tutorial 6 mth 3201

18
Tutorial MTH 3201 Linear Algebras

Upload: drradz-maths

Post on 20-Jun-2015

772 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Tutorial 6 mth 3201

Tutorial MTH 3201 Linear Algebras

Page 2: Tutorial 6 mth 3201

Tutorial 6

Page 3: Tutorial 6 mth 3201

𝐴, 𝐡 =1 00 1

,3 65 βˆ’3

= 1 3 + 0 6 + 0 5 + 1(βˆ’3) = 0

1.

∴ A and B are orthogonal

𝐴, 𝐡 =1 23 4

,4 32 1

= 1 4 + 2 3 + 3 2 + 4(1) = 20 β‰  0

∴ A and B are not orthogonal

𝐴, 𝐡 =

= 0

β‰  0

orthogonal

not orthogonal

Page 4: Tutorial 6 mth 3201

𝑒 , 𝑀 1 = 1 0 βˆ’ 1 0 + 2 0 + 0 3 = 0

𝑒 , 𝑀 2 = 1 βˆ’3 βˆ’ 1 3 + 2 3 + 0 βˆ’8 = 0

𝑒 , 𝑀 3 = 1 2 βˆ’ 1 βˆ’2 + 2 3 + 0 1 = 10

∴ 𝑒 is not orthogonal to set vectors W

β‰  0

𝑒 , 𝑀 1 = 1 3 βˆ’ 1 βˆ’3 + 2 βˆ’3 + 0 7 = 0

𝑒 , 𝑀 2 = 1 0 βˆ’ 1 2 + 2 1 + 0 5 = 0

𝑒 , 𝑀 1 = 1 6 βˆ’ 1 0 + 2 βˆ’3 + 0 6 = 0

∴ 𝑒 is orthogonal to set vectors W

Page 5: Tutorial 6 mth 3201

The space W spanned by v 1, v 2 and v 3 is the same as the row space of the matrix

