tutorial 5 mth 3201

20
Tutorial MTH 3201 Linear Algebras

Upload: drradz-maths

Post on 22-Jun-2015

697 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Tutorial 5 mth 3201

Tutorial MTH 3201 Linear Algebras

Page 2: Tutorial 5 mth 3201

Tutorial 5

Page 3: Tutorial 5 mth 3201

𝐴π‘₯ = 0

3 4βˆ’1 2

π‘₯1

π‘₯2=

00

3 4βˆ’1 2

00

1 00 1

00

𝐸𝑅𝑂

∴ π‘₯1 = π‘₯2 = 0, π‘›π‘’π‘™π‘™π‘ π‘π‘Žπ‘π‘’, π‘₯ =00

𝐴π‘₯ = 0

1 0 3βˆ’1 1 βˆ’12 4 0

π‘₯1

π‘₯2

π‘₯3

=000

1 0 3βˆ’1 1 βˆ’12 4 0

000

𝐸𝑅𝑂 1 0 30 1 20 0 1

000

∴ π‘₯1 = π‘₯3 = π‘₯2 = 0, π‘›π‘’π‘™π‘™π‘ π‘π‘Žπ‘π‘’, π‘₯ =000

Page 4: Tutorial 5 mth 3201

𝐴π‘₯ = 0

βˆ’2 61 βˆ’3

π‘₯1

π‘₯2=

00

βˆ’2 61 βˆ’3

00

1 βˆ’30 0

00

𝐸𝑅𝑂

π‘₯1 βˆ’ 3π‘₯2 = 0, π‘₯1 = 3π‘₯2

Let π‘₯2 = 𝑑, π‘₯1 = 3𝑑

π‘›π‘’π‘™π‘™π‘ π‘π‘Žπ‘π‘’, π‘₯ =3𝑑𝑑

= 𝑑31

𝐴π‘₯ = 0

1 5 10 2 βˆ’36 βˆ’2 4

π‘₯1

π‘₯2

π‘₯3

=000

1 5 10 2 βˆ’36 βˆ’2 4

000

𝐸𝑅𝑂 1 5 1

0 1 βˆ’3

20 0 1

000

∴ π‘₯1 = π‘₯3 = π‘₯2 = 0, π‘›π‘’π‘™π‘™π‘ π‘π‘Žπ‘π‘’, π‘₯ =000

Page 5: Tutorial 5 mth 3201

𝐴π‘₯ = 0

1 βˆ’2 32 1 βˆ’11 βˆ’3 4

π‘₯1

π‘₯2

π‘₯3

=000

1 βˆ’2 32 1 βˆ’11 βˆ’3 4

000

𝐸𝑅𝑂 1 βˆ’2 3

0 1 βˆ’7

50 0 1

000

π‘₯3 = 0,

π‘₯2 βˆ’7π‘₯3

5= 0 β†’ π‘₯2 = 0,

π‘₯1 βˆ’ 2π‘₯2 + 3π‘₯3 β†’ π‘₯1 = 0

π‘₯ =000

, So there are no basis.

