hybrid energy systems: an integrated energy system...

1
(WEI) Interdependent Infrastructures Template for a Hybrid Energy System Geographically correct Midwest HES Hybrid Energy Systems: An Integrated Energy System Scheme Sustainability: Economic Environmental Social Results Case 1: High gas prices (6.2%/yr) with an imposed carbon tax Case 2: Low gas prices (3%/yr) with an imposed carbon tax Case 3: High gas prices (6.2%/yr) without an imposed carbon tax Rajaz Khan Amitava NATURAL GAS NETWORKS To CNG & LNG vehicles AGRICULTURE THERMAL NETWORKS HES ELECTRIC NETWORKS WIND, HYDRO, SOLAR TRANSPORT NETWORKS Passenger transport Freight transport (coal & feedstocks) Feed- stocks WATER NG H 2 Networks Bio-fuels Biogas Heat To H 2 vehicles To PHEVs Two heat sources Two uses of low temperature heat Three forms of storage Effective configurations may utilize subset of these. Features: A better DG At dist sub 10-100MW Modular built quickly region-specific configurations Efficient Flexible fast storage MIMO Technology Energy Produced (MWh) Case 1 Case 2 Case 3 CHP 794,375 1,645,477 1,613,157 Solar 524,857 455,703 482,766 Wind 2,664,404 2,016,707 2,470,422 LTG 133,082 117,868 123,584 CST 720,526 520,584 638,577 NGB 33,716 114,622 85,736 0 5 10 15 20 25 30 35 40 45 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050 2052 2054 INSTALLED CAPACITY (MW) YEARS CHP Wind Solar HS CST NGB LTG Case 1 0 5 10 15 20 25 30 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050 2052 2054 INSTALLED CAPACITY (MW) YEARS CHP Wind Solar HS CST NGB LTG Case 2 0 5 10 15 20 25 30 35 40 45 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050 2052 2054 INSTALLED CAPACITY (MW) YEARS CHP Wind Solar HS CST NGB LTG Case 3 Hourly Analysis (Case 1) 0 2 4 6 8 10 12 14 16 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 ENERGY PRODUCED (MWH) HOURS PCHP PSOL PWIND HLTG HNGB HCST 0 5 10 15 20 25 30 35 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 ENERGY PRODUCED (MWH) HOURS PCHP PSOL PWIND HLTG HNGB HCST 0 2 4 6 8 10 12 14 16 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 ENERGY PRODUCED (MWH) HOURS PCHP PSOL PWIND HLTG HNGB HCST 2035 Winter Day 0 5 10 15 20 25 30 35 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 ENERGY PRODUCED (MWH) HOURS PCHP PSOL PWIND HLTG HNGB HCST 2055 Winter Day -6 -4 -2 0 2 4 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Heat Discharged (MWh) Hours -6 -4 -2 0 2 4 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Heat Discharged (MWh) Hours -6 -4 -2 0 2 4 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Heat Discharged (MWh) Hours -6 -4 -2 0 2 4 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Heat Discharged (MWh) Hours 2035 & 2055 Summer Day 2035 & 2055 Winter Day Integrated modeling of power & water systems + Fixed O&M Costs + Var O&M Costs + Environmental Costs + Fuel Costs + Reserve Costs MIN NET PRESENT VALUE G&T&W Investment Costs SUBJECT TO: Electric & Water Infrastructure Investment constraints Electric & Water Operational, planning, environmental constraints WT & WWT working level limits, Stream Flow Balance, ASR Charge/Discharge, VPH storage & release constraints Decision Variables: Investment variables for Electric & Water infrastructure Operational levels for Electric & Water infrastructure Physical coupling between Electric & Water Systems described by the VPH, WT & WWT, ASR and Hydro Power Facilities. Water system modelled with each individual node representing a watershed with own water system infrastructure. Year 20 ...… Year 1 Year 2 Infrastructure integrity Reliability Flexibility Resilience Adaptable

Upload: others

Post on 01-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hybrid Energy Systems: An Integrated Energy System Schemeiiesi.org/assets/pdfs/icesi-poster-amitava-hybrid-energy.pdf · Rajaz Khan Amitava Subject: Presentation for International

(WEI)

Interdependent Infrastructures

Template for a Hybrid Energy System

Geographically correct Midwest HES

Hybrid Energy Systems: An Integrated Energy System Scheme

Sustainability:

