

	
		×
		

	

 Log in
 Upload File

 	Most Popular
	Study
	Business
	Design
	Technology
	Travel
	Explore all categories

 report project.pdf

 	Home
	Documents
	Report Project.pdf

						1

15

 100%
Actual Size
Fit Width
Fit Height
Fit Page
Automatic

					

 Match case
 Limit results 1 per page

									

 HoChiMinh City University of Technology Data Structures and Programming Principles Group 10 Instructor’s Name: Ph.D Truong Quang Vinh Course Title : Computer System Engineering November 4, 2014 Report Project Graphical program animated Dijkstra’s algorithm 1. Di jkstra's algor ithm A. In tr od uc ti on Dijkstra's algorithm, conceived by computer scientist Edsger Dijkstra in 1956 and published in 1959, is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree. This algorithm is often used in routing and as a subroutine in other graph algorithms. For a given source vertex (node) in the graph, the algorithm finds the path with lowest cost (i.e. the shortest path) between that vertex and every other vertex. It can also be used for finding costs of shortest paths from a single vertex to a single destination vertex by stopping the algorithm once the shortest path to the destination vertex has been determined. For example, if the vertices of the graph represent cities and edge path costs represent driving 1

				

							Upload: chu-manh-tuan
 Post on 02-Jun-2018

 229 views

 Category:
 Documents

 0 download

 Report

 	
 Download

Facebook

Twitter

E-Mail

LinkedIn

Pinterest

 Embed Size (px):
 344 x 292
429 x 357
514 x 422
599 x 487

 TRANSCRIPT

 Page 1

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 1/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 Group 10Instructor’s Name: Ph.D Truong Quang VinhCourse Title : Computer System Engineering
 November 4, 2014
 Report Project
 Graphical program animated Dijkstra’s algorithm
 1. Dijkstra's algorithmA. Introduction
 Dijkstra's algorithm, conceived by computer scientist Edsger Dijkstra in 1956 and published in 1959, is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree. Thisalgorithm is often used in routing and as a subroutine in other graph algorithms.
 For a given source vertex (node) in the graph, the algorithm finds the path with lowestcost (i.e. the shortest path) between that vertex and every other vertex. It can also be used forfinding costs of shortest paths from a single vertex to a single destination vertex by stopping
 the algorithm once the shortest path to the destination vertex has been determined. Forexample, if the vertices of the graph represent cities and edge path costs represent driving
 1
 http://en.wikipedia.org/wiki/Vertex_(graph_theory)
 http://en.wikipedia.org/wiki/Subroutine
 http://en.wikipedia.org/wiki/Routing
 http://en.wikipedia.org/wiki/Shortest_path_tree
 http://en.wikipedia.org/wiki/Edge_(graph_theory)
 http://en.wikipedia.org/wiki/Graph_(mathematics)
 http://en.wikipedia.org/wiki/Shortest_path_problem
 http://en.wikipedia.org/wiki/Graph_search_algorithm
 http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
 http://en.wikipedia.org/wiki/Computer_scientist

Page 2

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 2/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 distances between pairs of cities connected by a direct road,Dijkstra's algorithm can be used to find the shortest route
 between one city and all other cities. As a result, the shortest path algorithm is widely used in network routing protocols,most notably IS-IS and OSPF (Open Shortest Path First).
 Dijkstra's original algorithm does not use a min-priorityqueue and runs in time (where is the number ofvertices). The idea of this algorithm is also given in (Leyzoreket al. 1957). The implementation based on a min-priority queueimplemented by a Fibonacci heap and running in(where is the number of edges) is due to (Fredman & Tarjan1984). This is asymptotically the fastest known single-sourceshortest-path algorithm for arbitrary directed graphs withunbounded non-negative weights.
 B. Algorithm
 Let the node at which we are starting be called the initialnode. Let the distance of node Y be the distance from the initialnode to Y. Dijkstra's algorithm will assign some initial distancevalues and will try to improve them step by step.
 1 Assign to every node a tentative distance value: set it tozero for our initial node and to infinity for all othernodes.
 2 Mark all nodes unvisited. Set the initial node as current. Create a set of the unvisited
 nodes called the unvisited set consisting of all the nodes.3 For the current node, consider all of its unvisited neighbors and calculate their
 tentative distances. Compare the newly calculated tentative distance to the currentassigned value and assign the smaller one. For example, if the current node A ismarked with a distance of 6, and the edge connecting it with a neighbor B has length2, then the distance to B (through A) will be 6 + 2 = 8. If B was previously markedwith a distance greater than 8 then change it to 8. Otherwise, keep the current value.
 4 When we are done considering all of the neighbors of the current node, mark thecurrent node as visited and remove it from the unvisited set. A visited node will never
 be checked again.
 5 If the destination node has been marked visited (when planning a route between twospecific nodes) or if the smallest tentative distance among the nodes in the unvisitedset is infinity (when planning a complete traversal; occurs when there is noconnection between the initial node and remaining unvisited nodes), then stop. Thealgorithm has finished.
 6 Select the unvisited node that is marked with the smallest tentative distance, and set itas the new "current node" then go back to step 3.
 2
 http://en.wikipedia.org/wiki/Directed_graph
 http://en.wikipedia.org/wiki/Shortest_path_problem
 http://en.wikipedia.org/wiki/Asymptotic_computational_complexity
 http://en.wikipedia.org/wiki/Fibonacci_heap
 http://en.wikipedia.org/wiki/Time_complexity
 http://en.wikipedia.org/wiki/Min-priority_queue
 http://en.wikipedia.org/wiki/OSPF
 http://en.wikipedia.org/wiki/IS-IS
 http://en.wikipedia.org/wiki/Routing_protocol

