x x x x x

x

Solving

2. Program

program cn011;var a,b,c,x,z,e : real; function f(x:real):real;begin f:=x*sqrt(1+x*x) -7 ;end; function fd1(x:real):real;begin fd1:=(2*x*x+1)/ sqrt(1+x*x) ;end;

Variables

f(x) description

f ’ (x) description

Solving

begin a:=2; b:=6; e:=0.0001;c:=a-(f(a))/(f(b)-f(a))*(b-a); if f(c)*f(a)>0 then begin z:=b; x:=a; end else begin z:=a; x:=b; end;while abs(z-x)>e do begin z:=z-f(z)/fd1(z); x:= x-(f(x))/(f(z)-f(x))*(z-x); writeln (’z=’,z:9:5,’ f(z)=’,f(z):9:5, ’ x=’, x:9:5, ’ f(x)=’, f(x):9:5); end; writeln((z+x)/2:9:5);end.

{z},{ x}

initializa

tion

zi,xi calculus

and printing

Results

z= 3.54218 f(z)= 6.03747 x= 2.45514 f(x)= -0.49146z= 2.69058 f(z)= 0.72307 x= 2.55041 f(x)= -0.01326z= 2.55649 f(z)= 0.01787 x= 2.55300 f(x)= -0.00001z= 2.55301 f(z)= 0.00001 x= 2.55300 f(x)= -0.000002.55301

top related