a strategy to human factors and ergonomics

27
A strategy for human factors/ergonomics: developing the discipline and profession Jan Dul a *, Ralph Bruder b , Peter Buckle c , Pascale Carayon d , Pierre Falzon e , William S. Marras f , John R. Wilson g and Bas van der Doelen h a Rotterdam School of Management, Erasmus University, Rotterdam, the Netherlands; b Institute of Ergonomics, Technische Universita ¨t Darmstadt, Germany; c Imperial College, Department of Surgery and Cancer, Faculty of Medicine, London, UK; d Center for Quality and Productivity Improvement, Department of Industrial and Systems Engineering, University of Wisconsin- Madison, Madison, USA; e Research Center on Work and Development, Cnam, Paris, France; f The Ohio State University, Biodynamics Laboratory, USA; g Human Factors Research Group, Faculty of Engineering, University of Nottingham, UK; h Department of Knowledge and Communication, BMA Ergonomics, Zwolle, the Netherlands (Received 7 December 2011; final version received 22 January 2012) Human factors/ergonomics (HFE) has great potential to contribute to the design of all kinds of systems with people (work systems, product/service systems), but faces challenges in the readiness of its market and in the supply of high-quality applications. HFE has a unique combination of three fundamental character- istics: (1) it takes a systems approach (2) it is design driven and (3) it focuses on two closely related outcomes: performance and well-being. In order to contribute to future system design, HFE must demonstrate its value more successfully to the main stakeholders of system design. HFE already has a strong value proposition (mainly well-being) and interactivity with the stakeholder group of ‘system actors’ (employees and product/service users). However, the value proposition (mainly performance) and relationships with the stakeholder groups of ‘system experts’ (experts from technical and social sciences involved in system design), and ‘system decision makers’ (managers and other decision makers involved in system design, purchase, implementation and use), who have a strong power to influence system design, need to be developed. Therefore, the first main strategic direction is to strengthen the demand for high-quality HFE by increasing awareness among powerful stakeholders of the value of high-quality HFE by communicating with stakeholders, by building partnerships and by educating stakeholders. The second main strategic direction is to strengthen the application of high-quality HFE by promoting the education of HFE specialists, by ensuring high-quality standards of HFE applications and HFE specialists, and by promoting HFE research excellence at universities and other organisations. This strategy requires cooperation between the HFE community at large, consisting of the International Ergonomics Association (IEA), local (national and regional) HFE societies, and HFE specialists. We propose a joint world-wide HFE development plan, in which the IEA takes a leadership role. Practitioner Summary: Human factors/ergonomics (HFE) has much to offer by addressing major business and societal challenges regarding work and product/ service systems. HFE potential, however, is underexploited. This paper presents a strategy for the HFE community to strengthen demand and application of *Corresponding author. Email: [email protected] Ergonomics 2012, 1–27, iFirst article ISSN 0014-0139 print/ISSN 1366-5847 online Ó 2012 Taylor & Francis http://dx.doi.org/10.1080/00140139.2012.661087 http://www.tandfonline.com

Upload: josh-peralta

Post on 16-Dec-2015

223 views

Category:

Documents


0 download

DESCRIPTION

A Strategy to Human Factors and Ergonomics

TRANSCRIPT

  • A strategy for human factors/ergonomics: developing the disciplineand profession

    Jan Dula*, Ralph Bruderb, Peter Bucklec, Pascale Carayond, Pierre Falzone,William S. Marrasf, John R. Wilsong and Bas van der Doelenh

    aRotterdam School of Management, Erasmus University, Rotterdam, the Netherlands; bInstituteof Ergonomics, Technische Universitat Darmstadt, Germany; cImperial College, Department ofSurgery and Cancer, Faculty of Medicine, London, UK; dCenter for Quality and ProductivityImprovement, Department of Industrial and Systems Engineering, University of Wisconsin-

    Madison, Madison, USA; eResearch Center on Work and Development, Cnam, Paris, France;fThe Ohio State University, Biodynamics Laboratory, USA; gHuman Factors Research Group,

    Faculty of Engineering, University of Nottingham, UK; hDepartment of Knowledge andCommunication, BMA Ergonomics, Zwolle, the Netherlands

    (Received 7 December 2011; nal version received 22 January 2012)

    Human factors/ergonomics (HFE) has great potential to contribute to the designof all kinds of systems with people (work systems, product/service systems), butfaces challenges in the readiness of its market and in the supply of high-qualityapplications. HFE has a unique combination of three fundamental character-istics: (1) it takes a systems approach (2) it is design driven and (3) it focuses ontwo closely related outcomes: performance and well-being. In order to contributeto future system design, HFE must demonstrate its value more successfully tothe main stakeholders of system design. HFE already has a strong valueproposition (mainly well-being) and interactivity with the stakeholder group ofsystem actors (employees and product/service users). However, the valueproposition (mainly performance) and relationships with the stakeholder groupsof system experts (experts from technical and social sciences involved insystem design), and system decision makers (managers and other decisionmakers involved in system design, purchase, implementation and use), who havea strong power to inuence system design, need to be developed. Therefore, therst main strategic direction is to strengthen the demand for high-quality HFEby increasing awareness among powerful stakeholders of the value of high-qualityHFE by communicating with stakeholders, by building partnerships and byeducating stakeholders. The second main strategic direction is to strengthen theapplication of high-quality HFE by promoting the education ofHFE specialists, byensuring high-quality standards of HFE applications and HFE specialists, andby promoting HFE research excellence at universities and other organisations.This strategy requires cooperation between the HFE community at large,consisting of the International Ergonomics Association (IEA), local (national andregional) HFE societies, and HFE specialists. We propose a joint world-wideHFE development plan, in which the IEA takes a leadership role.

    Practitioner Summary: Human factors/ergonomics (HFE) has much to oer byaddressing major business and societal challenges regarding work and product/service systems. HFE potential, however, is underexploited. This paper presents astrategy for the HFE community to strengthen demand and application of

    *Corresponding author. Email: [email protected]

    Ergonomics

    2012, 127, iFirst article

    ISSN 0014-0139 print/ISSN 1366-5847 online

    2012 Taylor & Francishttp://dx.doi.org/10.1080/00140139.2012.661087

    http://www.tandfonline.com

  • high-quality HFE, emphasising its key elements: systems approach, design driven,and performance and well-being goals.

    Keywords: human factors/ergonomics discipline, human factors/ergonomicsprofession, future of ergonomics, work systems, product/service systems,performance

    1. Introduction

    This paper provides a vision of the future of the human factors/ergonomics (HFE)discipline and profession (the terms ergonomics and human factors are usedinterchangeably1). The paper presents the ndings of the Future of ErgonomicsCommittee2, which was established in December 2010 by the InternationalErgonomics Association (IEA) and which reported its results at the 18th TriennialWorld Congress on Ergonomics, IEA2012 in Brazil. The goal of the committee wasto formulate a position paper for the HFE community on strategies for the futureof the HFE discipline and profession. During the more than 50 years of HFEhistory, several papers have been published discussing the future of ergonomics.Recent examples include special issues in Theoretical Issues in Ergonomics Science(Hollnagel 2001) and Ergonomics (Stanton and Stammers 2008). Most papers predictthe future of ergonomics for specic HFE areas in terms of expected developmentsand eects on the content of the discipline, or in specic regions. In contrast, thepresent paper focuses on a strategy for the world-wide promotion of the disciplineand profession in order to reach global excellence in HFE. The paper does notcontain an operational plan to realise this strategy.

    The committee developed a strategy for the future of HFE by sharing anddiscussing the views of committee members and many other HFE specialists.Besides electronic communication among committee members, the committee heldphysical meetings in Amsterdam (March 2011, November 2011) and Paris (June2011), and had a brainstorming session with IEA council members in Grahams-town, South Africa (April 2011). Inputs from many other HFE specialistsworldwide were obtained via face-to-face interviews and email exchange (a list ofpeople who provided input can be found in the Acknowledgements). Although thecommittee has collected many documents on the future of HFE, the viewsexpressed in this paper are not based on this literature or on a literature review.However, we added references for illustration and further reading. This paperpresents the nal view of the committee. The committee consists mainly of westernacademics with extensive international experience, and with substantialexperience of working closely with practitioners and clients in all areas of industryand commerce. This document is not a consensus paper representing all viewsin the HFE community, nor does it necessarily reect the view of the IEA. Thecontent is available to any organisation (including the IEA and local HFEsocieties) and any individual to develop new strategies, tactics and operationswithin their own context.

    The starting point of this paper is that HFE has great potential to ensure thatany designed artefact, ranging from a consumer product to an organisationalenvironment, is shaped around the capacities and aspirations of humans, such thatperformance and well-being are optimised. When HFE does not play a role insystem design, this can lead to sub-optimal systems with quality decits, reducedeciency, illness, dissatisfaction, etc. HFE can provide solutions to these problems.