A =3 1 1

βˆ’4 4 52 6 7

and Ax = 0

3 1 1βˆ’4 4 52 6 7

000

𝐸𝑅𝑂 1 0 βˆ’1/16

0 1 19/160 0 0

π‘₯2 +

19π‘₯3

16= 0

π‘₯1 βˆ’π‘₯3

16= 0

β†’ π‘₯2 = βˆ’19π‘₯3/16

β†’ π‘₯1= π‘₯3/16

Let π‘₯3 = 𝑑, π‘₯2 = βˆ’19𝑑/16, π‘₯1 = 𝑑/16, x = 𝑑

1/16βˆ’19/16

1

∴ Basic orthogonal component =1/16

βˆ’19/161

Page 6: Tutorial 6 mth 3201

The space W spanned by v 1 and v 2 is the same as the row space of the matrix

A =1 2 βˆ’ 33 6 βˆ’ 9

and Ax = 0

1 2 βˆ’ 33 6 βˆ’ 9

00

𝐸𝑅𝑂

π‘₯1 + 2π‘₯2 βˆ’ 3π‘₯3 = 0 β†’ π‘₯1 = βˆ’2π‘₯2 + 3π‘₯3

Let π‘₯3 = 𝑑, π‘₯2 = 𝑠, π‘₯1 = 3𝑑 βˆ’ 2𝑠

x =3𝑑 βˆ’ 2𝑠

𝑠𝑑

= 𝑑301

+ π‘ βˆ’210

∴ Basic orthogonal components =301

and βˆ’210

1 2 βˆ’ 30 0 0

00

Page 7: Tutorial 6 mth 3201

𝑒 , 𝑣 = βˆ’1/ 2 1/ 6 + 0 βˆ’2/ 6 + 1/ 2 1/ 6 = 0

∴ 𝑒 π‘Žπ‘›π‘‘ 𝑣 are orthogonal on 𝑅3

𝑒 , 𝑣 = 0 0 + 1 0 + 0 1 = 0

∴ 𝑒 , 𝑣 π‘Žπ‘›π‘‘ 𝑀 are not orthogonal on 𝑅3

𝑒 , 𝑀 = 0 1/ 2 + 1 1/ 2 + 0 0 = 1/ 2

𝑣 , 𝑀 = 0 1/ 2 + 0 1/ 2 + 1 0 = 0

Page 8: Tutorial 6 mth 3201

𝐴, 𝐡 =

= 0

β‰  0

Orthogonal and if 𝐴 = 𝐡 = 1

not orthogonal

orthonormal

not orthonormal

𝑒 , 𝑣 = 0 , 𝑒 π‘Žπ‘›π‘‘ 𝑣 are orthogonal on 𝑅3

𝑒 = 𝑒 , 𝑒 1/2 = βˆ’1/ 22

+ 0 + 1/ 22

= 1

𝑣 = 𝑣 , 𝑣 1/2 = 1/ 62

+ βˆ’2/ 62

+ 1/ 62

= 1

𝑒 π‘Žπ‘›π‘‘ 𝑣 are orthonormal on 𝑅3

∴ 𝑒 , 𝑣 π‘Žπ‘›π‘‘ 𝑀 are not orthogonal on 𝑅3, so u , v and w are not orthonormal on R3

Page 9: Tutorial 6 mth 3201

𝑒 1, 𝑒 2 = 2 0 + 0 6 + 3 0 = 0

∴ u 1, u 2 and u 2 are orthogonal on R3

𝑒 1, 𝑒 3 = 2 βˆ’3 + 0 0 + 3 2 = 0

𝑒 2, 𝑒 3 = 0 βˆ’3 + 6 0 + 0 2 = 0

𝑣 1 =𝑒 1

𝑒 1=

2,0,3

22 + 02 + 32=

2

13 , 0,

3

13

𝑣 2 =𝑒 2

𝑒 2=

0,6,0

02 + 62 + 02= 0 , 1,0

𝑣 3 =𝑒 3

𝑒 3=

βˆ’3,0,2

32 + 02 + 22=

βˆ’3

13 , 0,

2

13

∴ The sets of v 1, v 2, v 3 are orthonormal sets

Page 10: Tutorial 6 mth 3201

𝑒 1, 𝑒 2 = βˆ’1/5 βˆ’1/3 + βˆ’1/5 βˆ’1/3 + βˆ’1/5 2/3 = 0

∴ u 1, u 2 and u 2 are orthogonal on R3

𝑒 1, 𝑒 3 = βˆ’1/5 1/2 + βˆ’1/5 βˆ’1/2 + βˆ’1/5 0 = 0

𝑒 2, 𝑒 3 = βˆ’1/3 1/2 + βˆ’1/3 βˆ’1/2 + 2/3 0 = 0

𝑣 1 =𝑒 1

𝑒 1=

βˆ’1

3 ,

βˆ’1

3,βˆ’1

3

𝑣 2 =𝑒 2

𝑒 2=

βˆ’1

6 ,

βˆ’1

6,

2

3

𝑣 3 =𝑒 3

𝑒 3=

1

2 ,

βˆ’1

2, 0

∴ The sets of v 1, v 2, v 3 are orthonormal sets

Page 11: Tutorial 6 mth 3201

𝑒 1, 𝑒 2 = 0 βˆ’3/5 + 0 4/5 + 1 0 = 0

𝑒 1, 𝑒 3 = 0 4/5 + 0 3/5 + 1 0 = 0

𝑒 2, 𝑒 3 = βˆ’3/5 4/5 + 4/5 3/5 + 0 0 = 0

∴ u 1, u 2 and u 2 are orthogonal on R3

𝑒1 = 𝑒1, 𝑒11/2 = 0 2 + 0 + 1 2 = 1

𝑒 2 = 𝑒 2, 𝑒 21/2 = βˆ’3/5 2 + 4/5 2 + 0 2 = 1

∴ S = u 1, u 2, u 3 is an orthonormal basis for the Euclidean space R3

𝑒 3 = 𝑒 3, 𝑒 31/2 = 4/5 2 + 3/5 2 + 0 2 = 1

𝑒 1 = 𝑒 2 = 𝑒 3 = 1

Then, express w = 2,1, βˆ’3 as a linear combination of vector S

w , 𝑒 1 = 2 0 + 1 0 + βˆ’3 1 = βˆ’3

w , 𝑒 2 = 2 βˆ’3/5 + 1 4/5 + βˆ’3 0 = βˆ’2/5

w , 𝑒 3 = 2 4/5 + 1 3/5 + 0 0 = 11/5

∴ w = βˆ’3u 1 βˆ’2

5u 2

+(11

5)u 3

∴ πΆπ‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’ π‘£π‘’π‘π‘‘π‘œπ‘Ÿ 𝑀 𝑠 = (βˆ’3, βˆ’2