Dimension=0

1 βˆ’3 1βˆ’1 βˆ’5 13 1 βˆ’2

1

βˆ’1βˆ’2

000

𝐸𝑅𝑂

1 βˆ’3 10 1 βˆ’1/40 0 1

102

000

π‘₯3 + 2π‘₯4 = 0 β†’ π‘₯3 = βˆ’2π‘₯4 π‘₯2 βˆ’ π‘₯3/4 = 0 β†’ π‘₯3 = 4π‘₯2

π‘₯1 βˆ’ 3π‘₯2 + π‘₯3 + π‘₯4 = 0 β†’ π‘₯1 = π‘₯3/4

Let π‘₯3 = 𝑑, π‘₯1 =𝑑

4, π‘₯2 =

𝑑

4, π‘₯4 = βˆ’π‘‘/2

π‘₯ = 𝑑

1/41/41

βˆ’1/2

= 𝑑

βˆ’1/2βˆ’1/2βˆ’21

∴ 𝑣 =

βˆ’1/2βˆ’1/2βˆ’21

span solution space, dimension = 1

Page 6: Tutorial 5 mth 3201

𝐴π‘₯ = 𝑏

βˆ’5 23 7

π‘₯1

π‘₯2=

8βˆ’1

βˆ’5 23 7

8

βˆ’1

1 βˆ’2/50 1

βˆ’8/519/41

𝐸𝑅𝑂

π‘₯2 =19

41, π‘₯1 = βˆ’

58

41

𝑏 is in column space of A.

𝑏 =81

=βˆ’58

41βˆ’53

+19

4127

linear combination of column space of A.

