tutorial 4 mth 3201

19
Tutorial MTH 3201 Linear Algebras

Upload: drradz-maths

Post on 04-Jul-2015

842 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Tutorial 4 mth 3201

Tutorial MTH 3201 Linear Algebras

Page 2: Tutorial 4 mth 3201

Tutorial 4

Page 3: Tutorial 4 mth 3201

Let 𝑒 = 𝑒1, 𝑒2, 𝑒3 and 𝑣 = 𝑣1, 𝑣2, 𝑣3 are vectors in 𝑅𝑛

IMPORTANT!

𝑒 , 𝑣 = 𝑒 βˆ™ 𝑣 = 𝑒1𝑣1 + 𝑒2𝑣2 + 𝑒3𝑣3

Euclidean inner product on 𝑅𝑛

*Please develop your writing skills in mathematics

Page 4: Tutorial 4 mth 3201

Symmetry

Additivity

Homogeneity

Positivity

Axiom

𝑒 , 𝑀 = 𝑒 βˆ™ 𝑀 = 𝑒2𝑀2 + 𝑒3𝑀3

= 𝑀2𝑒2 + 𝑀3𝑒3

= 𝑀 βˆ™ 𝑒

= 𝑀 , 𝑒

𝑒 , 𝑀 = 𝑀 , 𝑒

𝑒 + 𝑀 , 𝑣 = 𝑒 , 𝑣 + 𝑀 , 𝑣

Since 𝑒 , 𝑀 = 𝑒2𝑀2 + 𝑒3𝑀3

𝑒 + 𝑀 , 𝑣 = 𝑒2 + 𝑀2 𝑣2 + 𝑒3 + 𝑀3 𝑣3

= 𝑒2𝑣2 + 𝑀2 𝑣2 + 𝑒3𝑣3 + 𝑀3𝑣3

= 𝑒2𝑣2 + 𝑒3𝑣3 + 𝑀2 𝑣2 + 𝑀3𝑣3

= 𝑒 , 𝑣 + 𝑀 , 𝑣

= 𝑒 βˆ™ 𝑣 + 𝑀 βˆ™ 𝑣

Since 𝑒 , 𝑀 = 𝑒2𝑀2 + 𝑒3𝑀3

= π‘˜ 𝑀2𝑒2 + 𝑀3𝑒3

π‘˜π‘’ , 𝑀 = π‘˜π‘’2𝑀2 + π‘˜π‘’3𝑀3

= π‘˜ 𝑀 , 𝑒

= π‘˜π‘€2 𝑒2 + π‘˜π‘€3𝑒3

π‘˜π‘’ , 𝑀 = π‘˜ 𝑀 , 𝑒

Let 𝑒 = 𝑒1, 𝑒2, 𝑒3 and 𝑀 = 𝑀1, 𝑀2, 𝑀3

𝑀 ,𝑀 β‰₯ 0 π‘Žπ‘›π‘‘ 𝑀 ,𝑀 = 0 𝑖𝑓𝑓 𝑀 = 0

𝑀 ,𝑀 = 𝑀 βˆ™ 𝑀 = 𝑀2𝑀2 + 𝑀3𝑀3

𝑀 ,𝑀 = 0 𝑖𝑓𝑓 𝑀2 = 𝑀3= 0

𝐡𝑒𝑑, 𝑀1 π‘π‘Žπ‘› 𝑏𝑒 π‘Žπ‘›π‘¦ π‘£π‘Žπ‘™π‘’π‘’, β‰  0