    2 J. Dul et al.

  • However, the potential of HFE remains under-exploited. At least four reasons havebeen identied. First, many stakeholders involved in the design, management anduse of artefacts (e.g. customers, workers, managers, other professionals, society atlarge) are not aware of the value of HFE and as a consequence, do not exhibit astrong demand for HFE. Second, in certain situations where there is a demand forHFE (e.g. ergonomic products in product marketing, ergonomic systems insafety critical industries such as defence, transport, oil, and healthcare), there is notenough high-quality HFE in the design process because HFE is lacking or itsapplication is too limited in scope, resulting in sub-optimal solutions. Third, the eldis very small in comparison to established disciplines involved in designingartefacts like engineering and psychology, and is often incorporated within thesedisciplines without explicit reference to the HFE discipline. Fourth, the very strengthof HFE, its multi-disciplinary base, is also a potential weakness; a diversity oftopics, views and practices exist within the HFE community, resulting in unclearcommunication to the external world.

    In order to develop a strategy for the HFE discipline and profession, we start bydescribing the fundamental characteristics of HFE in Section 2. Then, we identifydevelopments in the external world that are important for HFE in Section 3. Next,we formulate the value of HFE for the main stakeholders of system design. InSection 5, we propose the strategic positioning of the HFE discipline, and nally wediscuss possible strategic actions for the HFE community that can help to achievea prosperous future for HFE.

    2. The fundamental characteristics of the HFE discipline and profession

    HFE focuses on systems in which humans interact with their environment. Theenvironment is complex and consists of the physical environment (things), theorganisational environment (how activities are organised and controlled), andthe social environment (other people, culture) (Moray 2000, Wilson 2000, Carayon2006). The system can be a work system (where the human is a worker and theenvironment is the work environment) or a product/service system (where the humanis a product user or person who receives a service and the environment is theenvironment where the product is used or where the service is received)3. The focusof HFE is to jointly improve performance and well-being by designing theintegrative whole better, and by integrating the human into the system better. Thisis done by tting the environment to the human. HFE typically takes a hierarchicalapproach where environmental design to t the human is seen as the priority, andselecting people to t the environment or training people to t the system is onlyconsidered when the former is not possible. With a better tting environment,humans are better able to contribute to performance4. Over the past 50 years, theHFE community has developed and documented a substantial body of knowledgeand skills regarding interactions between humans and their environment, andmethodologies for analysing and designing systems.

    The denition of HFE and HFE specialists (adopted by the IEA in 2000) reectsthis body of knowledge as follows (IEA 2000):

    Ergonomics (or human factors) is the scientic discipline concerned with theunderstanding of the interactions among humans and other elements of a system,and the profession that applies theoretical principles, data and methods to designin order to optimize well-being and overall performance.

    Ergonomics 3

  • Practitioners of ergonomics, ergonomists, contribute to the planning, design,implementation, evaluation, redesign and continuous improvement of tasks,jobs, products, technologies, processes, organisations, environments and systemsin order to make them compatible with the needs, abilities and limitations ofpeople.

    Three fundamental characteristics of HFE can be derived from thesedescriptions:

    . HFE takes a systems approach.

    . HFE is design driven.

    . HFE focuses on two related outcomes: performance and well-being.

    2.1. HFE takes a systems approach

    A system is a set of interacting and interdependent components that form anintegrated whole. HFE focuses on goal-oriented and purposefully designed systemsconsisting of humans and their environment (Helander 1997, Schlick 2009). Theenvironment can be any human-made artefact e.g. (work)place, tool, product,technical processes, service, software, built environment, task, organisational design,etc. as well as other humans (Wilson 2000). HFE considers dierent aspects ofthe person (physical, physiological, psychological (aective and cognitive), andsocial) and dierent aspects of the environment (physical, social, informational, etc.).It can address issues on various system levels from micro-level (e.g. humans usingtools or performing single tasks) to meso-level (e.g. humans as part of technicalprocesses or organisations) to macro level (e.g. humans as part of networks oforganisations, regions, countries, or the world) (Rasmussen 2000). When deningproblems and formulating solutions, system boundaries are dened, and the focus ofHFE can be on specic aspects of people (e.g. only physical), on specic aspectsof the environment (e.g. only workplace), or on a specic level (e.g. micro), but thebroader context of the human within the environment is always taken intoconsideration (contextualisation). This broad perspective of HFE can be referred toas a systems approach or a holistic approach.

    The systems or holistic approach of HFE and its wide (almost unlimited) contextfor application dierentiates it from other more narrow disciplines such ascognitive psychology and human movement science (Brewer and Hsiang 2002).These other disciplines may share a human view with HFE, but not a comprehensiveview.

    2.2. HFE is design driven

    HFE seeks to improve performance and well-being through systems design. Analysesand assessments result in recommendations and actions for this design. HFE canbe involved in all stages of planning, design, implementation, evaluation,maintenance, redesign and continuous improvement of systems (Japan ErgonomicsSociety 2006). These stages are not necessarily sequential; they are recursive,interdependent, dynamic, but design is at the heart of them. Decisions at one stagemay aect or be aected by decisions at other stages.

    HFE specialists can be active participants in design processes, and a particularfeature of HFE is that those who will be part of the system being designed are often

    4 J. Dul et al.

  • brought into the development process as participants (Noro and Imada 1991).HFE specialists can have dierent roles. For example, they can act as specialists ofthe human component of the system. The human component should be understoodas covering both individual and collective or social aspects, from micro to macrolevel. HFE specialists have competencies regarding methods for analysing and actingon situations, methods for designing and assessing technical and organisationalenvironments, methods for organising and managing participatory approaches, andmethods for redesigning and continuously improving systems (Woods and Dekker2000). HFE specialists analyse and solve problems in partnership with othercontributors to design (Noy 1995, Rasmussen 2000). They can also play anintegrative role in design decisions, based on their knowledge and skills of design asan activity (including mental processes of contributors to the design, andcollective interaction processes). Furthermore, they can stimulate and moderatedesign processes by, for instance, translating engineering terminology or concepts toend-user terminology and vice versa.

    This design orientation of HFE dierentiates it from other disciplines such associology, and anthropology. These other disciplines may share a comprehensiveview with HFE, but not an action view (Helander 1997).

    2.3. HFE focuses on two related outcomes: performance and well-being

    By tting the environment to the human, two related system outcomes can beachieved: performance (e.g. productivity, eciency, eectiveness, quality,innovativeness, exibility, (systems) safety and security, reliability, sustainability)and well-being (e.g. health and safety, satisfaction, pleasure, learning, personaldevelopment). These and other outcomes are balanced by HFE specialists, managingpractical as well as ethical trade-os within systems (e.g. Wilson et al. 2009).Performance and well-being interact: performance can inuence well-being, andwell-being can inuence performance, both in the short and the long-term (seeFigure 1).

    Reduced performance and well-being can occur when there is a lack of tbetween the environment and human capabilities and aspirations. For example,humans may perform below their capabilities and standards because other parts ofthe system are an obstacle rather than a supporting environment (e.g. due to lackof time, inappropriate equipment, insucient support) (Falzon 2005, Falzon et al.2012). Well-being and performance are intertwined and should be understood asstrongly connected (Pot and Koningsveld 2009).

    Figure 1. The eect of HFE design on performance and well-being.

    Ergonomics 5

  • HFE recognises that any system always produces two outcomes: performanceand well-being. By tting the environment to the human, HFE can contribute tooptimising5 these joint outcomes (Neumann and Dul 2010).

    This focus of HFE on two joint outcomes is a dierential characteristic. Otherdisciplines such as engineering, psychology, and medicine share the focus on one ofthe outcomes with HFE, but not on both outcomes.

    3. Developments in the external world (general description)

    Developments in the world are having major impacts on systems. Thesedevelopments and their signicance for HFE need to be identied (Hendrick 1991,Noy 2000, Japan Ergonomics Society 2006) in order to set out a strategy for thefuture. Without attempting to be complete, we describe some global trends regardingchanges that impact HFE.

    3.1. Global change of work systems

    The change in the global economic landscape over the last decade has resulted in asignicant shift in the types of work that occur in dierent regions of the world.These changes have occurred in economically advanced nations, as well as ineconomically developing nations. Historically, economically advanced nations havebeen heavily involved in mass goods manufacturing. However, over the past twodecades, these nations have increasingly outsourced manufacturing and servicefunctions to economically developing countries, within a supply chain and globalmarket perspective. This has shifted the work performed within the economicallyadvanced nations to an emphasis on a service economy (including healthcareservices), resulting in more focus on the design of work systems for serviceproduction, and on the design of non-work systems such as services for customersand human-computer interactions (Drury 2008, Hedge and Spier 2008). Addition-ally, stimulation of entrepreneurship has resulted in a growing number of small-sizedand informal businesses in some economically advanced nations.

    At the same time, economically developing countries have enlarged theirmanufacturing base, thus creating more jobs. As a result, work, historically basedon local agriculture, has shifted towards more emphasis on manufacturing (oftenwithout the HFE benets found in economically advanced nations). Goods areoften produced by workers earning low wages and working under unfavourableconditions. Sharp increases in manufacturing are occurring because of the lowcost of goods production. In addition, many of these economically developingnations are simultaneously experiencing an increase in low wage service sectorjobs (e.g. call centres, banking). At the same time, in some countries, the informalsector involves the largest number of workers (Caple 2008) and agricultureremains the principal sector contributing to the countrys economic performance,including sometimes children who carry out tasks for very low or no wages(Gangopadhyay et al. 2004).