𝐴π‘₯ = 𝑏 7 2 12 3 41 1 0

π‘₯1

π‘₯2

π‘₯3

=28

βˆ’1

7 2 12 3 41 1 0

28

βˆ’1 𝐸𝑅𝑂 1 1 0

0 1 40 0 1

βˆ’110

59/21

π‘₯3 =59

21, π‘₯2 =

βˆ’26

21, π‘₯1 =

5

21

𝑏 =28

βˆ’1=

5

21

721

βˆ’26

21

231

+59

21

140

Page 7: Tutorial 5 mth 3201

𝐴π‘₯ = 0

3 βˆ’1 01 7 02 4 0

000

𝐸𝑅𝑂 1 7 0

0 1 00 0 0

000

π‘₯3 = 𝑑, π‘₯2 = 0, π‘₯1 = 0

π‘₯ = 𝑑001

001

is a basis for nullspace

βˆ’1 3 5βˆ’6 4 1βˆ’3 βˆ’2 1

000

𝐸𝑅𝑂 1 βˆ’3 βˆ’5

0 1 29/140 0 1

000

π‘₯3 = 0, π‘₯2 = 0, π‘₯1 = 0

π‘₯ =000

There is no basis

Page 8: Tutorial 5 mth 3201

1 2 βˆ’1βˆ’3 3 45 1 1

βˆ’212

000

𝐸𝑅𝑂

1 2 βˆ’10 1 1/90 0 1

βˆ’2

βˆ’5/91

000

π‘₯4 = 𝑑, π‘₯3 = βˆ’π‘‘, π‘₯2 =2𝑑

3, π‘₯1 = βˆ’π‘‘/3

π‘₯ =1

3𝑑

βˆ’12

βˆ’33

𝑣1 =

βˆ’12

βˆ’33

is the basis for the nullspace

7 1 61 4 52 2 βˆ’1

000

𝐸𝑅𝑂 1 0 0

0 1 00 0 1

000

π‘₯ =000

There is no basis

Page 9: Tutorial 5 mth 3201

𝐴π‘₯ = 0

3 βˆ’1 01 7 02 4 0

𝐸𝑅𝑂 1 0 0

0 1 00 0 0

∴ r 1 and r 2 are bases for row space of A

βˆ’1 3 5βˆ’6 4 1βˆ’3 βˆ’2 1

𝐸𝑅𝑂 1 0 0

0 1 00 0 1

π‘Ÿ 1 = 1 0 0 , π‘Ÿ 2 = 0 1 0

𝑐 β€²1 =100

π‘Žπ‘›π‘‘ 𝑐 β€²2 =010

𝑐 1 =312

π‘Žπ‘›π‘‘ 𝑐 2 =βˆ’174

∴ c 1 and c 2 are bases for column space of A

∴ r 1, r 2and r 3 are bases for row space of A

π‘Ÿ 1 = 1 0 0 , π‘Ÿ 2 = 0 1 0 , π‘Ÿ 3 = 0 0 1

𝑐 1 =βˆ’1βˆ’6βˆ’3

, 𝑐 2 =34

βˆ’2π‘Žπ‘›π‘‘ 𝑐 3 =

511

∴ c 1 , c 2 and c 3 are bases for column space of A

Page 10: Tutorial 5 mth 3201

1 2 βˆ’1βˆ’3 3 45 1 1

βˆ’212

𝐸𝑅𝑂

1 0 00 1 00 0 1

1/3

βˆ’2/31

7 1 61 4 52 2 βˆ’1

𝐸𝑅𝑂 1 0 0

0 1 00 0 1

∴ r 1, r 2and r 3 are bases for row space of A

π‘Ÿ 1 = 1 0 0 1/3 , π‘Ÿ 2 = 0 1 0 βˆ’ 2/3 , π‘Ÿ 3 = 0 0 1 1

𝑐 1 =1

βˆ’35

, 𝑐 2 =231

π‘Žπ‘›π‘‘ 𝑐 3 =βˆ’141

∴ c 1 , c 2 and c 3 are bases for column space of A

∴ r 1, r 2and r 3 are bases for row space of A

π‘Ÿ 1 = 1 0 0 , π‘Ÿ 2 = 0 1 0 , π‘Ÿ 3 = 0 0 1

𝑐 1 =712

, 𝑐 2 =142

π‘Žπ‘›π‘‘ 𝑐 3 =65

βˆ’1

∴ c 1 , c 2 and c 3 are bases for column space of A

Page 11: Tutorial 5 mth 3201

𝐴𝑇 =3 1 2

βˆ’1 7 40 0 0

𝐸𝑅𝑂 1 15 10

0 1 βˆ’14/220 0 0

𝑐1 β€² =

100

, 𝑐2 β€² =

1510

𝑐1 =3

βˆ’10

, 𝑐2 =170

c1 and c2 form bases for column space ofAT

basis of C. S of AT= basis of R. S of AT

π‘Ÿ1 = 3 βˆ’1 0 , π‘Ÿ2 = 1 7 0

r1 and r2 form bases of row space consisting entirely of row vector 𝐴

𝐴𝑇 =βˆ’1 βˆ’6 βˆ’33 4 βˆ’25 1 1

𝐸𝑅𝑂

1 6 30 1 11/40 0 1

𝑐1 β€² =

100

, 𝑐2 β€² =

610

, 𝑐3 β€² =

311/4

1

𝑐1 =βˆ’135

, 𝑐2 =βˆ’641

, 𝑐2 =βˆ’3βˆ’21

c1 , c2 and c3 form bases for column space of AT

basis of C. S of AT= basis of R. S of AT

π‘Ÿ1 = βˆ’1 3 5 , π‘Ÿ2 = βˆ’6 4 1

r1 , r2 and r3 form bases of row space consisting entirely of row vector 𝐴

π‘Ÿ3 = βˆ’3 βˆ’2 1

Page 12: Tutorial 5 mth 3201

𝐴𝑇 =

1 βˆ’3 52 3 1

βˆ’1βˆ’2

41