∴ 𝑒 , 𝑀 = 𝑒2𝑀2 + 𝑒3𝑀3 are not inner product on 𝑅3

Page 5: Tutorial 4 mth 3201

Symmetry

Additivity

Homogeneity

Positivity

Axiom

𝑒 , 𝑀 = 𝑒 βˆ™ 𝑀 = 𝑒1𝑀1 + 2𝑒2𝑀2 + 3𝑒3𝑀3

= 𝑀1𝑒1 + 2𝑀2𝑒2 + 3𝑀3𝑒3

= 𝑀 βˆ™ 𝑒

= 𝑀 , 𝑒

𝑒 , 𝑀 = 𝑀 , 𝑒

𝑒 + 𝑀 , 𝑣 = 𝑒 , 𝑣 + 𝑀 , 𝑣

Since 𝑒 , 𝑀 = 𝑒1𝑀1 + 2𝑒2𝑀2 + 3𝑒3𝑀3 𝑒 + 𝑀 , 𝑣 = 𝑒1 + 𝑀1 𝑣1

+2 𝑒2 + 𝑀2 𝑣2 + 3 𝑒3 + 𝑀3 𝑣3

= 𝑒 , 𝑣 + 𝑀 , 𝑣 = 𝑒 βˆ™ 𝑣 + 𝑀 βˆ™ 𝑣

Since 𝑒 , 𝑀 = 𝑒1𝑀1 + 2𝑒2𝑀2 + 3𝑒3𝑀3

= π‘˜ 𝑀1𝑒1 + 2𝑀2𝑒2 + 3𝑀3𝑒3

π‘˜π‘’ , 𝑀 = π‘˜π‘’1𝑀1 + 2π‘˜π‘’2𝑀2 + 3π‘˜π‘’3𝑀3

= π‘˜ 𝑀 , 𝑒

π‘˜π‘’ , 𝑀 = π‘˜ 𝑀 , 𝑒

Let 𝑒 = 𝑒1, 𝑒2, 𝑒3 and 𝑀 = 𝑀1, 𝑀2, 𝑀3

𝑀 ,𝑀 β‰₯ 0 π‘Žπ‘›π‘‘ 𝑀 ,𝑀 = 0 𝑖𝑓𝑓 𝑀 = 0

𝑀 ,𝑀 = 𝑀 βˆ™ 𝑀 = 𝑀1𝑀1 + 2𝑀2𝑀2 + 3𝑀3𝑀3

𝑀 ,𝑀 = 0 𝑖𝑓𝑓𝑀1 = 𝑀2 = 𝑀3= 0

∴ 𝑒 , 𝑀 = 𝑒1𝑀1 + 2𝑒2𝑀2 + 3𝑒3𝑀3 are inner product on 𝑅3

= 𝑒1𝑣1 + 𝑀1 𝑣1 + 2𝑒2𝑣2 + 2𝑀2 𝑣2 +3𝑒3𝑣3 + 3𝑀3𝑣3

= 𝑒1𝑣1 + 2𝑒2𝑣2 + 3𝑒3𝑣3 + 𝑀1𝑣1 + 2𝑀2 𝑣2 + 3𝑀3𝑣3

= π‘˜π‘€1𝑒1 + 2π‘˜π‘€2𝑒2 + 3π‘˜π‘€3𝑒3

Page 6: Tutorial 4 mth 3201

Symmetry

Additivity

Homogeneity

Positivity

Axiom

𝑒 , 𝑀 = 𝑒 βˆ™ 𝑀 = 𝑒1𝑀1 + 𝑒2𝑀2 βˆ’ 𝑒3𝑀3

= 𝑀1𝑒1 + 𝑀2𝑒2 βˆ’ 𝑀3𝑒3

= 𝑀 βˆ™ 𝑒

= 𝑀 , 𝑒

𝑒 , 𝑀 = 𝑀 , 𝑒

𝑒 + 𝑀 , 𝑣 = 𝑒 , 𝑣 + 𝑀 , 𝑣

Since 𝑒 , 𝑀 = 𝑒1𝑀1 + 𝑒2𝑀2 βˆ’ 𝑒3𝑀3