5,11/5)

Page 12: Tutorial 6 mth 3201

𝑣 1, 𝑣 2 = 1 2 + (βˆ’2)(1) + 3 βˆ’4 + βˆ’4 3 = 0

𝑣 1, 𝑣 3 = 1 βˆ’3 + (βˆ’2)(4) + 3 1 + βˆ’4 βˆ’2 = 0

𝑣 1, 𝑣 4 = 1 4 + (βˆ’2)(3) + 3 2 + βˆ’4 1 = 0

𝑣 2, 𝑣 3 = 2 βˆ’3 + (1)(4) + βˆ’4 1 + βˆ’3 βˆ’2 = 0

𝑣 2, 𝑣 4 = 2 4 + (1)(3) + βˆ’4 2 + βˆ’3 1 = 0

𝑣 3, 𝑣 4 = βˆ’3 4 + (4)(3) + 1 2 + βˆ’2 1 = 0

∴ S = v 1, v 2, v 3, v 4 is an orthogonal basis for the Euclidean space R4

Page 13: Tutorial 6 mth 3201

w , 𝑣 1 = βˆ’5

w , 𝑣 3 = βˆ’5 w , 𝑣 4 = 15

w , 𝑣 2 = βˆ’5

𝑣 12 = 𝑣1, 𝑣1

1/2 2= 30

𝑣 22 = 𝑣2, 𝑣2

1/2 2= 30

𝑣 32 = 𝑣3, 𝑣3

1/2 2= 30

𝑣 42 = 𝑣4, 𝑣4

1/2 2= 30

𝑀 =𝑀 , 𝑣 1𝑣 1

2 𝑣 1 +𝑀 , 𝑣 2𝑣 2

2 𝑣 2

+𝑀 , 𝑣 3𝑣 3

2 𝑣 3 +𝑀 , 𝑣 4𝑣 4

2 𝑣 4

𝑀 =βˆ’5

30𝑣 1 βˆ’

5

30𝑣 2 βˆ’

5

30𝑣 3 +

15

30𝑣 4

∴ 𝑀 =βˆ’1

6𝑣 1 βˆ’

1

6𝑣 2 βˆ’

1

6𝑣 3 +

1

2𝑣 4

w , 𝑣 1 = βˆ’3

w , 𝑣 3 = 7 w , 𝑣 4 = 29

w , 𝑣 2 = 29

𝑣 12 = 𝑣1, 𝑣1

1/2 2= 30

𝑣 22 = 𝑣2, 𝑣2

1/2 2= 30

𝑣 32 = 𝑣3, 𝑣3

1/2 2= 30

𝑣 42 = 𝑣4, 𝑣4

1/2 2= 30

𝑀 =βˆ’3

30𝑣 1 +

29

30𝑣 2 +

7

30𝑣 3 +

29

30𝑣 4

𝑀 =𝑀 , 𝑣 1𝑣 1

2 𝑣 1 +𝑀 , 𝑣 2𝑣 2

2 𝑣 2

+𝑀 , 𝑣 3𝑣 3

2 𝑣 3 +𝑀 , 𝑣 4𝑣 4

2 𝑣 4

Page 14: Tutorial 6 mth 3201

π‘π‘Žπ‘ π‘–π‘  π‘£π‘’π‘π‘‘π‘œπ‘Ÿπ‘  π‘œπ‘Ÿπ‘‘β„Žπ‘œπ‘”π‘œπ‘›π‘Žπ‘™ π‘π‘Žπ‘ π‘–π‘  π‘œπ‘Ÿπ‘‘β„Žπ‘œπ‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ π‘π‘Žπ‘ π‘–π‘ 

π‘ž 𝑛 =𝑣 𝑛𝑣 𝑛

Gram-Schmidt process

𝑆𝑑𝑒𝑝 1 ∢ 𝐿𝑒𝑑 𝑣 1 = 𝑒 1 , 𝑣 1 = 1,1, βˆ’1

𝑆𝑑𝑒𝑝 2 ∢ 𝐿𝑒𝑑 𝑣 2 = 𝑒 2 βˆ’ π‘π‘Ÿπ‘œπ‘—π‘€1𝑒 2 = 𝑒 2 βˆ’

