circuitos cmos

34
ECE2030 Introduction to Computer Engineering  Lecture 4: CMOS Network Prof. Hsien Prof. Hsien- -Hsin Sean Lee Hsin Sean Lee School of Electrical and Computer Engineering School of Electrical and Computer Engineering Georgia Tech Georgia Tech

Upload: mateust92

Post on 06-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 1/34

ECE2030Introduction to Computer Engineering

 Lecture 4: CMOS Network

Prof. HsienProf. Hsien--Hsin Sean LeeHsin Sean LeeSchool of Electrical and Computer EngineeringSchool of Electrical and Computer Engineering

Georgia TechGeorgia Tech

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 2/34

CMOS Inverter• Connect the following terminals of a PMOS and an NMOS

– Gates

– Drains

 Vdd  Vdd Vdd

2 2

 Vin  Vout

Gnd

 Vout

 Vin

 Vin

 Vin = HIGH Vout = LOW (Gnd)

ONON

OFFOFF

Gnd

 Vout

 Vin

 Vin

 Vin = LOW Vout = HIGH (Vdd)

ONON

OFFOFF

PMOS

Ground

NMOS

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 3/34

CMOS Voltage Transfer Characteristics

 Vdd

 Vin  VoutPMOS

NMOS

3 3

Gnd

OFF: V_GateToSource < V_Threshold

LINEAR (or OHMIC): 0< V_DrainToSource < V_GateToSource - V_Threshold

SATURATION: 0 < V_GateToSource - V_Threshold < V_DrainToSource

Note that in the CMOS Inverter →  V_GateToSource = V_in 

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 4/34

Pull-Up and Pull-Down Network• CMOS network consists of a Pull-UP

Network (PUN) and a Pull-Down

Network (PDN)• PUN consists of a set of PMOS

transistors

 

 Vdd

PUN

4 4

• cons s s o a se otransistors

• PUN and PDN implementations arecomplimentary to each other

– PMOS ↔ NOMS– Series topology ↔ Parallel topology

….I0

I1

In-1

Gnd

PDN

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 5/34

PUN/PDN of a CMOS Inverter

A B

0 1

1 Z

A B

Pull-UpNetwork 

 Vdd

 A  B

5 5

0 Z

1 0

A B

0 1

1 0

Pull-DownNetwork 

CombinedCMOSNetwork 

Gnd

CMOS Inverter

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 6/34

Gate Symbol of a CMOS Inverter

 Vdd

 A  B A B

6 6

Gnd

CMOS Inverter

B = Ā 

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 7/34

PUN/PDN of a NAND GateA B C

0 0 1

0 1 1

1 0 1

1 1 Z

A B C

Pull-UpNetwork 

 Vdd

 A  B

7 7

0 1 Z

1 0 Z

1 1 0

Pull-DownNetwork  A 

B

C

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 8/34

PUN/PDN of a NAND GateA B C

0 0 1

0 1 1

1 0 1

1 1 Z

A B C

Pull-UpNetwork 

 Vdd

 A  B

8 8

0 1 Z

1 0 Z

1 1 0

A B C

0 0 1

0 1 1

1 0 1

1 1 0

Pull-DownNetwork 

CombinedCMOSNetwork 

 A 

B

C

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 9/34

NAND Gate Symbol

A B C

0 0 10 1 1

1 0 1

1 1 0

 Vdd

 A  B

Truth Table

9 9

 A 

B

C

 A 

B

C

BAC ⋅=

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 10/34

PUN/PDN of a NOR GateA B C

0 0 1

0 1 Z

1 0 Z

1 1 Z

A B C

Pull-UpNetwork 

 Vdd

 A 

B

10 10

0 1 0

1 0 0

1 1 0

Pull-DownNetwork  C

 A  B

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 11/34

PUN/PDN of a NOR GateA B C

0 0 1

0 1 Z

1 0 Z

1 1 Z

A B C

Pull-UpNetwork 

 A 

B

 Vdd

11 11

0 1 0

1 0 0

1 1 0

A B C

0 0 1

0 1 0

1 0 0

1 1 0

Pull-DownNetwork 

CombinedCMOSNetwork 

C

 A  B

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 12/34

NOR Gate Symbol

A B C

0 0 10 1 0

1 0 0

1 1 0

Truth Table

 A 

B

 Vdd

12 12

 A 

B

C

C

 A  B

BAC +=

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 13/34

How about an AND gate

 Vdd

 A  Vdd

B

 A 

13 13

 A 

B

Gnd

NAND

Inverter

C = A B

B

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 14/34

An OR Gate

 A 

B

 Vdd

 Vdd

14 14

 A  B

Gnd

C

Inverter

NOR 

 A 

B

C

BAC+=

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 15/34

What’s the Function of the following CMOS Network?