𝑒 + 𝑀 , 𝑣 = 𝑒1 + 𝑀1 𝑣1 + 𝑒2 + 𝑀2 𝑣2 βˆ’ 𝑒3 + 𝑀3 𝑣3

= 𝑒1𝑣1 + 𝑀1𝑣1 + 𝑒2𝑣2 + 𝑀2𝑣2 βˆ’ 𝑒3 𝑣3 βˆ’ 𝑀3𝑣3

= 𝑒 , 𝑣 + 𝑀 , 𝑣

= 𝑒 βˆ™ 𝑣 + 𝑀 βˆ™ 𝑣

Since 𝑒 , 𝑀 = 𝑒1𝑀1 + 𝑒2𝑀2 βˆ’ 𝑒3𝑀3

= π‘˜ 𝑀1𝑒1 + 𝑀2𝑒2 βˆ’ 𝑀3𝑒3

π‘˜π‘’ , 𝑀 = π‘˜π‘’1𝑀1 + π‘˜π‘’2𝑀2 βˆ’ π‘˜π‘’3𝑀3

= π‘˜ 𝑀 , 𝑒

π‘˜π‘’ , 𝑀 = π‘˜ 𝑀 , 𝑒

Let 𝑒 = 𝑒1, 𝑒2, 𝑒3 and 𝑀 = 𝑀1, 𝑀2, 𝑀3

𝑀 ,𝑀 β‰₯ 0 π‘Žπ‘›π‘‘ 𝑀 ,𝑀 = 0 𝑖𝑓𝑓 𝑀 = 0

𝑀 ,𝑀 = 𝑀 βˆ™ 𝑀 = 𝑀1𝑀1 + 𝑀2𝑀2 βˆ’ 𝑀3𝑀3

𝑀 ,𝑀 β‰₯ 0,

𝑀12 + 𝑀2

2 π‘ β„Žπ‘œπ‘’π‘™π‘‘ 𝑏𝑒 π‘”π‘Ÿπ‘’π‘Žπ‘‘π‘’π‘Ÿ π‘‘β„Žπ‘Žπ‘› 𝑀32

∴ 𝑒 , 𝑀 = 𝑀1𝑀1 + 𝑀2𝑀2 βˆ’ 𝑀3𝑀3 are not inner product on 𝑅3

= 𝑒1𝑣1 + 𝑒2𝑣2 βˆ’ 𝑒3 𝑣3 + 𝑀1𝑣1 + 𝑀2𝑣2 βˆ’ 𝑀3𝑣3

= π‘˜π‘€1 𝑒1 + π‘˜π‘€2𝑒2 βˆ’ π‘˜π‘€3𝑒3

𝑀12 + 𝑀2

2 βˆ’ 𝑀32 β‰₯ 0

𝑀12 + 𝑀2

2 β‰₯ 𝑀32

𝑀12 + 𝑀2

2 < 𝑀32

Page 7: Tutorial 4 mth 3201

𝑀 = 𝑀 ,𝑀 1/2 = 𝑀12 + 𝑀2

2 = 22 + (βˆ’5)2 = 29

𝑀 = 5(2) 2 + 2(βˆ’5)2 = 70

𝐴𝑀 =βˆ’2 32 7

2βˆ’5

=βˆ’19βˆ’31

𝐴𝑀 = (βˆ’19) 2 + (βˆ’31)2 = 1322

Page 8: Tutorial 4 mth 3201

𝑑 𝑒 , 𝑀 = 𝑒 βˆ’ 𝑀 = βˆ’1 βˆ’ 3 2 + 3 βˆ’ 5 2 = 20

𝑑 𝑒 , 𝑀 = 𝑒 βˆ’ 𝑀 = 5 βˆ’1 βˆ’ 3 2 + 2 3 βˆ’ 5 2

= 𝑒 βˆ’ 𝑀 , 𝑒 βˆ’ 𝑀 1/2

= 𝑒 βˆ’ 𝑀 , 𝑒 βˆ’ 𝑀 1/2 = 88

𝑒 βˆ’ 𝑀 = βˆ’1,3 βˆ’ 3,5 = βˆ’4, βˆ’2

𝐴 βˆ™ 𝑒 βˆ’ 𝑀 =βˆ’2 32 7

βˆ’4βˆ’2

=2

βˆ’22

𝐴 βˆ™ 𝑒 βˆ’ 𝑀 = (2) 2 + (βˆ’22)2 = 488