𝑒 2, 𝑣 1𝑣 1

2 𝑣 1 = βˆ’1,1,0 βˆ’ 0

𝑣 2 = βˆ’1,1,0

𝑆𝑑𝑒𝑝 3 ∢ 𝐿𝑒𝑑 𝑣 3 = 𝑒 3 βˆ’ π‘π‘Ÿπ‘œπ‘—π‘€2𝑒 3 = 𝑒 3 βˆ’

𝑒 3, 𝑣 1𝑣 1

2𝑣 1 βˆ’

𝑒 3, 𝑣 2𝑣 2

2𝑣 2

= 1, βˆ’2,1 βˆ’ βˆ’2

3, βˆ’

2

3,2

3βˆ’

3

2, βˆ’

3

2, 0 =

1

6,1

6,1

3

v 1, v 2, v 3 is an orthogonal basis

Gram-Schmidt process:

Page 15: Tutorial 6 mth 3201

π‘ž 1 =𝑣 1𝑣 1

=1,1, βˆ’1

3=

1

3 ,

1

3,βˆ’1

3

π‘ž 2 =𝑣 2𝑣 2

=βˆ’1,1,0

2=

βˆ’1

2,

1

2, 0

π‘ž 3 =𝑣 3𝑣 3

=

16 ,

16 ,

13

1/6=

3

6 ,

1

6,

6

3

∴ q 1, q 2, q 3 is an orthonormal basis

π‘ž 𝑛 =𝑣 𝑛𝑣 𝑛

Do as your exercise

Page 16: Tutorial 6 mth 3201

𝑣 1 = 𝑒 1 = (1,1,1)

𝑒 , 𝑣 = 𝑒1𝑣1 + 2𝑒2𝑣2 + 3𝑒3𝑣3 , 𝑒 2, 𝑣 1 = 1 1 + 2 βˆ’1 1 + 3 0 1 = βˆ’1

𝑣 12 = 1 + 2 + 3 = 6

𝑆𝑑𝑒𝑝 1 ∢ 𝐿𝑒𝑑 𝑣 1 = 𝑒 1 ,

𝑆𝑑𝑒𝑝 2 ∢ 𝐿𝑒𝑑 𝑣 2 = 𝑒 2 βˆ’ π‘π‘Ÿπ‘œπ‘—π‘€1𝑒 2 = 𝑒 2 βˆ’

𝑒 2, 𝑣 1𝑣 1

2 𝑣 1 = 1, βˆ’1,0 +1

61,1,1

𝑣 2 =7

6, βˆ’

5

6,1

6

Gram-Schmidt process:

𝑒 3, 𝑣 2 = 17

6+ 2 0 βˆ’

5

6+ 3 0

1

6=

7

6

𝑒 3, 𝑣 1 = 1(1) + 2 0 1 + 3 0 1 = 1

𝑣 22 = 17/6

𝑆𝑑𝑒𝑝 3 ∢ 𝐿𝑒𝑑 𝑣 3 = 𝑒 3 βˆ’ π‘π‘Ÿπ‘œπ‘—π‘€2𝑒 3 = 𝑒 3 βˆ’

𝑒 3, 𝑣 1𝑣 1

2 𝑣 1 βˆ’π‘’ 3, 𝑣 2𝑣 2

2 𝑣 2

= 1,0,0 βˆ’7/6

17/6

7

6, βˆ’

5

6,1

6βˆ’

1

61,1,1 =

6

17,

3

17,βˆ’4

17

v 1, v 2, v 3 is an orthogonal basis

Page 17: Tutorial 6 mth 3201

π‘ž 𝑛 =𝑣 𝑛𝑣 𝑛

π‘ž 1 =𝑣 1𝑣 1

=1,1,1

6=

1

6 ,

1

6,

1

6

π‘ž 2 =𝑣 2𝑣 2

=7

102,

βˆ’5

102,

1

102

π‘ž 3 =𝑣 3𝑣 3

=6

102,

3

102,

βˆ’4

102

∴ q 1, q 2, q 3 is an orthonormal basis

Page 18: Tutorial 6 mth 3201

-dr Radz