    Furthermore, there is a continuing trend of mechanisation and automation ofwork systems, not only in manufacturing but also in the service industry (Schlick2009). The introduction of more technology and increased capabilities of technology(many times beyond human capabilities) may change the relationship betweenpeople and technology.

    6 J. Dul et al.

  • 3.2. Cultural diversity

    One major impact of the trends described above is the increased interdependenciesbetween economies, industries and companies around the world. Consequently,production and distribution systems are internationally organised with a culturallydiverse workforce, and products and services are consumed by an increasinglydiverse set of customers in markets around the world. As a result, a diverse set ofhumans with dierent cultural backgrounds, and dierent characteristics andaspirations has become part of work and product/consumer systems. Environmentsthat were properly designed for one group of people may not be appropriate forother groups of people.

    HFE can address this trend of cultural diversity by contributing to the cross-cultural design of production and distribution systems that t the diverse workforce,and to the cross-cultural design of products and services that t the diversity of users(Moray 2000, Japan Ergonomics Society 2006). In cross-cultural design, it isacknowledged that people from dierent cultures have dierent capabilities andaspirations, which aect the design of systems of which they are part. Examplesinclude the design of global supply chains (Riedel and Mueller 2009) and the designof international digital media (Proctor et al. 2011).

    3.3. Ageing

    Several parts of the world are experiencing a demographic change known aspopulation ageing, brought about by a combination of longer life expectancy,declining fertility, and the progression through life of a large baby boomgeneration. In the USA, the workforce is ageing; in Europe the proportion of olderpeople in the working populations in European countries is increasing more thanin other continents. In India, the retirement age of oce or industrial workers hasrecently been raised. As a consequence, a large group of older humans have becomepart of work and product/service systems. Environments that were designed forthe current group of humans may not be as suitable for elderly people in the system.Another consequence of ageing is the increased relevance of equipment, furniture,IT devices, services, etc. targeting the older population at work, and adapted to theircharacteristics.

    HFE can contribute by ensuring that work systems and products/services t theolder population, taking into account age-related changes in physical, cognitive,visual and other capabilities, and dierent aspirations (Japan Ergonomics Society2006). Older people may have some reduced capabilities, but also more developedcapabilities such as mental growth (strategic thinking, language skills, motivation,commitment, work expertise) and some aspects of social capabilities (ability to adjusttheir behaviour). However, there are large variations among older age groups, andthese can become more pronounced with age (Ilmarinen 2005).

    HFE can help develop more versatile systems that are better matched to a widerange of groups. This approach does not only apply to people of dierent agegroups, but also to people with disabilities, obesity (Buckle and Buckle 2011), orotherwise dierent capabilities and aspirations (design for all). However, thisageing trend is not global. In other parts of the world, e.g. Sub-Saharan Africancountries, life expectancy is on the decline because a large part of the population issuering from HIV and related illnesses. In these countries, the main concern ishaving a sustainable workforce that can meet the requirements of the job market.

    Ergonomics 7

  • 3.4. Information and communication technology (ICT)

    There are several ICT-related changes that impact the manner in which work andactivities of daily living are performed (Karwowski 2006). Rapid and continuousdevelopments in computer technology, telecommunication technology and mediatechnology have given rise to new interactive activities such as social media, gaming,and to an explosion of information transfer. Peoples lives have become more andmore dependent on ICT and virtual networks. For example, these developmentshave an impact on the delivery of education. Similarly, new dimensions in productquality have emerged beyond usability, such as emotional design and pleasurableinteractions.

    ICT developments have brought about many changes in work organisation andorganisational design. These include more focus on teamwork, the rise of virtualorganisations, remote work including working from home, fading borders betweenoccupational and private life, and increased complexity of networks of organisations(Carayon and Smith 2000).

    Networks of organisations have emerged as an organisational model to supportcollaboration between organisations that have common goals. Very often organisa-tional networks rely on technology to communicate and share information, forinstance, supply chains in manufacturing. Another example is the exchange of healthinformation, which allows dierent healthcare organisations to share informationabout patients.

    Increasingly, companies are relying on virtual arrangements to conduct theirbusiness. Virtual sociotechnical systems comprising diverse people, who aregeographically dispersed, use information and communication technologies toperform their work remotely (Gibson and Gibbs 2006).

    HFE specialists can contribute to the design of systems to allow people to worktogether and share information across organisational boundaries (Woods andDekker 2000). For example, HFE can inuence the design of virtual sociotechnicalsystems by showing how trust and collaboration can be enhanced when teammembers work remotely and communicate via technology (Patel et al. 2012). HFEcan also contribute to the design of natural user interfaces in human-computerinteractions.

    3.5. Enhanced competitiveness and the need for innovation

    The enhanced competitiveness among companies, which is partly a result ofglobalisation, has forced companies to develop new business strategies, and hasincreased the need for companies to innovate and invent new products and services,as well as new ways of producing these. Employees may contribute to suggestions forthe innovation of production processes and products/services. Production processesneed to be more ecient and exible and must guarantee short product deliverytimes, often resulting in intensication of work. Products and services must havehigh quality characteristics beyond functionality, e.g. ease of use and positive userexperiences, to be successful in the market and to gain commercial advantage.

    HFE can contribute to the renewal of business strategies and innovation inseveral ways (Dul and Neumann 2009). HFE can foster employee creativity forinnovation (Dul and Ceylan 2011), can contribute to product/service innovation bydeveloping new products and services with unique usability and experiencecharacteristics, and can help a company to innovate processes and operations by

    8 J. Dul et al.

  • providing new ecient and eective ways of producing products and services(Broberg 1997, Bruder 2000).

    3.6. Sustainability and corporate social responsibility

    Sustainability the development that meets the needs of the present withoutcompromising the ability of future generations to meet their own needs includesattention to natural and physical resources (planet), but also attention to human andsocial resources (people), in combination with economic sustainability (prot)(Delios 2010, Pfeer 2010). It implies that companies do not just focus on nancialperformance. Corporate Social Responsibility (CSR) means going beyond fulllingthe minimum legal expectations regarding planet and people. Poor or minimumstandards in health and safety may damage a companys image with respect to CSR,which would be a direct threat to the value of the CSR eort and the continuity ofthe business. HFE can contribute to developing actions and programmes aimed atcombining the people and prot dimension of sustainability and social responsibilityby optimising both performance and well-being (Pfeer 2010, Zink 2005, 2006).

    In many economically developing countries, the understanding of the humanelement requires knowledge of complex social and cultural environments. Forexample, in South Africa, the workforce is often faced with issues such as HIV,cardiovascular diseases, infectious diseases other than HIV, and intentional violence.These issues inuence the work capacity of the population. HFE specialists in thesecountries, therefore, have a signicant role to play in improving both performance(e.g. productivity) and well-being.

    In conclusion, the above and other examples of developments illustrate thatsystems change because the human part or the environment part of the system (orboth) change. By oering its fundamental characteristics, HFE has the potential tocontribute to the design of future systems.

    4. The value of HFE for stakeholders

    The contribution of HFE to system design (supply of HFE) depends on thedemand for HFE by parties (stakeholders) involved in system design. Demand forHFE depends on the perceived value of HFE by stakeholders that are directly orindirectly involved in system design. To be able to supply, HFE must show that itcan provide value to these stakeholders in order to be a respected and demandedpartner in the design process.

    In this section, we rst identify the main stakeholder groups for system design.Next, we describe how the stakeholder groups could benet from the contribution ofHFE in systems design. Finally, we evaluate the (mis)match between the potential,perceived and provided value of HFE.

    4.1. Stakeholders of system design

    Four main stakeholders groups of system design can be identied:

    . System actors, i.e. employees, product/service users, who are part of thesystem and who are directly or indirectly aected by its design and who,directly or indirectly, aect its performance.

    Ergonomics 9

  • . System experts, i.e. professionals such as engineers and psychologists whocontribute to the design of the system based on their specic professionalbackgrounds. The HFE specialist is one of the system experts who focuses ondesign by tting the environment to humans, by using a systems approach, andby focusing on two related outcomes (performance and well-being).

    . System decision makers, i.e. decision makers (e.g. managers) about the(requirements for) the system design, the purchasing of the system, itsimplementation and its use.

    . System inuencers, i.e. media, governments, standardisation organisations,regulators, citizens who have general public interest in work system andproduct/service system design.

    For each of the main stakeholder groups, we distinguish four levels ofstakeholders: individual (the direct stakeholder), company, country/region, andworld (the indirect stakeholders). A stakeholder at a broader level (e.g. country)may represent a stakeholder at a more narrow level (e.g. company). Table 1 describesin more detail examples of stakeholders from the main stakeholder groups that aredirectly or indirectly involved in or aected by systems design. As a reference, wehave included the HFE specialist as one of the system experts.