Page 9: Tutorial 4 mth 3201

𝐴 = 𝐴, 𝐴 1/2 =2 4βˆ’3 1

,2 4βˆ’3 1

1/2

= 22 + 42 + (βˆ’3)2+1 = 30

𝑑 𝐴, 𝐡 = 𝐴 βˆ’ 𝐡 = 𝐴 βˆ’ 𝐡, 𝐴 βˆ’ 𝐡 1/2 = (2 + 4)2+(4 βˆ’ 2)2+(βˆ’3 βˆ’ 5)2+ 1 βˆ’ 1 = 104

𝐴 = 𝐴, 𝐴 1/2 =6 βˆ’17 4

,6 βˆ’17 4

1/2

= 62 + (βˆ’1)2+72 + 42 = 102

𝑑 𝐴, 𝐡 = 𝐴 βˆ’ 𝐡 = 𝐴 βˆ’ 𝐡, 𝐴 βˆ’ 𝐡 1/2 = (6 + 1)2+(βˆ’1 βˆ’ 8)2+72 + (4 βˆ’ 2)2

= 183

Page 10: Tutorial 4 mth 3201

𝑝 = 𝑝 , 𝑝 1/2 = 𝑝 π‘₯ 𝑝 π‘₯ 𝑑π‘₯1

0

1/2

= 3π‘₯2 βˆ’ 2 3π‘₯2 βˆ’ 2 𝑑π‘₯1

0

= 9π‘₯4 βˆ’ 12π‘₯2 + 4 𝑑π‘₯1

0

=9π‘₯5

5βˆ’

12π‘₯3

3+ 4π‘₯

0

1

=9

5

𝑝 βˆ’ π‘ž = 2π‘₯2 βˆ’ x βˆ’ 2

𝑑 𝑝 , π‘ž = 𝑝 βˆ’ π‘ž

= 𝑝 βˆ’ π‘ž , 𝑝 βˆ’ π‘ž 1/2 = (2π‘₯2 βˆ’ x βˆ’ 2) 2π‘₯2 βˆ’ x βˆ’ 2 𝑑π‘₯1

0

1/2

= 4π‘₯4 βˆ’ 4π‘₯3 βˆ’ 7π‘₯2 + 4π‘₯ + 4 𝑑π‘₯1

0

=52

15

Page 11: Tutorial 4 mth 3201

𝑝 = 𝑝 , 𝑝 1/2 = 𝑝 π‘₯ 𝑝 π‘₯ 𝑑π‘₯1

0

1/2

= π‘₯2 + π‘₯ + 1 π‘₯2 + π‘₯ + 1 𝑑π‘₯1

0

= π‘₯4 + 2π‘₯3 + 3π‘₯2 + 2π‘₯ + 1 𝑑π‘₯1

0

=π‘₯5

5+

2π‘₯4

4+

3π‘₯3

3+

2π‘₯2

2+ π‘₯

0

1

=37

10

𝑝 βˆ’ π‘ž = βˆ’4π‘₯2 + 2x βˆ’ 2

𝑑 𝑝 , π‘ž = 𝑝 βˆ’ π‘ž

= 𝑝 βˆ’ π‘ž , 𝑝 βˆ’ π‘ž 1/2 = (βˆ’4π‘₯2 + 2x βˆ’ 2 ) βˆ’4π‘₯2 + 2x βˆ’ 2 𝑑π‘₯1

0

1/2

=16π‘₯5

5βˆ’

16π‘₯4

4+

20π‘₯3

3βˆ’