Page 3

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 3/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 C. Description
 Note: For ease of understanding, thisdiscussion uses the terms intersection, road and map
 — however, in formal notation these terms arevertex, edge and graph, respectively.
 Suppose you would like to find the shortest path between two intersections on a city map, astarting point and a destination. The order is
 conceptually simple: to start, mark the distance toevery intersection on the map with infinity. This isdone not to imply there is an infinite distance, but tonote that intersection has not yet been visited; somevariants of this method simply leave theintersection unlabeled. Now, at each iteration,select a current intersection. For the first iteration,the current intersection will be the starting pointand the distance to it (the intersection's label) will
 be zero. For subsequent iterations (after the first),
 the current intersection will be the closest unvisitedintersection to the starting point—this will be easyto find.
 From the current intersection, update thedistance to every unvisited intersection that isdirectly connected to it. This is done bydetermining the sum of the distance between anunvisited intersection and the value of the currentintersection, and relabeling the unvisitedintersection with this value if it is less than its
 current value. In effect, the intersection is relabeled if the path to it through the currentintersection is shorter than the previously known paths. To facilitate shortest path
 3
 Dijkstra's algorithm. It picks the unvisited vertex with the lowest-distance,calculates the distance through it to each unvisited neighbor, and updates the
 neighbor's distance if smaller. Mark visited (set to red) when done with neighbors.
 Illustration of Dijkstra's algorithmsearch for nding path from a start
 node (lower left, red) to a goal node (upper right, green) in a robot
 motion planning problem. Open nodes represent the "tentative"
 set. Filled nodes are visited ones,with color representing thedistance: the greener, the farther.
 Nodes in all the different directions are explored uniformly, appearing
 as a more-or-less circularwavefront as Dijkstra's algorithm
 uses a heuristic identically equal to0.
 http://en.wikipedia.org/wiki/Consistent_heuristic
 http://en.wikipedia.org/wiki/Wavefront
 http://en.wikipedia.org/wiki/Motion_planning
 http://en.wikipedia.org/wiki/Robotics
 http://en.wikipedia.org/wiki/Consistent_heuristic
 http://en.wikipedia.org/wiki/Wavefront
 http://en.wikipedia.org/wiki/Motion_planning
 http://en.wikipedia.org/wiki/Robotics
 http://en.wikipedia.org/wiki/Graph_labeling
 http://en.wikipedia.org/wiki/Intersection_(road)