12

𝐸𝑅𝑂 1 βˆ’3 50 1 βˆ’100

00

10

𝑐1 =

12

βˆ’1βˆ’2

, 𝑐2 =

βˆ’3341

, 𝑐2 =

5112

c1 , c2 and c3 form bases for column space of AT

basis of C. S of AT= basis of R. S of AT

π‘Ÿ1 = 1 2 βˆ’1 βˆ’2 , π‘Ÿ2 = βˆ’3 3 4 1

r1 , r2 and r3 form bases of row space consisting entirely of row vector 𝐴

π‘Ÿ3 = 5 1 1 2

𝐴𝑇 =7 1 21 4 26 5 βˆ’1

𝐸𝑅𝑂

1 4 20 1 4/90 0 1

𝑐1 =716

, 𝑐2 =145

, 𝑐2 =22

βˆ’1

c1 , c2 and c3 form bases for column space of AT

basis of C. S of AT= basis of R. S of AT

π‘Ÿ1 = 7 1 6 , π‘Ÿ2 = 1 4 5

r1 , r2 and r3 form bases of row space consisting entirely of row vector 𝐴

π‘Ÿ3 = 2 2 βˆ’1

Page 13: Tutorial 5 mth 3201

Row space based on reduced matrix form

Column space based on original matrix

Page 14: Tutorial 5 mth 3201

3 0 33 βˆ’4 βˆ’15 βˆ’4 1

βˆ’2βˆ’11

𝐸𝑅𝑂 1 0 1

0 1 10 0 0

βˆ’2/3βˆ’1/4

1

Bases for row space A

𝑀1 = 1 0 1 βˆ’2/3 𝑀2 = 0 1 1 βˆ’1/4

𝑀3 = 0 0 0 1

βˆ’2 1 33 βˆ’1 3

βˆ’1 βˆ’5 2

42

βˆ’3 𝐸𝑅𝑂 1 5 βˆ’2

0 1 9/160 0 1

3

7/161

Bases for row space A

𝑀1 = 1 5 βˆ’2 3 𝑀2 = 0 1 9/16 7/16

𝑀3 = 0 0 1 1

0 1 01 1 0

βˆ’1 1 0

101

𝐸𝑅𝑂

1 1 00 1 00 0 0

011

Bases for row space A

𝑀1 = 1 1 0 0 𝑀2 = 0 1 0 1 𝑀3 = 0 0 0 1

Page 15: Tutorial 5 mth 3201

Let 𝐴 =

βˆ’3 5 1βˆ’3 3 βˆ’130

βˆ’11

31

βˆ’5βˆ’791

, 𝐴𝑇 =

βˆ’3 βˆ’3 35 3 βˆ’11

βˆ’5βˆ’1βˆ’7

39

0111

𝐸𝑅𝑂

1 0 10 1 βˆ’200

00

00

1/2βˆ’1/2

00

𝑀1 =

1000

, 𝑀2 =

0100

w1, and w2 form bases for column space of R

𝑣1 =

βˆ’351

βˆ’5

, 𝑣2 =

βˆ’33

βˆ’1βˆ’7

v1, and v2 form bases for column space of𝐴𝑇

Vectors in the basis

For vectors not in the basis:

𝑀3 =

1βˆ’200

=

1000

+ (βˆ’2)

1100

𝑀3 = 𝑀1 βˆ’ 2𝑀2

𝑀4 =

0βˆ’1/2

00

= 1/2

1000

+ (βˆ’1/2)

1100

𝑀4 = (1/2)𝑀1 βˆ’ (1

2)𝑀2

∴ 𝑣3 = 𝑣1 βˆ’ 2𝑣2 , 𝑣4 = (1/2)𝑣1 βˆ’ (1/2)𝑣2

Page 16: Tutorial 5 mth 3201

Let 𝐴 =

1 1 0βˆ’1 3 2βˆ’13

50

35

16

βˆ’2βˆ’1

, 𝐴𝑇 =

1 βˆ’1 βˆ’11 3 501

26

3βˆ’2

305

βˆ’1

𝐸𝑅𝑂

1 0 00 1 000

00

10

0001

∴ v1, v2, v3, v4 is a subset of S that forms a basis for the space spanned by the vector in S

Page 17: Tutorial 5 mth 3201

= π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 2 = π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 2

= 𝑛 βˆ’ π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 4 βˆ’ 2 = 2

= π‘š βˆ’ π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 4 βˆ’ 2 = 2

= π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 3 = π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 3

= 𝑛 βˆ’ π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 5 βˆ’ 3 = 2

= π‘š βˆ’ π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 7 βˆ’ 3 = 4

= π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 0 = π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 0