8π‘₯2

2+ 4π‘₯

0

1

=88

15

Page 12: Tutorial 4 mth 3201

2𝑒 , 𝑣 βˆ’ 𝑀 + 𝑣 , 𝑣 βˆ’ 𝑀 = 2𝑒 , 𝑣 βˆ’ 2𝑒 , 𝑀 + 𝑣 , 𝑣 βˆ’ 𝑣 βˆ’ 𝑀

= 2 𝑒 , 𝑣 βˆ’ 2 𝑒 , 𝑀 + 𝑣 2 βˆ’ 𝑣 βˆ’ 𝑀 = 2 3 βˆ’ 2 7 + 25 + 2 = 19

𝑒 , 𝑣 + 3𝑀 βˆ’ 𝑣 , 𝑣 + 3𝑀 + 2𝑀 , 𝑣 + 3𝑀 = 𝑒 , 𝑣 + 𝑒 , 3𝑀 βˆ’ 𝑣 , 𝑣 βˆ’ 𝑣 , 3𝑀 + 2𝑀 , 𝑣 + 2𝑀 , 3𝑀

= 3 + 3 7 βˆ’ 52 βˆ’ 3(βˆ’2) + 2(βˆ’2) + 6(8)2= 385

2𝑒 + 𝑀 , 2𝑒 + 𝑀 1/2 = 2𝑒 , 2𝑒 + 𝑀 + 𝑀 , 2𝑒 + 𝑀 1/2 = 4 𝑒 , 𝑒 + 2 𝑒 , 𝑀 + 2 𝑀 , 𝑒 + 𝑀 ,𝑀 1/2

= 4(2)2 + 2(7) + 2(7) + 82 1/2 = 108

𝑒 βˆ’ 3𝑣 + 𝑀 , 𝑒 βˆ’ 3𝑣 + 𝑀 1/2

= 𝑒 , 𝑒 βˆ’ 3𝑣 + 𝑀 βˆ’ 3𝑣 , 𝑒 βˆ’ 3𝑣 + 𝑀 + 𝑀 , 𝑒 βˆ’ 3𝑣 + 𝑀 1/2 = ( 𝑒 , 𝑒 βˆ’ 3 𝑒 , 𝑣 + 𝑒 , 𝑀 βˆ’ 3 𝑣 , 𝑒 + 9 𝑣 , 𝑣 βˆ’ 3 𝑣 , 𝑀 + 𝑀 , 𝑒 βˆ’ 3 𝑀 , 𝑣