Page 4

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 4/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 identification, in pencil, mark the road with an arrow pointing to the relabeled intersection ifyou label/relabel it, and erase all others pointing to it. After you have updated the distances toeach neighboring intersection, mark the current intersection as visited and select the unvisitedintersection with lowest distance (from the starting point) – or the lowest label—as thecurrent intersection. Nodes marked as visited are labeled with the shortest path from thestarting point to it and will not be revisited or returned to.
 Continue this process of updating the neighboring intersections with the shortestdistances, then marking the current intersection as visited and moving onto the closestunvisited intersection until you have marked the destination as visited. Once you havemarked the destination as visited (as is the case with any visited intersection) you havedetermined the shortest path to it, from the starting point, and can trace your way back,following the arrows in reverse.
 Of note is the fact that this algorithm makes no attempt to direct "exploration"towards the destination as one might expect. Rather, the sole consideration in determining thenext "current" intersection is its distance from the starting point. This algorithm, therefore"expands outward" from the starting point, interactively considering every node that is closerin terms of shortest path distance until it reaches the destination. When understood in thisway, it is clear how the algorithm necessarily finds the shortest path, however, it may alsoreveal one of the algorithm's weaknesses: its relative slowness in some topologies.
 D. Pseudocode
 In the following algorithm, the code u := vertex in Q with min dist[u], searches for thevertex u in the vertex set Q that has the least dist[u] value. length(u, v) returns the length of
 the edge joining (i.e. the distance between) the two neighbor-nodes u and v. The variable alton line 17 is the length of the path from the root node to the neighbor node v if it were to gothrough u. If this path is shorter than the current shortest path recorded for v, that current pathis replaced with this alt path. The previous array is populated with a pointer to the "next-hop"node on the source graph to get the shortest route to the source .
 4
 http://en.wikipedia.org/wiki/Neighbourhood_(graph_theory)

Page 5

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 5/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 If we are only interested in a shortest path between vertices source and target, we canterminate the search at line 13 if u = target. Now we can read the shortest path from source totarget by reverse iteration:
 Now sequence S is the list of vertices constituting one of the shortest paths fromsource to target, or the empty sequence if no path exists.
 A more general problem would be to find all the shortest paths between source and
 target (there might be several different ones of the same length). Then instead of storing onlya single node in each entry of previous[] we would store all nodes satisfying the relaxationcondition. For example, if both r and source connect to target and both of them lie ondifferent shortest paths through target (because the edge cost is the same in both cases), thenwe would add both r and source to previous[target]. When the algorithm completes,
 previous[] data structure will actually describe a graph that is a subset of the original graphwith some edges removed. Its key property will be that if the algorithm was run with somestarting node, then every path from that node to any other node in the new graph will be theshortest path between those nodes in the original graph, and all paths of that length from theoriginal graph will be present in the new graph. Then to actually find all these shortest paths
 between two given nodes we would use a path finding algorithm on the new graph, such asdepth-first search.
 5
 http://en.wikipedia.org/wiki/Depth-first_search

Page 6

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 6/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 E. Using a priority queue
 A min-priority queue is an abstract data structure that provides 3 basic operations :add_with_priority(), decrease_priority() and extract_min(). As mentioned earlier, using such
 a data structure can lead to faster computing times than using a basic queue. Notably,Fibonacci heap (Fredman & Tarjan 1984) or Brodal queue offer optimal implementations forthose 3 operations. As the algorithm is slightly different, we mention it here, in pseudo-codeas well :
 F. Running Time
 An upper bound of the running time of Dijkstra's algorithm on a graph with edgesand vertices can be expressed as a function of and using big-O notation.
 For any implementation of the vert ex set , the running time is in, where and are the complexities of the decrease-key and
 extract-minimum operations in , respectively.The simplest implementation of the Dijkstra's algorithm stores vertices of set in an
 ordinary linked list or array, and extract minimum from is simply a linear search through
 all vertices in . In this case, the running time is .
 6
 http://en.wikipedia.org/wiki/Big_O_notation#Graph_theory
 http://en.wikipedia.org/wiki/Brodal_queue
 http://en.wikipedia.org/wiki/Fibonacci_heap
 http://en.wikipedia.org/wiki/Min-priority_queue