    It should be noted that people can belong to dierent stakeholder groupsdepending on their role. For example, employees who are part of a work system aresystem actors. However, they become system experts (based on their experience)when they participate in the (re)design of a system. Similarly, managers who decideabout system designs are system decision makers, but when the systems areimplemented and the managers have management tasks in the new systems, theybecome system actors.

    4.2. Value of HFE for stakeholders

    In this section, we describe the value of HFE contributions to systems design for themain stakeholder groups (individuals and their representing organisations atcompany, national and international level).

    4.2.1. System actors

    This stakeholder group can be divided into actors of work systems (employees), andactors of product/service systems (product users, service receivers).

    Employees can benet from HFE design of work systems as it ensures well-beingin terms of e.g.:

    . Improved physical, psychological and social well-being (health and safety) (e.g.through optimisation of work environments).

    . Higher motivation, growth and job satisfaction (e.g. through freedom to act androom to grow and learn).

    . Improved performance (e.g. performance leading to intrinsic or extrinsicreward).

    Product users/service receivers can benet from HFE design of product/servicesystems as it ensures well-being and performance in terms of e.g.:

    10 J. Dul et al.

  • Table1.

    Examplesofstakeholdersin

    themain

    stakeholder

    groupsthatare

    directlyorindirectlyinvolved

    inthedesignofsystem

    s,andtheirroleand

    stakein

    thesystem

    .

    Stakeholder

    group

    Levelofstakeholders

    Individual

    Organisationsrepresentingin-

    dividualsin

    thecompany

    Organisationsrepresenting

    individualsin

    thecountry/region

    Organisationsrepresenting

    individualsin

    theworld

    System

    actors

    Are

    partsofthesystem

    Are

    directlyorindirectly

    aectedbyitsdesign

    Aectdirectlyorindirectly

    perform

    ance

    Actorsofwork

    system

    s:Employees

    Actorsofproduct

    system

    s:Product

    users

    Actorsofservicesystem

    s:Servicereceivers

    Workscouncils(work

    system

    s)OHSserviceproviders

    (work

    system

    s)Usergroups

    (products/services)

    National/regionaltradeunions

    (work

    system

    s),

    National/regionalorganisationof

    OHSservices

    (work

    system

    s)National/regionalconsumer

    organisations(products/service)

    National/regionalgovernment/

    OHSlegislation/consumer

    safety

    legislation

    National/regionalusergroups

    (e.g.patientassociations)

    (product/service)

    Internationaltradeunions

    (work

    system

    s)Internationalgovernment/

    OHSlegislation/

    consumer

    safety

    legislation

    ILO

    WHO

    ICOH

    Internationalusergroups

    (product/service)

    System

    experts

    Are

    designersofthesystem

    basedontheirspecic

    professionalbackgrounds

    andthenature

    ofthesystem

    Professionalsfromthetechnical

    andsocialsciences:,e.g.,

    (industrial)engineering,

    inform

    ationtechnology/

    computerscience,user

    experience

    specialists,

    psychology,managem

    ent

    consultancy,design,facility

    managem

    ent,operations

    managem

    ent,human

    resourcemanagem

    ent,

    interiordesign,architecture)

    Professionalcolleagues

    National/regionalprofessional

    associations

    National/regionalinstitutesfor

    professionaleducation

    National/regionalresearch

    organisations(universities,

    researchfundingorganisations)

    Internationalprofessional

    associations

    Internationalinstitutesfor

    professionaleducation

    Internationalresearch

    organisations

    (universities,research

    fundingorganisations)

    (continued)

    Ergonomics 11

  • Table1.

    (Continued).

    Stakeholder

    group

    Levelofstakeholders

    Individual

    Organisationsrepresentingin-

    dividualsin

    thecompany

    Organisationsrepresenting

    individualsin

    thecountry/region

    Organisationsrepresenting

    individualsin

    theworld

    HFESPECIA

    LIST

    Are

    designersofthesystem

    basedontheirspecic

    professionalbackgroundin

    HFE:designbytting

    environmentto

    human,

    system

    sapproach,dualgoal

    (perform

    ance

    and

    well-being)

    HFESPECIA

    LIST

    (oneofthesystem

    designers)

    HFESPECIA

    LIST

    Other

    professionalswho

    supportHFE

    HFESPECIA

    LIST

    National/regionalHFE

    organisations(e.g.IEA

    federatedsocieties,IEA

    networks,national/regional

    certicationorganisations)

    HFESPECIA

    LIST

    InternationalHFE

    organisations(IEA)

    System

    decisionmakers

    Are

    decisionmakers,aboute.g.

    therequirem

    entsforthe

    system

    design,andthenal

    design

    Managers,other

    decision

    makers

    Managem

    entteam

    Purchasers

    ofproducts/

    services

    National/regionalem

    ployer

    organisations

    National/regionalindustry/trade

    organisations

    Internationalem

    ployer

    organisations

    Internationalindustry/trade

    organisations

    System

    inuencers

    Havegeneralpublicinterest

    inwork

    andproduct/service

    system

    s

    Anyother

    personinterested

    insystem

    sdesign

    Localcommunity

    Localmedia

    Localgovernment

    National/regionalgeneralpublic

    National/regionalmedia

    National/regionalgovernments

    National/regionalstandardisation

    bodies

    Internationalgeneralpublic

    Internationalmedia

    Internationalgovernments

    International

    standardisationbodies

    12 J. Dul et al.

  • . Better experience

    . Shorter time of familiarisation

    . Better tting of products/services to individual characteristics/needs

    . Fewer mistakes

    . Greater eciency

    In addition, as HFE commonly takes participatory design approaches, anotherpotential value of HFE is that it ensures that system actors can inuence systemdesign.

    4.2.2. System experts

    This stakeholder group consists of a variety of professionals from the technical andsocial sciences that can be involved in the design of systems, e.g. (industrial)engineering, information technology/computer sciences, psychology, managementconsultancy, design, facility management, operations management, human resourcemanagement, interior design, architecture. These professionals aim to design asystem that performs well according to the standards of their respective professions,and to the requirements of system decision makers. HFE can help to reach thesegoals because HFE contributions help to ensure:

    . Better users acceptance of designed systems

    . Better performance

    . Better t with (legal) standards (e.g. health and safety, accessibility,professional ethics)

    . Improved development process (e.g. more ecient user consultation).

    4.2.3. System decision makers

    This stakeholder group consists of decision makers (e.g. managers, purchasers) thatdecide about the design (e.g. requirements, nal design) of work systems andproduct/service systems.

    Management (e.g. in companies) aims to achieve excellent performance of worksystems with the least use of resources. Typical key performance indicators of worksystems are productivity (the number of produced products and services per time),the time needed for fullling a certain task, and the quality of products/services.

    Decision makers about work systems can benet from HFE as it ensuresperformance in terms of e.g.:

    . Better productivity by reduced time for performing work procedures (e.g.through optimisation of work equipment, work ow or worker qualications).

    . Better quality and reliability of production processes and produced goodsand services (e.g. through optimisation of work equipment, operatinginstructions or worker qualications).

    . Lower operating costs due to lower levels of health problems, motivationaldecits, accidents, absenteeism, and related productivity loss (e.g. throughbetter working conditions).

    . More innovation by increased employee creativity (e.g. through creativitystimulating work environments).

    Ergonomics 13

  • . Better reputation for hiring and retention of talented employees (e.g. throughattractive work), and positive worker and consumer associations with therm and its products/services (employee well-being, sustainability, corporatesocial responsibility, end user well-being).

    . Better decision-making through improved information about the eects ofsystem design on employees.

    Decision makers about product/service systems can benet from HFE design as itensures product/service performance in terms of:

    . Better market performance (e.g. due to unique characteristics such as ease ofuse).

    . Greater protability.

    . Less re-design due to interaction problems after market introduction.

    . Better decision-making by improved information about eects of system designon product/service users.

    4.2.4. System inuencers

    System inuencers have a general public interest in work and product/servicesystems, in particular regarding their outcomes. HFE can contribute simultaneouslyto two general goals:

    . Social wealth of individuals and society at large (through the well-beingoutcome of HFE system design).

    . Economic wealth of individuals and society at large (through the performanceoutcome of HFE system design).

    HFE helps to ensure that people do not get injured at work or while usingproducts or receiving services, that work systems and product/service systems areprotable for companies and for society at large, and that work systems andproduct/service systems are accessible for people with a variety of capacities andaspirations.

    4.3. (Mis)match between potential value, perceived value, and provided value

    The previous analysis shows that HFE has the potential to provide value to all of themain stakeholders of system design. Each of the stakeholder groups could benetfrom the contribution of HFE in systems design. The analysis also shows thatstakeholders have dierent needs, and therefore have dierent views about the realvalue of HFE for them. For example, system actors (employees, product/serviceusers) and some system inuencers (e.g. governmental agencies focusing on healthand safety) will appreciate the well-being outcome of HFE, whereas system experts(e.g. engineers) and system decision makers (e.g. managers) will appreciate theperformance outcome of HFE.