= 𝑛 βˆ’ π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 3 βˆ’ 0 = 2

= π‘š βˆ’ π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 3 βˆ’ 0 = 4

π‘š Γ— 𝑛

𝑛𝑒𝑙𝑙𝑖𝑑𝑦 + π‘Ÿπ‘Žπ‘›π‘˜ = 𝑛

𝑛𝑒𝑙𝑙𝑖𝑑𝑦 + π‘Ÿπ‘Žπ‘›π‘˜ = π‘š

Page 18: Tutorial 5 mth 3201

𝐴 =

π‘Ž11

π‘Ž21

π‘Ž31

π‘Ž12

π‘Ž22

π‘Ž32

… … . . π‘Ž16

… … . . π‘Ž26

… … . . π‘Ž36π‘Ž41 π‘Ž42 … … . . π‘Ž46

π‘Ž51 π‘Ž52 … … . . π‘Ž56

π‘π‘œπ‘™π‘’π‘šπ‘› π‘£π‘’π‘π‘‘π‘œπ‘Ÿ 𝐴:

𝑐1 =

π‘Ž11

π‘Ž21π‘Ž31

π‘Ž41

π‘Ž51

, 𝑐2 =

π‘Ž12

π‘Ž22π‘Ž32

π‘Ž42

π‘Ž52

,……., 𝑐6 =

π‘Ž16

π‘Ž26π‘Ž36

π‘Ž46

π‘Ž56

Consider the equation 𝐾1𝑐 1 + 𝐾2𝑐 2+ 𝐾3𝑐 3+….+ 𝐾6𝑐 6 = 0

Then, express both sides of these equation in term of components:

𝐾1π‘Ž11 + 𝐾2π‘Ž12 + 𝐾3π‘Ž13 + β‹― + 𝐾6π‘Ž16 = 0

𝐾1π‘Ž21 + 𝐾2π‘Ž22 + 𝐾3π‘Ž23 + β‹― + 𝐾6π‘Ž26 = 0

𝐾1π‘Ž31 + 𝐾2π‘Ž32 + 𝐾3π‘Ž33 + β‹― + 𝐾6π‘Ž36 = 0

𝐾1π‘Ž41 + 𝐾2π‘Ž42 + 𝐾3π‘Ž43 + β‹― + 𝐾6π‘Ž46 = 0

𝐾1π‘Ž51 + 𝐾2π‘Ž52 + 𝐾3π‘Ž53 + β‹― + 𝐾6π‘Ž56 = 0

This is a homogenous system with 5 equations and 6 unknowns.

Then, there exists nontrivial solution. Therefore c1 , c2 , … , c6 are linearly dependent.

Page 19: Tutorial 5 mth 3201

π‘Ÿπ‘Žπ‘›π‘˜ 7𝐴 = π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘Ÿπ‘œπ‘€ π‘ π‘π‘Žπ‘π‘’ 7𝐴 = π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘Ÿπ‘œπ‘€ π‘ π‘π‘Žπ‘π‘’ 𝐴 = π‘Ÿπ‘Žπ‘›π‘˜ 𝐴

𝐿𝑒𝑑 𝐴 = 𝑛 Γ— 𝑛 π‘šπ‘Žπ‘‘π‘Ÿπ‘–π‘₯ 𝑛𝑒𝑙𝑙𝑖𝑑𝑦 𝐴 + π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = π‘›π‘œ. π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘›π‘  = 𝑛

𝑛𝑒𝑙𝑙𝑖𝑑𝑦 𝐴 = 𝑛 βˆ’ π‘Ÿπ‘Žπ‘›π‘˜ 𝐴 = 𝑛 βˆ’ π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘Ÿπ‘œπ‘€ π‘ π‘π‘Žπ‘π‘’ 𝐴

= 𝑛 βˆ’ π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘Ÿπ‘œπ‘€ π‘ π‘π‘Žπ‘π‘’ 𝐴𝑇

= 𝑛 βˆ’ π‘Ÿπ‘Žπ‘›π‘˜ 𝐴𝑇

= 𝑛𝑒𝑙𝑙𝑖𝑑𝑦 𝐴𝑇

Page 20: Tutorial 5 mth 3201

-dr Radz