Page 7

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 7/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 For sparse graphs, that is, graphs with far fewer than edges, Dijkstra'salgorithm can be implemented more efficiently by storing the graph in the form of adjacencylists and using a self-balancing binary search tree, binary heap, pairing heap, or Fibonacciheap as a priority queue to implement extracting minimum efficiently. With a self-balancing
 binary search tree or binary heap, the algorithm requires time in the worstcase (which is dominated by , assuming the graph is connected). To avoidlook-up in decrease-key step on a vanilla binary heap, it is necessary to maintain asupplementary index mapping each vertex to the heap's index (and keep it up to date as
 priority queue changes), making it take only time instead. The Fibonacci heapimproves this to .
 When using binary heaps, the average case time complexity is lower than the worst-case: assuming edge costs are drawn independently from a common probability distribution,
 the expected number of decrease-key operations is bounded by , giving a total
 running time of .(The assumption is actually stronger than required forthe analysis.)
 G. Specialized variantWhen arc weights are integers and bounded by a constant C, the usage of a special
 priority queue structure by Van Emde Boas etal.(1977) (Ahuja et al. 1990) brings thecomplexity to . Another interesting implementation based on a combination ofa new radix heap and the well-known Fibonacci heap runs in time (Ahuja et al.1990). Finally, the best algorithms in this special case are as follows. The algorithm given by(Thorup 2000) runs in time and the algorithm given by (Raman 1997) runs in
 time.Also, for directed acyclic graphs, it is possible to find shortest paths from a given
 starting vertex in linear time, by processing the vertices in a topological order, andcalculating the path length for each vertex to be the minimum length obtained via any of itsincoming edges. [5] [6] In the special case of integer weights and undirected graphs, the Dijkstra's algorithm can becompletely countered with a linear complexity algorithm, given by (Thorup 1999).
 2. Dijkstra’s Algorithm in C++A. Introduction
 The main idea behind applying the greedy method pattern to the single-source,shortest-path problem is to perform a “weighted” breadth-first search starting at v. In
 particular, we can use the greedy method to develop an algorithm that iteratively grows a“cloud” of vertices out of v, with the vertices entering the cloud in order of their distancesfrom v. Thus, in each iteration, the next vertex chosen is the vertex outside the cloud that isclosest to v. The algorithm terminates when no more vertices are outside the cloud, at which
 point we have a shortest path from v to every other vertex of G. This approach is a simple, but nevertheless powerful, example of the greedy method design pattern.
 7
 http://en.wikipedia.org/wiki/Directed_acyclic_graph
 http://en.wikipedia.org/wiki/Radix_heap
 http://en.wikipedia.org/wiki/Probability_distribution
 http://en.wikipedia.org/wiki/Best,_worst_and_average_case
 http://en.wikipedia.org/wiki/Fibonacci_heap
 http://en.wikipedia.org/wiki/Priority_queue
 http://en.wikipedia.org/wiki/Fibonacci_heap
 http://en.wikipedia.org/wiki/Pairing_heap
 http://en.wikipedia.org/wiki/Binary_heap
 http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
 http://en.wikipedia.org/wiki/Adjacency_list
 http://en.wikipedia.org/wiki/Sparse_graph

Page 8

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 8/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 B. A Greedy Method for Finding Shortest PathsApplying the greedy method to the single-source, shortest-path problem, results in an
 algorithm known as Dijkstra’s algorithm . When applied to other graph prob- lems, however,the greedy method may not necessarily nd the best solution (such as in the so-calledtraveling salesman problem , in which we wish to nd the short- est path that visits all thevertices in a graph exactly once). Nevertheless, there are a number of situations in which thegreedy method allows us to compute the best solution. In this chapter, we discuss two suchsituations: computing shortest paths and constructing a minimum spanning tree.
 In order to simplify the description of Dijkstra’s algorithm, we assume, in thefollowing, that the input graph G is undirected (that is, all its edges are undirected) andsimple (that is, it has no self-loops and no parallel edges). Hence, we denote the edges of G asunordered vertex pairs (u, z).
 In Dijkstra’s algorithm for nding shortest paths, the cost function we are trying tooptimize in our application of the greedy method is also the function that we are trying tocompute—the shortest path distance. This may at rst seem like circular reasoning until werealize that we can actually implement this approach by using a “bootstrapping” trick,consisting of using an approximation to the distance function we are trying to compute,which in the end is equal to the true distance.
 C. Edge Relaxation
 Let us dene a label D [u] for each vertex u in V , which we use to approximate thedistance in G from v to u. The meaning of these labels is that D [u] always stores the length ofthe best path we have found so far from v to u. Initially, D[v] = 0 and D [u] = + ! for each u" =v, and we dene the set C (which is our “ cloud ” of vertices) to initially be the empty set ! .At each iteration of the algorithm, we select a vertex u not in C with smallest D [u] label, and
 we pull u into C . In the very rst iteration we will, of course, pull v into C . Once a new vertexu is pulled into C , we then update the label D[z] of each vertex z that is adjacent to u and isoutside of C , to reect the fact that there may be a new and better way to get to z via u.
 This update operation is known as a relaxation procedure, because it takes an oldestimate and checks if it can be improved to get closer to its true value. (A metaphor for whywe call this a relaxation comes from a spring that is stretched out and then “relaxed” back toits true resting shape.) In the case of Dijkstra’s al- gorithm, the relaxation is performed for anedge (u, z) such that we have computed a new value of D [u] and wish to see if there is a bettervalue for D[z] using the edge (u, z). The specic edge relaxation operation is as follows:
 Edge Relaxation:
 if D[u] + w((u, z)) < D [z] then
 D[z] " D[u] + w((u, z))
 We give the pseudo-code for Dijkstra’s algorithm in Code Fragment below. Note thatwe use a priority queue Q to store the vertices outside of the cloud C .
 Algorithm ShortestPath(G ,v): Input: A simple undirected weighted graph G with nonnegative edge
 weights and a distinguished vertex v of G
 Output: A label D [u], for each vertex u of G , such that D [u] is the length of ashortest path from v to u in G
 8