    However, the perceived value of HFE by all stakeholders is limited (Helander1999, Neumann and Dul 2010). Some people believe that HFE focuses on well-beingonly; others say that it focuses on manufacturing only (e.g. heavy physical work),or on specic goods only (e.g. chair, computer mouse). Although there are many

    14 J. Dul et al.

  • examples of highly successful companies with work systems, where workers aretreated well from a physical, psychological, and organisational standpoint, becomecreative and productive members of the organisation, and are retained in theorganisation, these winning strategies are not always associated with HFE.Similarly, there are numerous examples of successful products that are based uponusability, ease of use, and perceptions of eciency, such as iPhones, and otherkinds of high tech gadgets. These devices are widely successful because of HFEfeatures, yet the terms human factors or ergonomics are seldom heard whendiscussing these products, and hence HFE value is not perceived. These examplesshow that there is an implicit need for the value of HFE (performance andwell-being), but not an awareness and explicit demand for the HFE discipline andprofession. Hence, there is limited recognition and appreciation of how HFE cancontribute to healthy, safe, comfortable and ecient work and product/servicesystems.

    Although the role of HFE in enhancing well-being can be a strong valueproposition for some stakeholder groups, i.e. system actors and system inuencers,this may not be sucient for other stakeholder groups, in particular, systems expertsand system decision makers who primarily focus on the performance value ofHFE. In many sectors, the provided value by the HFE community (in research andpractice) focuses on well-being, and HFE specialists then have strongerrelationships with the stakeholder group of system actors (that appreciate thisgoal) than with the stakeholder groups of systems experts and system decisionmakers (that are strongly interested in the performance outcome). In addition, therelationships of the HFE community with certain system inuencers (e.g.governments) often focus on well-being rather than on performance. For example,the IEA has stronger formal relationships with international organisations thatfocus primarily (though not solely) on well-being, e.g. International LabourOrganisation (ILO), International Occupational Hygiene Association (IOHA), andthe International Commission on Occupational Health (ICOH) than with organisa-tions that focus primarily (though not solely) on performance (e.g. organisationsrepresenting industrial engineers, product designers, or managers). There may wellbe a similar imbalance for many local HFE societies and many individual HFEspecialists.

    As a result, the HFE community has a less developed value proposition andweaker relationships with dominant stakeholders (Mitchell et al. 1997) who haveconsiderable power to inuence system design, in particular organisationsrepresenting system experts (such as design organisations), and organisationsrepresenting system decision makers (such as management organisations). The HFEcommunity has a more developed value proposition and stronger relationshipswith dependent stakeholders such as the group of system actors who are less able toinuence system design, but have strong interest in its outcome. In conclusion, thestakeholder group of system actors primarily needs and benets from the well-beingvalue of HFE, and this has created an explicit demand for HFE from this group.The stakeholder groups of system experts and system decision makers primarilyneed the performance value of HFE. However, they do not always get this valueand are generally not aware that HFE can provide this value, even though theyhave an implicit need for it. As a result, there is limited explicit demand for HFEfrom this group. Because this group of system experts and system decision makersis more powerful in the design process than the rst group (system actors), the

    Ergonomics 15

  • HFE community should strengthen its value proposition (with a focus onperformance outcomes), and its communication and relationships with thesestakeholder groups, as well as with the system inuencers. This will help to increasedemand for high-quality HFE (well-being and performance outcomes) and thereforeincrease HFE contributions to system design, resulting in more high-quality HFEapplications6.

    5. Strategy for the future

    In Section 1, we stated that the potential of HFE is under-exploited. In Section 2, weshowed that HFE has three fundamental characteristics (systems approach, designdriven, joint performance and well-being outcomes) and that this combination isunique in comparison to other disciplines. The developments described in Section 3indicate that systems are changing and will continue to change in the future, and thatHFE can help to design systems that t people so that well-being and performanceoutcomes are achieved in future systems. In Section 4, we found that HFE currentlyserves the main stakeholder group of system actors relatively well (with well-beingoutcomes), but that it needs to better serve the main other stakeholder groups(system experts, system decision makers) with high-quality HFE. These stakeholdergroups are more inuential in system design than system actors and have a stronginterest in performance. At the same, they may have only a limited view about whatHFE could oer. Therefore, HFE should expand its reach to system experts andsystem decision makers, with greater emphasis on the performance goal, and on thediversity of application areas.

    Therefore, we propose the following main strategy for the future of HFE:

    To strengthen the demand for and the application of high-quality HFE (with the keyelements of systems approach, design driven, and performance and well-beingoutcomes) for all stakeholders, in particular:

    (1) Strengthening the demand for high-quality HFE by enhancing the awarenessof stakeholders need for high-quality HFE (in particular, for system expertsand system decision makers, emphasising performance) by:(a) Communicating with specic stakeholders about the value of high-quality

    HFE in the language of the stakeholder.(b) Building partnerships with these stakeholders and their representing

    organisations.(c) Educating stakeholders to raise awareness of high-quality HFE and its

    contributions to system design.(2) Strengthening the application of high-quality HFE by:

    (a) Promoting the education of HFE specialists to apply high-quality HFE.(b) Ensuring high quality standards of HFE applications and HFE specialists.(c) Promoting HFE research excellence at universities and other

    organisations.

    These two strategic elements are interrelated.Higher demand for high-quality HFEcan lead to more high-quality HFE provided (pull), and more availability of highquality HFE can stimulate demand for high-quality HFE (push). Figure 2 depicts theHFE demand development cycle representing the main strategy. The cycle applies

    16 J. Dul et al.

  • to a given stakeholder group (system actors, system specialists, system decisionmakers,or system inuencers) and combines three strategic elements:

    (1) A stakeholders demand for high-quality HFE, which can stimulate(2) the application of high-quality HFE (with the three key characteristics),

    which can(3) raise the stakeholders awareness of the need for high-quality HFE, which

    may(4) increase the stakeholders demand for high-quality HFE.

    The HFE community can take an active role in boosting this cycle by focusing onboth the pull and push approaches. It can enhance the stakeholders awareness oftheir need for high quality HFE. This can be done by communicating withstakeholders, by building partnerships with stakeholders, and by educatingstakeholders (Karwowski 2007). This requires that HFE specialists can translateand integrate HFE objectives into stakeholders strategies, policies and actions (Duland Neumann 2009). As a result, there should be an increased demand forhigh-quality HFE. The HFE community can also enhance high-quality HFEapplications. This can be done by educating high-quality HFE specialists, by ensuringhigh quality HFE applications and specialists, and by encouraging HFE researchexcellence at universities and other organisations (Buckle 2011). By reecting onsuccess stories (successful applications of high-quality HFE) and the related

    Figure 2. HFE demand development cycle.

    Ergonomics 17

  • challenges, HFE knowledge and professional practice can be further enhanced.Hence, the HFE community is the main actor in this proposed strategic change. Itcan operate at three levels: global HFE society (IEA), local societies (national andregional HFE societies, e.g. IEA Federated Societies and IEA networks) andindividual (HFE researchers, HFE teachers/trainers, HFE consultants, HFEpolicymakers).

    6. Strategy implementation

    The proposed main strategic direction is to strengthen the demand for and theapplication of high-quality HFE. Adopting this main strategy has importantconsequences for the policies and practices of HFE societies and individuals, takeninto account local dierences and priorities.

    The implementation of the strategy is an essential but complex endeavour thatneeds further development. We only touch upon two aspects: (1) developing anaction plan by translating the strategy into actionable tasks, and (2) managing thedevelopment and implementation of the action plan.

    In Section 6.1 (and the Appendix), we provide examples of possible strategicactions. We acknowledge that these strategic actions and their approach are notcomprehensive, and need to be extended and addressed in detail. In Section 6.2, wepropose a leadership role for the IEA to manage the development andimplementation of the action plan.

    6.1. Examples of strategic actions

    Below, we give examples of actions that can be taken to realise the two maindirections of the proposed strategy. Additional examples are provided in theAppendix. Ultimately, these strategic actions need to be translated into specic andeective actions by appropriate groups in the HFE community. In order to besuccessful, these actions must be smart: specic (e.g. specifying who, what, when,where, which, why), measurable (e.g. answering questions such as how much, howlong), attainable (it must be possible to do them), realistic (people must be willingand able to work on them), and timely (e.g. setting time horizons for strategic actionssuch as 1, 2, 5 and even 10 years).

    Strengthening the demand for high-quality HFE by enhancing stakeholdersawareness of the need for high-quality HFE:

    . Communicating with dominant stakeholders (system experts, system decisionmakers), by emphasising the performance goal and the other key character-istics of HFE in their language (e.g. quantication of outcomes, cost-benetanalysis). Increasing these stakeholders awareness and understanding of whathigh-quality HFE is by providing examples and success stories of high-qualityHFE, but also examples of the negative eects resulting from the absence ofhigh-quality HFE, and through recognition, awards and prizes for high qualityHFE.

    . Building strategic partnerships, in particular with system experts (e.g.professionals from the technical and social sciences), system decision makers(e.g. managers and other decision makers), and system inuencers (e.g. local,

    18 J. Dul et al.

  • national, and international governments and industry bodies, the generalpublic (e.g. the media)). Long-term partnerships should ensure sustainedimprovements in both performance and well-being.