+ 𝑀 ,𝑀 )1/2

= (2)2βˆ’3 3 + 7 βˆ’ 3 3 + 9 5 2 βˆ’ 3 βˆ’2 + 7 βˆ’ 3(βˆ’2) + 82 1/2 = 301

Page 13: Tutorial 4 mth 3201

𝑒 , π‘˜π‘£ = π‘˜π‘£ , 𝑒 = π‘˜ 𝑣 , 𝑒 = π‘˜ 𝑣 , 𝑒

symmetry homogeneity symmetry

𝑒 βˆ’ 𝑣 , 𝑀 = 𝑀 , 𝑒 βˆ’ 𝑣 = 𝑀 , 𝑒 + 𝑀 ,βˆ’π‘£

= 𝑀 , 𝑒 + (βˆ’1) 𝑀 , 𝑣 = 𝑒 , 𝑀 βˆ’ 𝑣 , 𝑀

symmetry additivity homogeneity symmetry

Page 14: Tutorial 4 mth 3201

𝑒 , 𝑣 = 5𝑒1𝑣1 + 2𝑒2𝑣2 = 5 2 0 + 2 3 βˆ’1 = βˆ’6 = 6 = 36

𝑒 = 𝑒 , 𝑒 1/2 = 5(2)2 + 2(3)2 = 38

𝑣 = 𝑣 , 𝑣 1/2 = 5(0)2 + 2(βˆ’1)2 = 2

𝑒 βˆ™ 𝑣 = 38 2 = 76 compare

36 < 76

∴ 𝑒 , 𝑣 ≀ 𝑒 βˆ™ 𝑣

Cauchy-Schwarz inequality

Page 15: Tutorial 4 mth 3201

𝑒 , 𝑣 =2 61 βˆ’3

,βˆ’3 14 2

= βˆ’6 + 6 + 4 βˆ’ 6 = βˆ’2 = 2 = 4

𝑒 = 𝑒 , 𝑒 1/2 =2 61 βˆ’3

,2 61 βˆ’3

= 4 + 36 + 1 + 9 = 50

𝑣 = 𝑣 , 𝑣 1/2 =βˆ’3 14 2

,βˆ’3 14 2

= 9 + 1 + 16 + 4 = 30

𝑒 βˆ™ 𝑣 = 50 30 = 1500

compare

4 < 1500

∴ 𝑒 , 𝑣 ≀ 𝑒 βˆ™ 𝑣

Cauchy-Schwarz inequality

Page 16: Tutorial 4 mth 3201

β€’ Do as your exercise

Page 17: Tutorial 4 mth 3201

π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š 1.5.3(𝑏)

𝑣 =0 iff 𝑣 = 0

𝑣 = 𝑣 , 𝑣 1/2 = 𝑣12 + 𝑣2

2 + β‹―+ 𝑣𝑛2 β‰₯ 0

𝑣 = 𝑣 , 𝑣 1/2 = 𝑣12 + 𝑣2

2 + β‹―+ 𝑣𝑛2 = 0 iff 𝑣1 = 𝑣2 = β‹― = 𝑣𝑛 = 0 β†’ 𝑣 = 0

∴ 𝑣 =0 iff 𝑣 = 0

π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š 1.5.3(𝑐)

π‘˜π‘£ = π‘˜ 𝑣

π‘˜π‘£ = π‘˜π‘£ , π‘˜π‘£ 1/2 = π‘˜ 𝑣 , π‘˜π‘£ 1/2 = π‘˜2 𝑣 , 𝑣 1/2 = π‘˜ 𝑣 , 𝑣 1/2 = π‘˜ 𝑣

Page 18: Tutorial 4 mth 3201

π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š 1.5.3(𝑓)

𝑑 𝑒 , 𝑣 =0 iff 𝑒 = 𝑣

= 𝑒1 βˆ’ 𝑣12 + 𝑒2 βˆ’ 𝑣2

2 + β‹―+ 𝑒𝑛 βˆ’ 𝑣𝑛2 β‰₯ 0

𝑒1 = 𝑣1, … 𝑒𝑛 = 𝑣𝑛 β†’ 𝑒 = 𝑣

π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š 1.5.3(β„Ž)

𝑑 𝑒 , 𝑣 ≀ 𝑑 𝑒 , 𝑀 + 𝑑 𝑀 , 𝑣

𝑑 𝑒 , 𝑣 = 𝑒 βˆ’ 𝑣 = 𝑒 βˆ’ 𝑣 , 𝑒 βˆ’ 𝑣 1/2

𝑑 𝑒 , 𝑣 = 𝑒 βˆ’ 𝑣 = 𝑒1 βˆ’ 𝑣12 + 𝑒2 βˆ’ 𝑣2

2 + β‹―+ 𝑒𝑛 βˆ’ 𝑣𝑛2 = 0 iff

∴ 𝑑 𝑒 , 𝑣 =0 iff 𝑒 = 𝑣

𝑑 𝑒 , 𝑣 = 𝑒 βˆ’ 𝑣 = 𝑒 + 𝑀 βˆ’ 𝑀 βˆ’ 𝑣 = 𝑒 βˆ’ 𝑀 + 𝑀 βˆ’ 𝑣 ≀ 𝑒 βˆ’ 𝑀 + 𝑀 βˆ’ 𝑣

= 𝑑 𝑒 , 𝑀 + 𝑑 𝑀 , 𝑣

∴ 𝑑 𝑒 , 𝑣 ≀ 𝑑 𝑒 , 𝑀 + 𝑑 𝑀 , 𝑣

Page 19: Tutorial 4 mth 3201

-dr Radz