Page 9

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 9/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 Initialize D [v] " 0 and D [u] " + ! for each vertex u" = v. Let a priority queue Q contain all the vertices of G using the D labels as keys.while Q is not empty do
 {pull a new vertex u into the cloud} u " Q .removeMin()
 for each vertex z adjacent to u such that z is in Q do{perform the relaxation procedure on edge (u, z)}if D [u] + w((u, z)) < D[z] then
 D[z] " D[u] + w((u, z))Change to D[z] the key of vertex z in Q .
 return the label D [u] of each vertex u
 9
 Code Fragment: Dijkstra’s algorithm for the single-source, shortest-path problem
 An execution of Dijkstra’s algorithm on a weighted graph. The start vertex is BWI. A box
 next to each vertex v stores the label D[v]. The symbol • is used instead of +!
 . The edges ofthe shortest-path tree are drawn as thick blue arrows and, for each vertex u outside the“cloud,” we show the current best edge for pulling in u with a solid blue line.

Page 10

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 10/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 D. Why It Work
 The interesting, and possibly even a little surprising, aspect of the Dijkstra algo- rithmis that, at the moment a vertex u is pulled into C , its label D[u] stores the correct length of ashortest path from v to u. Thus, when the algorithm terminates, it will have computed theshortest-path distance from v to every vertex of G . That is, it will have solved the single-source, shortest-path problem.
 It is probably not immediately clear why Dijkstra’s algorithm correctly nds theshortest path from the start vertex v to each other vertex u in the graph. Why is it that thedistance from v to u is equal to the value of the label D [u] at the time vertex u is pulled intothe cloud C (which is also the time u is removed from the priority queue Q)? The answer tothis question depends on there being no negative- weight edges in the graph, since that allowsthe greedy method to work correctly, as we show in the proposition that follows.
 Proposition : In Dijkstra’s algorithm, whenever a vertex u is pulled into the cloud, thelabel D[u] is equal to d (v,u), the length of a shortest path from v to u.
 Justication: Suppose that D [t] > d (v,t) for some vertex t in V , and let u be the rstvertex the algorithm pulled into the cloud C (that is, removed from Q) such that D [u] >d (v,u). There is a shortest path P from v to u (for otherwise d (v,u) = + ! = D [u]). Let ustherefore consider the moment when u is pulled into C , and let z be the rst vertex of P (whengoing from v to u) that is not in C at this moment. Let y be the predecessor of z in path P(note that we could have y = v). (See Figure below.) We know, by our choice of z, that y isalready in C at this point. Moreover, D [y] = d (v, y), since u is the rst incorrect vertex. When
 y was pulled into C , we tested (and possibly updated) D [z] so that we had at that point
 D [z] # D[y]+w((y, z)) = d (v, y)+w((y, z)).
 But since z is the next vertex on the shortest path from v to u, this implies that D[z]=d (v, z).
 But we are now at the moment when we pick u, not z, to join C ; hence
 D[u] # D [z].
 It should be clear that a subpath of a shortest path is itself a shortest path. Hence,since z is on the shortest path from v to u
 d (v, z)+d (z,u) = d (v,u).
 Moreover, d (z,u) $ 0 because there are no negative-weight edges. Therefore
 D [u] # D [z] = d (v, z) # d (v, z)+d (z,u) = d (v,u).
 But this contradicts the denition of u; hence, there can be no such vertex u.
 10
 A schematic for the justication ofProposition