    . Educating (future) stakeholders by showing the value of HFE at alleducational levels and settings, from education at primary schools to educationat institutes for professional education and universities, (e.g. engineering,design, business) as well as education beyond school systems. Because it isimpossible that HFE specialists be present in all system designs, educating(future) system experts about the principles of HFE is necessary so that theycan apply basic HFE principles in their design without the involvement of anHFE specialist, and can identify when there is a need to call in a HFE specialistfor high-quality applications.

    Strengthening the application of high-quality HFE:

    . Promoting the education of high-quality HFE by formulating standards forhigh-quality HFE and for qualied HFE specialists (always paying attentionto the three key characteristics: systems approach, design driven, performanceand well-being) and by ensuring that education and training organisationsadhere to these standards. Attracting students and experts from a wide rangeof disciplines to become HFE specialists in all three key characteristics.Applying high-quality HFE cannot be achieved by mechanically using atoolkit. Life-long education of HFE specialists (including insight from otherelds such as industrial engineering, interaction design, cognitive psychology,human-movement studies, organisational behaviour, operations management,etc.) is essential to guarantee their competence to deliver high-quality HFEapplications. For example, HFE specialists from human or health-relateddisciplines who may primarily focus on well-being outcomes of system designmay need more education on performance outcomes and on buildingrelationships with inuential stakeholders such as system decision makers.

    . Ensuring high quality standards of HFE applications and HFE specialists bypromoting high-quality HFE in all activities of HFE societies and HFEindividuals, and by ensuring the implementation of high-quality HFEstandards by accreditation and certication bodies.

    . Promoting HFE research excellence at universities and other organisations bypromoting research and publications on high-quality HFE.

    6.2. Leadership role of the IEA

    We propose a leadership role for the IEA to manage the development andimplementation of this strategy.

    The IEA could act as a strategic leader in this process in several ways:

    . By developing a global action plan to implement the strategy, with globalconsensus.

    . By encouraging IEA federated societies and networks to set up their ownaction plans, each taking into account their specic context. The IEA shouldmonitor and evaluate the development and implementation of these actionplans and share lessons learned.

    Ergonomics 19

  • . By developing a plan of action at international level, targeting appropriateinternational institutions and organisations.

    Dierent HFE groups and main stakeholder groups should be involved in thisprocess so that the implementation plan ts specic needs and possibilities. IEAfederated societies and networks should be the main contributors to this strategicaction. Only they know the specicities of their national or regional context, thechallenges they face, the opportunities they may exploit, and the people andorganisations that may help them. IEA networks could play an important role asintermediate actors. The rst objective of IEA federated societies and networksshould then be to dene a locally relevant plan of action to be developed with theirmembers and shared at IEA level.

    Such a global eort can work only if individual members of the federatedsocieties understand it. In this perspective, it might be useful to have this texttranslated in the national language of the societies where English is not commonlyused.

    Furthermore, other HFE organisations should also be involved. Certicationbodies should be encouraged to examine their criteria for certication and to checkwhether these criteria are in agreement with the fundamental characteristics ofhigh-quality HFE described in this paper. Professional organisations of HFEspecialists that are not part of the IEA should also be approached to ensure sharedviews on the nature of HFE and its high quality delivery.

    Finally, the major stakeholders must be involved because the strategy focuseson showing and delivering value to them. It is then crucial to understand the views ofstakeholders on HFE and its benets, and how HFE specialists can be theirpartners in system design.

    Over the next decade, the design and implementation of this plan will be the mainobjective and a major activity of the IEA Executive Committee and the IEA Council,as well as of the local HFE societies. Successful implementation of the strategy inthe long term, spearheaded by the IEA, is only possible if the IEA sets appropriateconditions such as continuity of governance, eective mobilisation of federatedsocieties, and sucient resources. This might require serious reconsideration of thecurrent IEA organisation.

    7. Concluding remarks

    This paper oers the HFE community a strategic direction for the future of the HFEdiscipline and profession that could lead to the development of new strategies,tactics and operations within specic local contexts. Developing and implementing astrategic action plan for the HFE discipline and profession at large requires a longlasting and joint eort of the entire HFE community. The result will be rewarding.The external community will recognise the HFE discipline and profession as a crucialpartner for successful systems design.

    Acknowledgements

    We would like to thank many human factors/ergonomics specialists who have provided theirpersonal input to the work of the committee and/or who commented on earlier versions of thispaper: F. Javier Llaneza Alvarez, ArcelorMittal, Spain; Alexey Anokhin, National ResearchNuclear University MEPhI, Russia; Tomas Berns, Ergolab AB, Sweden; Verna Blewett,

    20 J. Dul et al.

  • University of South Australia, Australia; Guy Andre Boy, Florida Institute of Technology,USA; Bob Bridger, INM, UK; Ole Broberg, Technical University of Denmark, Denmark;Alexander Burov, Institute of Gifted Child, Ukraine; David C. Caple, David Caple &Associates, Australia; Alan Chan, City University of Hong Kong, Hong Kong; Wen-RueyChang, Liberty Mutual Research Institute for Safety, USA; Pierre-Henri Dejean, Universityof Technology of Compie`gne, France; Mica Endsley, SA Technologies, USA; PatriciaFerrara, Technoserve Inc., Mozambique; Margo Fraser, Association of Canadian Ergono-mists, Canada; Yushi Fujita, Research Department, Japan; Somnath Gangopadhyay,University of Calcutta, India; Sylva Gilbertova, SAZ, Czech Republic; Matthias Gobel,Rhodes University, South Africa; Jose Orlando Gomes, Federal University of Rio de Janeiro,Brazil; Richard Goossens, Delft University of Technology, the Netherlands; Alan Hedge,Cornell University, USA; Martin Helander, Nanyang Technological University, Singapore;Magne Helland, Buskerud University College, Norway; Veerle Hermans, IDEWE and VrijeUniversiteit Brussel, Belgium; Francois Hubault, Universite Paris 1, France; Sheue-LingHwang, National Tsing-Hua University, Taiwan; Andrew S. Imada, A. S. Imada &Associates, USA; Christina Jonsson, Swedish Work Environment Authority, Sweden;Halimahtun Khalid, Damai Sciences Sdn Bhd, Malaysia; Jung-Yong Kim, HanyangUniversity, South Korea; Karsten Kluth, University of Siegen, Germany; Kazutaka Kogi,Institute for Science of Labour, Japan; Ernst Koningsveld, TNO, The Netherlands; RabiyaLallani, Human Factors North Inc., Canada; Johan Molenbroek, Delft University ofTechnology, the Netherlands; Karen Lange Morales, National University of Colombia,Colombia; John Lee, University of Wisconsin, USA; Jean-Luc Malo, Vincent Ergonomie,Canada; Nicolas Marmaras, National Technical University of Athens, Greece; Svend ErikMathiassen, University of Gavle, Sweden; Dave Moore, SCION Research, New Zealand;Dimitris Nathanael, National Technical University of Athens, Greece; Patrick Neumann,Ryerson University, Canada; Ian Noy, Liberty Mutual Research Institute for Safety, USA;Clas-Hakan Nygard, Tampere University, Finland; Enrico Occhipinti, University of Milan,Italy; Ahmet F. }Ozok, Istanbul Kultur University, Turkey; Gunther Paul, University of SouthAustralia, Australia; Ruud Pikaar, Ergos Engineering & Ergonomics, the Netherlands; AnnaPtackova, Skoda, Czech Republic; David Rempel, University of California, USA; LuzMercedes Saenz, University Ponticia Bolivariana, Colombia; Martha Helena Saravia,Pontical University Javeriana, Colombia; Christopher Schlick, Aachen University, Germany;Schu Schutte, Council for Scientic and Industrial Research, South Africa; Patricia Scott,Rhodes University, South Africa; Paul Settels, ING, the Netherlands; Barbara Silverstein,SHARP - Washington State Department of Labor & Industries, USA; Marcelo Soares,Federal University of Pernambuco, Brazil; Claudia Stamato, PUC-Rio - Pontical CatholicUniversity of Rio de Janeiro, Brazil; Carol Stuart-Buttle, Stuart-Buttle Ergonomics, USA;Andrew Thatcher, University of Witwaterstrand, South Africa; Andrew Todd, RhodesUniversity, South Africa; Takashi Toriizuka, Nihon University, Japan; John Walter,Technoserve Inc., Mozambique; Eric Min-Yang Wang, National Tsing Hua University,Taiwan; Christine Waring, Latrobe Regional Hospital, Australia; Klaus J. Zink, University ofKaiserslautern, Germany; Moustafa Zouinar, Orange labs France telecom, France; GertZulch, Karlsruhe Institute of Technology, Germany.Furthermore, input was received from a group of 17 PhD candidates and professors of

    the Conservatoire National des Arts et Metiers (CNAM), Paris, France. Roger Haslam(editor of Ergonomics) and three anonymous reviewers are thanked for their comments.Financial support for this project was provided by the International Ergonomics Association(IEA).

