tutorial 0 mth 3201

14
Tutorial MTH 3201 Linear Algebras

Upload: drradz-maths

Post on 10-May-2015

346 views

Category:

Education


10 download

TRANSCRIPT

Page 1: Tutorial 0 mth 3201

Tutorial MTH 3201Linear Algebras

Page 2: Tutorial 0 mth 3201

Tutorial 0

Page 3: Tutorial 0 mth 3201

1. Determine whether the following matrices are in Reduced Row Echelon form, Row Echelon Form, or not in both forms.

a) b)

c) d)

1 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0

1 0 0

0 0 1

0 0 0

1 1 0

0 1 0

0 0 0

Reduced Row Echelon formBoth Not

Both Not

Row Echelon form

Page 4: Tutorial 0 mth 3201

1. Determine whether the following matrices are in Reduced Row Echelon form, Row Echelon Form, or not in both forms.

e) f)

g) h)

1 0 0

0 1 0

0 2 0

1 5 3

0 1 1

0 0 0

1 3 4

0 0 1

0 0 0

1 3 0 2 0

1 0 2 2 0

0 0 0 0 1

0 0 0 0 0

Row Echelon form

Both Not

Row Echelon form

Row Echelon form

Page 5: Tutorial 0 mth 3201

Reduced Row Echelon form• Every leading coeff. 1 ( not means identity )• If zero – lower part of matrix• Other elements in a column 1 must be zero• Leading 1 in the upper row is located at the left of the 1 in

the lower row• Eg: 1 0 1/ 2 0

0 1 1/ 3 0

0 0 0 1

Row Echelon form• All non zero row at least one non zero• Leading at the left.• Eg:

1 2

3

1

0 1

0 0 1

a a

a

BACK

Page 6: Tutorial 0 mth 3201

2 1R R

2. Solve the following System of Linear Equations by using Gaussian Elimination Method.

3 13R R [1 1 20 −1 53 −7 4|

89

10 ][ 1 1 2−1 −2 33 −7 4| 8

110 ]

[1 1 20 1 −50 −10 −2|

8−9−14 ]

𝑅2 𝑋 (−1)

[1 1 20 1 −50 0 −52|

8−9−104 ]→

𝑅3+10𝑅2

y 5z=9, y=1 x + y + 2z = 8, x =3

, y=1, x =3[1 1 20 1 −50 0 1 | 8

−92 ]→

𝑅3 𝑋−152

Page 7: Tutorial 0 mth 3201

3. Solve the system of linear equations in Question (2) by

using Gauss-Jordan Elimination Method.

[1 1 20 1 −50 0 1 | 8

−92 ]→𝑅2+5𝑅3[1 1 2

0 1 00 0 1|

812 ]→𝑅1−𝑅2[1 0 2

0 1 00 0 1|

712 ]

→𝑅1−2𝑅3[1 0 00 1 00 0 1|

312 ] , y=1, x =3

Page 8: Tutorial 0 mth 3201

2. Solve the following System of Linear Equations by using Gaussian Elimination Method.

1 1 2 1 1

0 1 2 0 0

0 0 0 0 0

0 0 0 0 0

, 2 , , .

Ans

x s y t z t w s

ERO

Page 9: Tutorial 0 mth 3201

4. By using Elementary Row Operations on the Augmented Matrix [A|I], find the inverse of the following matrix A.

[1/5 1/5 −2 /51/5 1/5 1/101/5 −4 /5 1/10 |1 0 0

0 1 00 0 1 ] [1 1 −2

0 1 01 −4 1/2|

5 0 00 1 −10 0 5 ]→

𝑅1 𝑋 5

→𝑅3−𝑅1 →

𝑅3+5𝑅2

→ / (5/2)

→𝑅1+2𝑅3

𝑅2−𝑅3

𝑅3 𝑋 5

[1 1 −20 1 00 −5 5/2|

5 0 00 1 −1−5 0 5 ] [1 1 −2

0 1 00 0 5/2|

5 0 00 1 −1−5 5 0 ]

[1 1 −20 1 00 0 1 | 5 0 0

0 1 −1−2 2 0 ] [1 1 0

0 1 00 0 1|

1 4 00 1 −1−2 2 0 ]

→𝑅1−𝑅2 [1 0 0

0 1 00 0 1|

1 3 10 1 −1−2 2 0 ]

(𝑎)

Page 10: Tutorial 0 mth 3201

4. By using Elementary Row Operations on the Augmented Matrix [A|I], find the inverse of the following matrix A.

1

1 0 0 0

1 10 0

3 31 1

0 05 5

1 10 0

7 7

A

1

3 1 11

4 4 43

0 1 021 0 0 0

1 1 11

4 4 4

A

−4 /5 3 /5 −1/53/2 0 11/2 0 04 /5 2/5 1/5

1/5000

−1 /5

Page 11: Tutorial 0 mth 3201

Note: Row Equivalent= Each matrix is row equivalent to a unique reduce achelon form matrix

. .

1 2 3 1 0 0

1 4 1 0 1 0

2 1 9 0 0 1

E R OA

Reduce Row echelon form

. .

1 0 5 1 0 0

0 2 2 0 1 0

1 1 4 0 0 1

E R OB

Reduce Row echelon form

A=B : same reduce achelon form matrix

Page 12: Tutorial 0 mth 3201

5. …. Find a sequence of elementary row operatons that generates B from A.

. .

1 2 3 1 0 0

1 4 1 0 1 0

2 1 9 0 0 1

E R OA

2 3

1 0 0

0 1 1

0 0 1

R R

1 35

1 0 5

0 1 1

0 0 1

R R

3 1

3 2

1 0 5

0 1 1

1 1 4

R RR R

22

1 0 5

0 2 2

1 1 4

R B

Page 13: Tutorial 0 mth 3201

Exist solution (consistent) with condition bi (1 ≤ i ≤ 3) …1…,…2…, and …3… respectively.

6. Find the condition of bi (1 ≤ i ≤ 3) such that the following systems are Consistent (in which the solution exists).

1

. .2

3

1 2 5 1 0 0 ...1...

4 5 8 0 1 0 ...2...

0 0 1 ...3...3 3 3

E R O

b

b

b

Page 14: Tutorial 0 mth 3201

Exist solution (consistent) with condition bi (1 ≤ i ≤ 3) …1…,…2…, and …3… respectively.

6. Find the condition of bi (1 ≤ i ≤ 3) such that the following systems are Consistent (in which the solution exists).

1

. .2

3

1 2 1 1 0 0 ...1...

4 5 2 0 1 0 ...2...

0 0 1 ...3...4 7 4

E R O

b

b

b