Page 11

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 11/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 E. The Running Time of Dijkstra’s Algorithm
 In this section, we analyze the time complexity of Dijkstra’s algorithm. We denote thenumber of vertices and edges of the input graph G with n and m, respectively. We assume thatthe edge weights can be added and compared in constant time. Because of the high level of
 the description we gave for Dijkstra’s algorithm in Code Fragment 13.24, analyzing itsrunning time requires that we give more details on its implementation. Specically, weshould indicate the data structures used and how they are implemented.
 Let us rst assume that we are representing the graph G using an adjacency liststructure. This data structure allows us to step through the vertices adjacent to u during therelaxation step in time proportional to their number. It still does not settle all the details forthe algorithm, however, as we must say more about how to implement the other principledata structure in the algorithm—the priority queue Q.
 An efcient implementation of the priority queue Q uses a heap (Section 8.3). This allows usto extract the vertex u with smallest D label (call to the removeMin function) in O(log n) time.As noted in the pseudo-code, each time we update a D [z] label we need to update the key of zin the priority queue. Thus, we actually need a heap implementation of an adaptable priorityqueue (Section 8.4). If Q is an adaptable priority queue implemented as a heap, then this keyupdate can, for example, be done using the replace(e,k), where e is the entry storing the keyfor the vertex z. If e is location aware, then we can easily implement such key updates inO(log n) time, since a location-aware entry for vertex z would allow Q to have immediateaccess to the entry e storing z in the heap (see Section 8.4.2). Assuming this implementationof Q, Dijkstra’s algorithm runs in O((n + m) log n) time.
 Referring back to Code Fragment, the details of the running-time analysis are as follows:
 • Inserting all the vertices in Q with their initial key value can be done in O(n log n)time by repeated insertions, or in O(n) time using bottom-up heap construction (seeSection 8.3.6).
 • At each iteration of the while loop, we spend O(log n) time to remove vertex u fromQ , and O(degree(v)log n) time to perform the relaxation procedure on the edgesincident on u.
 • The overall running time of the while loop is
 # (1+degree(v))log n,
 v in G
 which is O((n + m) log n) by Proposition .
 Note that if we wish to express the running time as a function of n only, then it is O(n2 log n)in the worst case.
 11

Page 12

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 12/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 F. Using the code
 The container application only use the ActiveX Control. First, must include thecontrol in a Dialog or a FormView, add a variable to it and then use the following code:
 I will not go too much into the code, I tried to explain there using comments.Basically, it respects the Graph Theory explained above and the Dijkstra's pseudocode.
 G. Graph Implementation
 12
 !"#$ &'()"*#+,-./#012234'$$5"$0678
 -9:#;<.+*=>?+=*+'$$5"$0.67@A
 !"#$ &'()"*#+,-./#012234'$$B$)0678
 -9:#;<.+*=>?+=*+'$$B$)0.67@A
 !"#$ &'()"*#+,-./#012234?,"*+0.+C=+,678
 &?,"*+,0.+C=+, $()@#D6$()>:"E"$=(67FFG:3H7
 !" $%&'() *(*&+, - '(.)/ 01%21 3,&./ *1, 4&*1"! 8
 -9:#;<.+*=>?,"*+0.+C=+,6$()>-94"$0IJ $()>-94"$0K7@A
 A
 L(=.. &M*=N,8
 NOP(#L2("4) M0+5*5"$0.67@&M*=N,67@!#*+O=(Q&M*=N,67@/RSCB953:B -94"$0.@ !! &55&6 (7 .($,//RSCB9B:MB -90$)0.@ !! &55&6 (7 ,$),//RSCB953:B9C $@ !! &55&6 (7 '(.)/ *1&* 2(.*&%.
 !! *1, /1(5*,/* 4&*1 &* ,8,56 /*,4/RSCB953:B9C N#@ !! &55&6 (7 '(.)/ *1&* 2(.*&%.
 !! *1, 45,$,2,//(5 (7 ,&21 .($, 7(5 *1, /1(5*,/* 4&*1A@
 L(=.. &5"$08
 NOP(#L2&5"$0 &"NT67@
 $"OP(0 -9L".+@ !! .(* 9/,$ 6,*("4) -95"$05*@ !! .($, .93:,5C3G5R -9N@ !!)5&41%2&' 4(%.* 7(5 *1&* .($,&5"$067@!#*+O=(Q&5"$067@
 A@