    Notes

    1. In the present paper, we consider ergonomics and human factors to be synonymous,and we adopt the IEA denition of the discipline (IEA 2000): Ergonomics (or humanfactors) is the scientic discipline concerned with the understanding of the interactionsamong humans and other elements of a system, and the profession that applies theoreticalprinciples, data and methods to design in order to optimise human well-being andoverall system performance. To identify the discipline throughout this paper, we haveselected the name human factors/ergonomics (HFE). By accepting this denition, we alsoaccept the view that HFE is a scientic discipline and not only a (multidisciplinary)

    Ergonomics 21

  • approach to problem solving. We also accept that this denition reects a more positivistrather than a more constructivist view on the discipline.

    2. The committee consists of Jan Dul (Chair, Netherlands), Ralph Bruder (Germany), PeterBuckle (UK), Pascale Carayon (USA), Pierre Falzon (France), William S. Marras(USA), John R. Wilson (UK), and Bas van der Doelen (Secretary, Netherlands).

    3. HFE focuses primarily on two types of systems: work systems (with workers in private orpublic organisations) and products (consumer or business goods or services). Tradition-ally work is a central issue in HFE, as indicated by the etymology of the wordergonomics (ergowork). However, HFE is concerned with all kinds of activities that gobeyond (paid) work and includes activities carried out by a range of users, e.g. customers,citizens, patients, etc. with dierent characteristics (e.g. age), in a range of domestic,leisure, sport, transport and other environments. When we use the words work system itincludes other living systems.

    4. Other contributors are the eort taken by the human independently of the environment,as well as contributions from other components of the system.

    5. In this paper, we do not use the term optimisation in its mathematical meaning of ndinga best available value for a given objective function. Instead, optimisation refers tonding design solutions to maximise both well-being and performance, which may requiremaking trade-os between both objectives.

    6. By high-quality HFE we mean that the three core elements of HFE: systems approach,design driven and performance and well-being outcomes, are taken into considerationwhen dening problems and formulating solutions. Without these key elements, the HFEapproach is limited. High-quality HFE includes approaches with a focus on specicaspects of people (e.g. physical), on specic aspects of the environment (e.g. technical), onspecic outcomes (e.g. well-being), or with limited links to design, as long as limitationsof the specic approach and how to tackle these are addressed (contextualisation).This can be done, for example, by collaborating with other specialists, planning broaderapproaches at later stages, or acknowledging the limitations of problem denitions andsolutions. Specic approaches may occur e.g. when the HFE specialist can have only alimited role in the design process, or when there are practical or other restrictions for abroader scope (e.g. only simple solutions are feasible), for instance, in economicallydeveloping countries (Kogi 2007). As a strategic direction, high-quality HFE approachesare preferred over limited approaches as the combination of core elements of HFE is aunique value proposition for all stakeholders.

    References

    Brewer, J.D. and Hsiang, S.M., 2002. The ergonomics paradigm: foundations, challenges andfuture directions. Theoretical Issues in Ergonomics Science, 3 (3), 285305.

    Broberg, O., 1997. Integrating ergonomics into the product development process. InternationalJournal of Industrial Ergonomics, 19 (4), 317327.

    Bruder, R., 2000. Ergonomics as mediator within the product design process. Human Factorsand Ergonomics Society Annual Meeting, 44 (8), 2023.

    Buckle, P., 2011. The perfect is the enemy of the good. Ergonomics, 54 (1), 111.Buckle, P. and Buckle, J., 2011. Obesity, ergonomics and public health. Perspectives in Public

    Health, 131 (4), 170176.Caple, D., 2008. Emerging challenges to the ergonomics domain. Ergonomics, 51 (1), 4954.Carayon, P., 2006. Human factors of complex sociotechnical systems. Applied Ergonomics, 37

    (4), 525535.Carayon, P. and Smith, M.J., 2000. Work organization and ergonomics. Applied Ergonomics,

    31 (6), 649662.Delios, A., 2010. How can organizations be competitive but dare to care? Academy of

    Management Perspectives, 24 (3), 2536.Drury, C.G., 2008. The future of ergonomics/the future of work: 45 years after Bartlett (1962).

    Ergonomics, 51 (1), 1420.Dul, J. and Ceylan, C., 2011. Work environments for employee creativity. Ergonomics, 54 (1),

    1220.

    22 J. Dul et al.

  • Dul, J. and Neumann, W.P., 2009. Ergonomics contributions to company strategies. AppliedErgonomics, 40 (4), 745752.

    Falzon, P., 2005. Ergonomics, knowledge development and the design of enablingenvironments. In: HWWE2005, humanizing work and work environment conference,December 2005, Guwahati, India: Allied Publishers.

    Falzon, P., Nascimento, A., Gaudart, C., Piney, C., Dujarier, M.-A. and Germe, J.-F., 2012.Performance-based management and quality of work: an empirical assessment.WORK: AJournal of Prevention, Assessment & Rehabilitation, (forthcoming).

    Gangopadhyay, S., Das, B.B., Das, T., and Ghoshal, G., 2004. Prevalence of MusculoskeletalDisorders among pre-adolescent agricultural workers of West Bengal, India. ErgonomicsSA. Journal of the Ergonomics Society of South Africa, 16 (1), 214.

    Gibson, C.B. and Gibbs, J.L., 2006. Unpacking the concept of virtuality: The eects ofgeographic dispersion, electronic dependence, dynamic structure, and national diversity onteam innovation. Administrative Science Quarterly, 51 (3), 451495.

    Hedge, A. and Spier, A.L., 2008. On the future of ergonomics: HFES members speak out.HFES Bulletin, 51 (2), 12.

    Helander, M., 1999. Seven common reason to not implement ergonomics. InternationalJournal of Industrial Ergonomics, 25 (1), 97101.

    Helander, M.G., 1997. Forty years of IEA: Some reections on the evolution of ergonomics.Ergonomics, 40 (10), 952961.

    Hendrick, H.W., 1991. Ergonomics in organizational design and management. Ergonomics, 34(6), 743756.

    Hollnagel, E., 2001. The future of ergonomics (guest editorial). Theoretical Issues inErgonomics Science, 41 (2), 219221.

    IEA, 2000. The Discipline of Ergonomics. International Ergonomics Association. Availablefrom: www.iea.cc [Accessed 11 January 2012].

    Ilmarinen, J., 2006. Towards a longer worklife: ageing and the quality of worklife in theEuropean Union. Helsinki: FIOH Bookstore.

    Japan Ergonomics Society, 2006. The JES Ergonomics Roadmap. Japan Ergonomics Society.Karwowski, W., 2006. From past to future: building a collective vision for HFES 2020.

    HFES Bulletin, 49 (11), 13.Karwowski, W., 2007. Toward an HF/E-literate society. HFES Bulletin, 50 (2), 12.Kogi, K., 2007. Action oriented use of ergonomic checkpoints for healthy work design in

    dierent settings. Journal of Human Ergology, 36, 3743.Mitchell, R.K., Agle, B.R., and Wood, D.J., 1997. Toward a theory of stakeholder

    identication and salience: Dening the principle of who and what really counts. Academyof Management Review, 22 (4), 853886.

    Moray, N., 2000. Culture, politics and ergonomics. Ergonomics, 43 (7), 858868.Neumann, W.P. and Dul, J., 2010. Human factors: Spanning the gap between OM and

    HRM. International Journal of Operations & Production Management, 30 (9), 923950.

    Noro, K. and Imada, A.S., 1991. Participatory Ergonomics, London: Taylor and Francis.Noy, I., 1995. Twelfth triennial congress of the international ergonomics association/douzieme

    congres triennial de lassociation internationale dergonomie bridging the gap/Sunirpour lavenir guest editorial. Ergonomics, 38 (8), 15391541.

    Noy, I., 2000. Ergonomics; the silent engine in the evolution of human society. Presidentialaddress, 14th IEA Triennial Congress, 31 July 2000. San Diego, USA.

    Patel, H., Pettitt, M., and Wilson, J.R., 2012. Factors of collaborative working: a frameworkfor a collaboration model. Applied Ergonomics, 43 (1), 126.

    Pfeer, J., 2010. Building sustainable organizations: the human factor. Academy ofManagement Perspectives, 24 (1), 3445.

    Pot, F.D. and Koningsveld, E.A., 2009. Quality of working life and organizationalperformancetwo sides of the same coin? Scandinavian Journal of Work, Environment &Health, 35 (6), 421428.

    Proctor, R.W., Nof, S.Y., Yih, Y., Balasubramanian, P., Busemeyer, J.R. and Carayon, P.,2011. Understanding and improving cross-cultural decision making in design and use ofdigital media: a research agenda. International Journal of Human-Computer Interaction, 27(2), 151190.

    Ergonomics 23

  • Rasmussen, J., 2000. Human factors in a dynamic information society: where are we heading?Ergonomics, 43 (7), 869879.

    Riedel, R. and Mueller, E., 2009. Production management and supply chain management in aglobal context. International Journal of Manufacturing Technology and Management, 16(3), 300317.