A B C

0 0 Z

0 1 1

1 0 11 1 Z

A B C

Pull-UpNetwork 

 Vdd

A

B

A

B

15 15

0 1 Z

1 0 Z

1 1 0

A B C

0 0 0

0 1 1

1 0 1

1 1 0

Pull-DownNetwork 

CombinedCMOSNetwork 

Function = XOR  XOR 

A

A

B

B

C

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 16/34

 Yet Another XOR CMOS Network

 Vdd

A

B

A

B

A B C

0 0 Z

0 1 1

1 0 11 1 Z

A B C

Pull-UpNetwork 

16 16

A A

BB

C 0 1 Z

1 0 Z

1 1 0

A B C0 0 0

0 1 1

1 0 1

1 1 0

Pull-DownNetwork 

CombinedCMOSNetwork 

Function = XOR  XOR 

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 17/34

Exclusive-OR (XOR) Gate

 Vdd

A

B

A

B

A B C

0 0 0

0 1 1

1 0 1

Truth Table

17 17

A A

BB

C

 A 

B

C

BABABAC ⊕=⋅+⋅=

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 18/34

How about XNORXNOR Gate

A B C

0 0 1

0 1 0

1 0 0

Truth Table

How do we draw thecorresponding CMOS network 

 

18 18

 A 

B

C

BABABAC ⊕=⋅+⋅=

given a Boolean equation?

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 19/34

How about XNORXNOR Gate

A B C

0 0 1

0 1 0

1 0 0

Truth Table Vdd

A

B

A

B

 Vdd

19 19

 A 

B

C

BABAC ⋅+⋅=

A A

BB

C

XOR 

Inverter

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 20/34

A Systematic Method (I)

Start from Pull-Up Network• Each variable in the given Boolean eqn corresponds to

a PMOS transistor in PUN and an NMOS transistor in

PDN• Draw PUNPUN using PMOS based on the Boolean eqn–– ANDAND operation drawn in  series series

––

20 20

 

• Invert each variablevariable of the Boolean eqn as the gateinput for each PMOS in the PUN

• Draw PDNPDN using NMOS in complementary form

– Parallel (PUN) to series (PDN)– Series (PUN) to parallel (PDN)

• Label with the same inputs of PUN• Label the output

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 21/34

A Systematic Method (II)

Start from Pull-Down Network• Each variable in the given Boolean eqn corresponds to a PMOS

transistor in PUN and an NMOS transistor in PDN

• Invert the Boolean eqn• With the Right-Hand Side of the newly inverted equation, DrawPDNPDN using NMOS–– ANDAND o eration drawn in  series series

21 21

 

–– OROR operation drawn in parallelparallel• Label each variablevariable of the Boolean eqn as the gate input for

each NMOS in the PDN

• Draw PUNPUN using PMOS in complementary form

– Parallel (PUN) to series (PDN)– Series (PUN) to parallel (PDN)

• Label with the same inputs of PUN

• Label the output

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 22/34

Systematic Approaches

• Note that both methods lead to exactly the sameimplementation of a CMOS network

• The reason to invert Output equation in (II) isbecause– Output (F) is conducting to “ground” , i.e. 0, when there is

a path formed by input NMOS transistors 

22 22

– nvers on w orce e es re resu rom e equa on

• Example– F=Ā·C + B: When (A=0 and C=1) or B=1, F=1. However,

in the PDN (NMOS) of a CMOS network, F=0, i.e. aninverse result.

– Revisit how a NAND CMOS network is implemented

• Inverting each PMOS input in (I) follow the samereasoning 

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 23/34

Example 1 (Method I)

BCAF +⋅=

In series

In parallel Vdd

 

23 23

(1) Draw the Pull-Up Network 

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 24/34

Example 1 (Method I)

BCAF +⋅=

In series

In parallel Vdd

 

 A 

C

B

24 24

(2) Assign the complemented input

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 25/34

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 26/34

Example 1 (Method I)

BCAF +⋅=

In series

In parallel Vdd

 

 A 

C

B

26 26

(3) Draw the Pull-Down Network inthe complementary form  A  C

B

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 27/34

Example 1 (Method I)

BCAF +⋅=

In series

In parallel Vdd

 

 A 

C

B

F

27 27

Label the output F

 A  C

B

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 28/34

Example 1 (Method I)

BCAF +⋅=

In series

In parallel Vdd

 A 

C

B

FTruth Table

28 28

 A  C

B

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 29/34

Drawing the Schematic using Method II

BCAF +⋅=

BCAF

BCAF

⋅⋅=

+⋅=

 Vdd

 A 

C

B

29 29

BC)A(F

 

⋅+=

 A  C

B

F

This is exactly the sameCMOS network with theschematic by Method I

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 30/34

An Alternative for XNOR Gate (Method I)

A B C

0 0 1

0 1 0

1 0 0

Truth Table Vdd

A

B

A

B

30 30

 A 

B

C

BABAC ⋅+⋅=

A

A B

B

C

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 31/34

Example 3

)C(ABDAF +⋅+⋅=

Start from the innermost term

 A 

B D

 A C

31 31

 A  D

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 32/34

Example 3

)C(ABDAF +⋅+⋅=

Start from the innermost term

 A 

B D

 A C

32 32

 A  D

 A 

C

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 33/34

Example 3

)C(ABDAF +⋅+⋅=

Start from the innermost term

 A 

B D

 A C

33 33

 A  D

 A 

C

B

8/3/2019 Circuitos CMOS

http://slidepdf.com/reader/full/circuitos-cmos 34/34

Example 3

)C(ABDAF +⋅+⋅=

Start from the innermost term

 A 

B D

 A C

 Vdd

F

Pull-UpNetwork 

34 34

 A  D

 A 

C

B

Pull-Down

Network