Page 13

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 13/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 H. The Dijkstra's Algorithm (Implementation)
 13
 L(=.. &B$)08
 NOP(#L2P""(-9*0$@ !! 9/,$ *($5&0 *1, 5,/9'*
 !! ;%7 &. ,$), %* %/ & 4&5* (7 *1, /1(5*,/* 4&*1 %*%/ $5&0. %. 5,$<
 $"OP(0 -9L".+@ !! *1, 2(/* (7 &. ,$), ;4%2+,$ 5&.$(3'6:,*0,,. =>?<
 ("4) -9.0L"4$5"$0@ !! *1, /,2(.$.($, .93:,5("4) -9D#*.+5"$0@ !! *1, 7%5/* .($, .93:,5C3G5R -9.0L"4$CL+@ !!)5&41%2&' ,',3,.*/ 7(5 $5&0%.)
 1, ,$),/C3G5R -9D#.+CL+@&B$)067@!#*+O=(Q&B$)067@
 A@
 UU R,0 :#;<.+*= @/ &')(5%*13?R:EBRV3:GEC &:#;<.+*=22?,"*+0.+C=+,6 ("4) 4"$0IJ ("4) 4"$0K78
 W0(0=.0M*=N,67@UU #4#+ $ =4$ N#G4#+#=(#X0?"O*L06)J)>-94"$0.Y4"$0IZI[7@UU ?0+ ? 0-N+T/RSCB953:B ?@UU CO+ 4"$0. #4 \/RSCB953:B \@/RSCB953:B22#+0*=+"* <(@D"*6<(F)>-94"$0.> P0)#4 67@ <(])>-94"$0.> 04$ 67@ <(^^78
 &5"$0 4"$0 F 6_<(7>&"NT67@\>NO.,9P=L<64"$07@
 AUU '()"*#+,-1,#(0 6\>.#X06778
 &5"$0 4"$ F B`+*=L+E#46\7@ UU +,0 -#4#- !=(O0 D"* UU +,0 .,"*+0.+ N=+, ON +" +,#. .+0N
 ?>NO.,9P=L<64"$7@UU 0=L, !0*+0` ! 1,#L, #. = 40#),P"O* "D O/RSCB953:B22#+0*=+"* <(@
 D"*6<(F)>-94"$0.> P0)#4 67@ <(])>-94"$0.> 04$ 67@ <(^^78
 #D6B`#.+B$)064"$J 6_<(7778
 P""()=.#+ F D=(.0@/RSCB953:B22#+0*=+"* <((@D"*6<((F\> P0)#4 67@ <((]\> 04$ 67@ <((^^78
 #D66_<((7>-95"$05* FF 6_<(7>-95"$05*7)=.#+ F +*O0@
 A#D6)=.#+7
 W0(=`64"$J 6_<(7J M0+B$)0/=(64"$J 6_<(777@A
 AAW0D*0.,:"4064"$0IJ 4"$0K7@*0+O*4 ?93H@
 A