    Schlick, C.M., 2009. Industrial engineering and ergonomics in engineering design,manufacturing and service. In: C.M. Schlick, ed. Industrial engineering and ergonomics vision, concepts, methods an tools. Berlin: Springer.

    Stanton, N.A. and Stammers, R.B., 2008. Bartlett and the future of ergonomics. Ergonomics,51 (1), 113.

    Wilson, J.R., 2000. Fundamentals of ergonomics in theory and practice. Applied Ergonomics,31 (6), 557567.

    Wilson, J.R., Ryan, B., Schock, A., Ferreira, P., Smith, S. and Pitsopoulos, J., 2009.Understanding safety and production risks in rail engineering planning and protection.Ergonomics, 52 (7), 774790.

    Woods, D. and Dekker, S., 2000. Anticipating the eects of technological change: a new era ofdynamics for human factors. Theoretical Issues in Ergonomics Science, 1 (3), 272282.

    Zink, K.J., 2005. From industrial safety to corporate health management. Ergonomics, 48 (5),534546.

    Zink, K.J., 2006. Human factors, management and society. Theoretical Issues in ErgonomicsScience, 7 (4), 437445.

    24 J. Dul et al.

  • Appendix.ExamplesofstrategicactionsbytheHFEcommunityto

    realise

    themain

    strategy.

    Strengtheningthedem

    andforhigh-quality

    HFE

    Strengtheningtheapplicationofhigh-quality

    HFE

    Communicatingwith

    specicstakeholders

    aboutthevalueof

    high-quality

    HFEin

    the

    languageofthe

    stakeholder

    Buildingstrong

    partnershipswith

    specicstakeholders

    andtheirrepresenting

    organisations

    Educating

    stakeholdersto

    create

    awarenessof

    high-quality

    HFEandits

    contributionsto

    system

    design

    Promotingthe

    educationofHFE

    specialiststo

    apply

    high-quality

    HFE

    Ensuringhighquality

    standardsofHFE

    applicationsandHFE

    specialists

    PromotingHFE

    researchexcellence

    at

    universities

    andother

    organisations

    IEA:At

    International

    level

    HFESocieties:

    Atnational/

    regional

    level

    Identify

    specic

    stakeholdersfrom

    the

    dominantstakeholder

    groupsthatneedto

    be

    targeted.

    Identify

    thespecic

    needsofthese

    stakeholders.

    Form

    ulate

    thevalue

    ofHFEforthese

    stakeholdersin

    theirlanguage.

    Developshowcases

    from

    high-quality

    HFEapplications

    thatgiveinsightto

    thesestakeholders.

    Acknowledge(e.g.

    awards)HFE-

    enlightened

    stakeholdersthat

    havegood

    examplesofHFE.

    Identify

    opinion

    leadersfrom

    the

    stakeholder

    group

    Identify

    organisations

    thatrepresentspecic

    stakeholdersfrom

    the

    dominantstakeholder

    groupsthatare

    interested

    inthevalue

    ofHFEandin

    partnershipswith

    HFE.

    Developpartnerships

    withinterested

    organisations(e.g.

    regardingjoint

    developmentof

    showcases,joint

    awards,sharing

    networks,joint

    communication

    activities,mutual

    accessto

    conferences,etc.).

    Identify

    educationand

    trainingorganisations

    ofthedominant

    stakeholder

    groups.

    Identify

    linksbetween

    HFEandthe

    (learning)goalsof

    thesestakeholders.

    IncludeHFEin

    the

    education/training

    programmes

    of

    thesestakeholders.

    Form

    ulate

    general

    standardsforhigh-

    quality

    HFE.

    Form

    ulate

    general

    standardsfor

    qualied

    HFE

    specialists.

    Ensure

    that

    educationand

    training

    organisations

    adhereto

    these

    standards.

    Promote

    high-quality

    HFEin

    allactivitiesof

    IEA

    andHFE

    societies.

    Ensure

    the

    implementationof

    thegeneral

    standardsforhigh-

    quality

    HFEand

    qualied

    HFE

    specialistsby

    accreditationand

    certicationbodies.

    Promote

    researchon

    high-quality

    HFE(e.g.

    stimulate

    HFE-related

    journalsto

    havereview

    criteria

    basedonthe

    threekey

    characteristics

    ofhigh-

    quality

    HFE).

    Promote

    publicly

    funded

    research

    programmes

    on

    high-quality

    HFE.

    Promote

    researchco-

    operationand

    communication

    amongHFE

    researchers(and

    researchersfrom

    other

    disciplines).

    Promote

    discussions

    withuniversities

    aboutdedicated

    academ

    icdepartmentsfor

    HFE.

    (continued)

    Ergonomics 25

  • Appendix.

    (Continued).

    Strengtheningthedem

    andforhigh-quality

    HFE

    Strengtheningtheapplicationofhigh-quality

    HFE

    Communicatingwith

    specicstakeholders

    aboutthevalueof

    high-quality

    HFEin

    the

    languageofthe

    stakeholder

    Buildingstrong

    partnershipswith

    specicstakeholders

    andtheirrepresenting

    organisations

    Educating

    stakeholdersto

    create

    awarenessof

    high-quality

    HFEandits

    contributionsto

    system

    design

    Promotingthe

    educationofHFE

    specialiststo

    apply

    high-quality

    HFE

    Ensuringhighquality

    standardsofHFE

    applicationsandHFE

    specialists

    PromotingHFE

    researchexcellence

    at

    universities

    andother

    organisations

    whosupporthigh

    quality

    HFE.

    Deliver

    theHFE

    messagerepeatedly

    andthrougha

    varietyof

    communication

    channels.

    HFEIndividuals

    Identify

    specic

    stakeholders

    (individuals)

    from

    the

    dominant

    stakeholder

    groupsthatneed

    tobetargeted.

    Identify

    thespecic

    needsofthese

    stakeholders

    (individuals).

    Form

    ulate

    thevalue

    ofHFEforthese

    stakeholdersin

    theirlanguage

    (individuals).

    Developshowcases

    from

    high-quality

    Identify

    individualsfrom

    dominantstakeholder

    groupsthatare

    interested

    inthevalue

    ofHFEandin

    partnershipswith

    HFE.

    Developpartnerships

    withinterested

    individuals(e.g.

    jointactivities,

    accessto

    each

    othersnetworks

    andconferences,

    joint

    communication,

    etc.).

    Identify

    individual

    teachers/trainersof

    dominant

    stakeholders.

    Identify

    linksbetween

    HFEandthe

    principlesand

    (learning)goalsof

    theeducationof

    thesestakeholders.

    IncludeHFEin

    the

    education/training

    programmes

    of

    thesestakeholders.

    Obtain

    andmaintain

    the

    qualicationsforhigh-

    qualityHFEspecialists

    throughcontinuous

    educationand

    training.

    Ensure

    thathigh-quality

    HFEispartofall

    individualHFE

    activities(paying

    attentionto

    thethree

    key

    characteristics

    of

    high-quality

    HFE)in:

    HFEresearchand

    publications

    (HFEresearchers)

    HFEteachingand

    training(H

    FE

    teachers/trainers)

    HFEpractice(H

    FE

    consultants)

    HFEpolicy

    (HFE

    policymakers)

    Perform

    andpublish

    researchonhigh-

    quality

    HFE.

    Stimulate

    publicly-

    funded

    research

    programmes

    onthe

    high-quality

    HFE.

    Collaborate

    with

    researchersfrom

    other

    disciplines

    regardingsystem

    designand

    perform

    ance

    outcomes.

    Developbetter

    toolsto

    evaluate

    high-

    quality

    HFE

    interventions (continued)

    26 J. Dul et al.

  • Appendix.

    (Continued).

    Strengtheningthedem

    andforhigh-quality

    HFE

    Strengtheningtheapplicationofhigh-quality

    HFE

    Communicatingwith

    specicstakeholders

    aboutthevalueof

    high-quality

    HFEin

    the

    languageofthe

    stakeholder

    Buildingstrong

    partnershipswith

    specicstakeholders

    andtheirrepresenting

    organisations

    Educating

    stakeholdersto

    create

    awarenessof

    high-quality

    HFEandits

    contributionsto

    system

    design

    Promotingthe

    educationofHFE

    specialiststo

    apply

    high-quality

    HFE

    Ensuringhighquality

    standardsofHFE

    applicationsandHFE

    specialists

    PromotingHFE

    researchexcellence

    at

    universities

    andother

    organisations

    HFEapplications

    thatgiveinsightto

    thesestakeholders

    (individuals).

    AcknowledgeHFE-

    enlightened

    stakeholders

    (individuals)that

    havegood

    examplesofHFE.

    Identify

    opinion

    leadersfrom

    the

    stakeholder

    group

    whoare

    supporters

    ofhighquality

    HFE.

    Deliver

    theHFE

    messagerepeatedly

    andthrougha

    varietyof

    communication

    channels.

    Presenthigh-quality

    HFEresearch

    papersat

    conferencesof

    relateddisciplines.

    Ergonomics 27