• Economic

• Environmental

• Social

Results

• Case 1: High gas prices (6.2%/yr) with an imposed carbon tax

• Case 2: Low gas prices (3%/yr) with an imposed carbon tax

• Case 3: High gas prices (6.2%/yr) without an imposed carbon tax

Rajaz Khan Amitava

NATURAL GAS NETWORKS

To CNG & LNG vehicles

AGRICULTURE

THERMAL NETWORKS

HES ELECTRIC

NETWORKS

WIND, HYDRO, SOLAR

TRANSPORT NETWORKS

Passenger transport Freight transport (coal & feedstocks)

Feed- stocks

WATER

NG

H2 Networks Bio-fuels

Biogas Heat

To H2 vehicles

To PHEVs

• Two heat sources • Two uses of low

temperature heat • Three forms of storage Effective configurations may utilize subset of these.

Features: • A better DG

• At dist sub • 10-100MW

• Modular • built quickly • region-specific

configurations • Efficient • Flexible

• fast • storage

• MIMO

Technology Energy Produced (MWh)

Case 1 Case 2 Case 3

CHP 794,375 1,645,477 1,613,157

Solar 524,857 455,703 482,766

Wind 2,664,404 2,016,707 2,470,422

LTG 133,082 117,868 123,584

CST 720,526 520,584 638,577

NGB 33,716 114,622 85,736

0

5

10

15

20

25

30

35

40

452

01

6

20

18

20

20

20

22

20

24

20

26

20

28

20

30

20

32

20

34

20

36

20

38

20

40

20

42

20

44

20

46

20

48

20

50

20

52

20

54

INST

ALL

ED C

APA

CIT

Y (

MW

)

YEARS

CHP Wind Solar HS CST NGB LTG

Case 1

0

5

10

15

20

25

30

20

16

20

18

20

20

20

22

20

24

20

26

20

28

20

30

20

32

20

34

20

36

20

38

20

40

20

42

20

44

20

46

20

48

20

50

20

52

20

54

INST

ALL

ED C

APA

CIT

Y (

MW

)

YEARS

CHP Wind Solar HS CST NGB LTG

Case 2

0

5

10

15

20

25

30

35

40

45

20

16

20

18

20

20

20

22

20

24

20

26

20

28

20

30

20

32

20

34

20

36

20

38

20

40

20

42

20

44

20

46

20

48

20

50

20

52

20

54

INST

ALL

ED C

APA

CIT

Y (

MW

)

YEARS

CHP Wind Solar HS CST NGB LTG

Case 3

Hourly Analysis (Case 1)

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

ENER

GY

PR

OD

UC

ED (

MW

H)

HOURS

PCHP PSOL PWIND HLTG HNGB HCST

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

ENER

GY

PR

OD

UC

ED (

MW

H)

HOURS

PCHP PSOL PWIND HLTG HNGB HCST

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

ENER

GY

PR

OD

UC

ED (

MW

H)

HOURS

PCHP PSOL PWIND HLTG HNGB HCST

2035 Winter Day

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

ENER

GY

PR

OD

UC

ED (

MW

H)

HOURS

PCHP PSOL PWIND HLTG HNGB HCST

2055 Winter Day

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hea

t D

isch

arge

d

(MW

h)

Hours

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hea

t D

isch

arge

d

(MW

h)

Hours

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hea

t D

isch

arge

d

(MW

h)

Hours

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hea

t D

isch

arge

d

(MW

h)

Hours

2035 & 2055 Summer Day

2035 & 2055 Winter Day

Integrated modeling of power & water systems + Fixed O&M Costs

+ Var O&M Costs

+ Environmental Costs

+ Fuel Costs + Reserve Costs

MIN NET PRESENT

VALUE

G&T&W Investment Costs

SUBJECT TO:

Electric & Water Infrastructure Investment constraints

Electric & Water Operational, planning, environmental constraints WT & WWT working level limits, Stream Flow Balance, ASR Charge/Discharge, VPH storage & release constraints

Decision Variables: Investment variables for Electric & Water infrastructure

Operational levels for Electric & Water infrastructure

Physical coupling between Electric & Water Systems described by the VPH, WT & WWT, ASR and Hydro Power Facilities.

Water system modelled with each individual node representing a watershed with own water system infrastructure.

Year 20 ...… Year 1 Year 2

Infrastructure integrity

• Reliability

• Flexibility

• Resilience

• Adaptable