Page 14

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 14/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 How to use itFirst compile the AnimAlg project and then run the Algorithms project
 (attach tp ClassProjectGroup13.rar)That’s result
 14
 References
 • Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". Numerische Mathematik 1: 269–271.
 • Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001)."Section 24.3: Dijkstra's algorithm". Introduction to Algorithms (Second ed.). MIT Pressand McGraw–Hill. pp. 595–601. ISBN 0-262-03293-7.
 • Fredman, Michael Lawrence; Tarjan, Robert E. (1984). "Fibonacci heaps and their uses inimproved network optimization algorithms". 25th Annual Symposium on Foundations ofComputer Science. IEEE. pp. 338–346.
 • Zhan, F. Benjamin; Noon, Charles E. (February 1998). "Shortest Path Algorithms: AnEvaluation Using Real Road Networks". Transportation Science 32 (1): 65–73.
 • Leyzorek, M.; Gray, R. S.; Johnson, A. A.; Ladew, W. C.; Meaker, Jr., S. R.; Petry, R. M.;Seitz, R. N. (1957). Investigation of Model Techniques — First Annual Report — 6 June1956 — 1 July 1957 — A Study of Model Techniques for Communication Systems .Cleveland, Ohio: Case Institute of Technology.
 • Knuth, D.E. (1977). "A Generalization of Dijkstra's Algorithm". Information Processing
 Letters 6 (1): 1–5.
 http://en.wikipedia.org/wiki/Information_Processing_Letters
 http://en.wikipedia.org/wiki/Donald_Knuth
 http://en.wikipedia.org/wiki/Transportation_Science
 http://en.wikipedia.org/wiki/IEEE
 http://en.wikipedia.org/wiki/Robert_Tarjan
 http://en.wikipedia.org/wiki/Michael_Fredman
 http://en.wikipedia.org/wiki/Special:BookSources/0-262-03293-7
 http://en.wikipedia.org/wiki/International_Standard_Book_Number
 http://en.wikipedia.org/wiki/McGraw%E2%80%93Hill
 http://en.wikipedia.org/wiki/MIT_Press
 http://en.wikipedia.org/wiki/Introduction_to_Algorithms
 http://en.wikipedia.org/wiki/Clifford_Stein
 http://en.wikipedia.org/wiki/Ronald_L._Rivest
 http://en.wikipedia.org/wiki/Charles_E._Leiserson
 http://en.wikipedia.org/wiki/Thomas_H._Cormen
 http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
 http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
 http://en.wikipedia.org/wiki/Information_Processing_Letters
 http://en.wikipedia.org/wiki/Donald_Knuth
 http://en.wikipedia.org/wiki/Transportation_Science
 http://en.wikipedia.org/wiki/IEEE
 http://en.wikipedia.org/wiki/Robert_Tarjan
 http://en.wikipedia.org/wiki/Michael_Fredman
 http://en.wikipedia.org/wiki/Special:BookSources/0-262-03293-7
 http://en.wikipedia.org/wiki/International_Standard_Book_Number
 http://en.wikipedia.org/wiki/McGraw%E2%80%93Hill
 http://en.wikipedia.org/wiki/MIT_Press
 http://en.wikipedia.org/wiki/Introduction_to_Algorithms
 http://en.wikipedia.org/wiki/Clifford_Stein
 http://en.wikipedia.org/wiki/Ronald_L._Rivest
 http://en.wikipedia.org/wiki/Charles_E._Leiserson
 http://en.wikipedia.org/wiki/Thomas_H._Cormen
 http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
 http://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Page 15

8/10/2019 Report Project.pdf
 http://slidepdf.com/reader/full/report-projectpdf 15/15
 HoChiMinh CityUniversity of Technology
 Data Structures andProgramming Principles
 15
 • Ahuja, Ravindra K.; Mehlhorn, Kurt; Orlin, James B.; Tarjan, Robert E. (April 1990)."Faster Algorithms for the Shortest Path Problem". Journal of Association for Computing
 Machinery (ACM) 37 (2): 213––223.• Raman, Rajeev (1997). "Recent results on the single-source shortest paths problem".
 SIGACT News 28 (2): 81––87.• Thorup, Mikkel (2000). "On RAM priority Queues". SIAM Journal on Computing 30 (1):
 86––109.• Thorup, Mikkel (1999). "Undirected single-source shortest paths with positive integer
 weights in linear time". journal of the ACM 46 (3): 362–394.• E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
 Mathematik , vol. 1, pp. 269–271, 1959.S.• Even, Graph Algorithms . Potomac, Maryland: Computer Science Press, 1979.• A.M.Gibbons, Algorithmic Graph Theory .Cambridge,UK: Cambridge University Press,
 1985• M.T.Goodrich, R.Tamassia,and D.Mount , Data Structures and Algorithms .Reading, MA:
 John Wiley & Sons, Inc ,2002

						
LOAD MORE

 kp project.pdf

 Personal Project.pdf

 final project.pdf

 PAMELA MAKOKHA PROJECT.pdf

 sample project.pdf

 3D moives project.pdf

 supply chain project.pdf

 Major Project.pdf

 BFI PROJECT.PDF

 CMPM PROJECT.pdf

 my project.pdf

 Mechatronics Project.pdf

 HM102 Project.pdf

 optical communication project.pdf

 Controls PROJECT.pdf

 Employee attrition project.pdf

 TNC Breakwater Project.pdf

 Powerpoint Mini Project.Pdf

 ITD project.pdf

 BRM final Project.pdf

 Pepsi Project.pdf

 Inditex Kyoto Project.pdf

 03.1_Mercury Removal Project.pdf

 AIR POLLUTION PROJECT.pdf

 The Love's Project.pdf

 margaret final project.pdf

 minor project.pdf

 ITPM PROJECT.pdf

 Final Term Project.pdf

 BC_Group Project.pdf

 Factory Project.pdf

 varun bakshi_cloud project.pdf

 science project.pdf

 Manual MS Project.pdf

 SHARON PROJECT.pdf

 	About us
	Contact us
	Term
	DMCA
	Privacy Policy

 	English
	Français
	Español
	Deutsch

 Copyright © 2022 VDOCUMENTS

