mixed method

11
MIXED METHOD FOR EQUATIONS SOLVING SERGIU CORLAT, “ORIZONT” LYCEUM Algebraic equations

Upload: sergiu-corlat

Post on 06-Dec-2014

879 views

Category:

Education


2 download

DESCRIPTION

mixed method for ecuations solving. algorrithm description and implementation in Pascal

TRANSCRIPT

Page 1: Mixed method

MIXED METHOD FOR EQUATIONS SOLVING

SERGIU CORLAT, “ORIZONT” LYCEUM

Algebraic equations

Page 2: Mixed method

Necessary conditions

Let the equation f (x)=0 is givenTo solve the equation on [a,b] the following conditions are necessary:

1. f(x) – continious on [a,b]2. f(a) f(b) < 03. f ’(x), f ”(x) on [a,b]4. The sign of f ’(x), f ”(x) on [a,b] is constant.

Page 3: Mixed method

Used methods

Chords Method Finding fixed extreme

point Finding solutions using

chords proprieties and the formula:

1

( )( )

( ) ( )i

i i ii

f xx x e x

f e f x

Newton’s Method

Finding initial approximation

Finding solutions using tangent’s proprieties and the formula:

1

( )

( )i

i ii

f zz z

f z

x0 x1 x2

… … z2 z1

z0

Page 4: Mixed method

Uuupppsss….

1 11

1i i

M mx x

m

221 1

1

( )2i i i

Mx x x

m

Error approximation in Chord’s Method

Error approximation in Newton’s Method

Error approximation in mixed Method i ix z

Page 5: Mixed method

Method description

Find first approximation x1, using chords method

Find first approximation z1, using Newton’s method

The exact solution is placed between x1 and z1

Repeat previous steps until | xi – zi | becomes less then given precision , or a given number of times.

Page 6: Mixed method

Illustration

x0 x1 x2

z0 z1z2

Page 7: Mixed method

Algorithm

1. Finding starting point z0 for Newton’s method: c a - (f(a))/(f(b) - f(a))(b - a); If f(c)f(a)>0 then z0 b; x0 a; else z0 a; x0 b;

2. i 0

3. Calculating

4. Calculating

5. i i + 1

6. If |zi – xi| > Then go to step 3, else – to step 7.

7. The final solution s will be . END.

1

( )

( )i

i ii

f zz z

f z

1 11

( )( );

( ) ( )i

i i i ii i

f xx x z x

f z f x

2i ix z

s

Page 8: Mixed method

Example:

Let we have the equation

Find the approximate solution of equation on [2; 6] with precision = 0.00001, using mixed method.

2( ) 1 7.f x x x

Solving. 1. Math processing:

1 1 1 1 1 22 2 2 2 2 22 2 2 2 2

2

2 1( ) ( 1) ( 1) ( 1) ( 1) ( 1)

1

xf x x x x x x x x x

x

Page 9: Mixed method

Solving

2. Program

program cn011;var a,b,c,x,z,e : real; function f(x:real):real;begin f:=x*sqrt(1+x*x) -7 ;end; function fd1(x:real):real;begin fd1:=(2*x*x+1)/ sqrt(1+x*x) ;end;

Variables

f(x) description

f ’ (x) description

Page 10: Mixed method

Solving

begin a:=2; b:=6; e:=0.0001;c:=a-(f(a))/(f(b)-f(a))*(b-a); if f(c)*f(a)>0 then begin z:=b; x:=a; end else begin z:=a; x:=b; end;while abs(z-x)>e do begin z:=z-f(z)/fd1(z); x:= x-(f(x))/(f(z)-f(x))*(z-x); writeln (’z=’,z:9:5,’ f(z)=’,f(z):9:5, ’ x=’, x:9:5, ’ f(x)=’, f(x):9:5); end; writeln((z+x)/2:9:5);end.

{z},{ x}

initializa

tion

zi,xi calculus

and printing

Page 11: Mixed method

Results

z= 3.54218 f(z)= 6.03747 x= 2.45514 f(x)= -0.49146z= 2.69058 f(z)= 0.72307 x= 2.55041 f(x)= -0.01326z= 2.55649 f(z)= 0.01787 x= 2.55300 f(x)= -0.00001z= 2.55301 f(z)= 0.00001 x= 2.55300 f(x)= -0.000002.55301