chapter 11 ocean energy -...

24
AUSTRALIAN ENERGY RESOURCE ASSESSMENT 285 Chapter 11 Ocean Energy 11.1.1 World ocean energy resources and market There are substantial ocean (tidal, wave and ocean thermal) energy resources that have potential for zero or low emission electricity generation. Ocean energy industries are at an early stage of development, and they are currently the smallest contributors to world electricity generation. Commercial applications of ocean energy have been limited to tidal barrage power plants in two OECD countries, France (240 MW) and Canada (20 MW), but major new tidal barrage plants are under construction in the Republic of Korea. Government policies and falling investment costs are projected to be the main factors underpinning future growth in world ocean energy use. World electricity generation from ocean energy is projected by the IEA in the reference case to increase at an average annual rate of 14.6 per cent between 2007 and 2030. 11.1.2 Australia’s ocean energy resources The northern half of the Australian continental shelf has limited wave energy resources, but has sufficient tidal energy resources for local electricity production in many areas, particularly the Northwest Shelf, Darwin, Torres Strait and the southern Great Barrier Reef (figure 11.1). The southern half of the Australian continental shelf has world-class wave energy resources along most of the western and southern coastlines, particularly the west and southern coasts of Tasmania (figure 11.2). In contrast, tidal energy resources are limited in this region. Areas in the Pacific Ocean are prospective for ocean thermal energy. 11.1.3 Key factors in utilising Australia’s ocean energy resources Production costs for ocean energy systems are currently high, but are expected to fall as technologies mature. The production costs of ocean energy technologies are estimated by the IEA to range from US$60 per kW to US$300 per kW (in 2005 dollars), with tidal barrage systems at the lower end of this range and tidal current and wave systems at the higher end. Given the largely pre-commercial status of the current ocean energy systems, the outlook is highly dependent on research, development and demonstration (RD&D) activities and the outcomes of these activities, both in assessing energy potential and developing low-cost energy conversion technologies. Government policies that encourage RD&D will be an important driver of the future development of ocean energy technologies in Australia. 11.1 Summary KEY MESSAGES Ocean energy – wave, tide and ocean thermal energy sources – is an underdeveloped but potentially substantial renewable energy source. Australia has world-class wave energy resources along its western and southern coastline, especially in Tasmania. Australia’s best tidal energy resources are located along the northern margin, especially the north- west coast of Western Australia. Worldwide, ocean energy accounts for a negligible proportion of total electricity generation. The share of ocean energy in world electricity generation is projected to increase by 2030, albeit only modestly. Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of commercialisation and ocean thermal technologies are still at development stage. Adoption of ocean energy in Australia depends on technologies for tidal or wave energy proving commercially viable. The cost of access to the transmission grid may also be an impediment for many sites.

Upload: others

Post on 21-May-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

285

Chapter 11Ocean Energy

11.1.1 World ocean energy resources and market • Therearesubstantialocean(tidal,waveandocean

thermal)energyresourcesthathavepotentialforzeroorlowemissionelectricitygeneration.

• Oceanenergyindustriesareatanearlystageofdevelopment,andtheyarecurrentlythesmallestcontributorstoworldelectricitygeneration.CommercialapplicationsofoceanenergyhavebeenlimitedtotidalbarragepowerplantsintwoOECDcountries,France(240MW)andCanada(20MW),butmajornewtidalbarrageplantsareunderconstructionintheRepublicofKorea.

• Governmentpoliciesandfallinginvestmentcostsareprojectedtobethemainfactorsunderpinningfuturegrowthinworldoceanenergyuse.WorldelectricitygenerationfromoceanenergyisprojectedbytheIEAinthereferencecasetoincreaseatanaverageannualrateof14.6percentbetween2007and2030.

11.1.2Australia’soceanenergyresources• ThenorthernhalfoftheAustraliancontinental

shelfhaslimitedwaveenergyresources,buthassufficienttidalenergyresourcesforlocalelectricityproductioninmanyareas,particularlytheNorthwestShelf,Darwin,TorresStraitandthesouthernGreatBarrierReef(figure11.1).

• ThesouthernhalfoftheAustraliancontinentalshelfhasworld-classwaveenergyresourcesalongmostofthewesternandsoutherncoastlines,particularlythewestandsoutherncoastsofTasmania(figure11.2).Incontrast, tidalenergyresourcesarelimitedinthisregion.

• AreasinthePacificOceanareprospectiveforoceanthermalenergy.

11.1.3KeyfactorsinutilisingAustralia’socean energy resources• Productioncostsforoceanenergysystems

arecurrentlyhigh,butareexpectedtofallastechnologiesmature.TheproductioncostsofoceanenergytechnologiesareestimatedbytheIEAtorangefromUS$60perkWtoUS$300perkW(in2005dollars),withtidalbarragesystems atthelowerendofthisrangeandtidalcurrent andwavesystemsatthehigherend.

• Giventhelargelypre-commercialstatusofthecurrentoceanenergysystems,theoutlookishighlydependentonresearch,developmentanddemonstration(RD&D)activitiesandtheoutcomesoftheseactivities,bothinassessingenergypotentialanddevelopinglow-costenergyconversiontechnologies.

• GovernmentpoliciesthatencourageRD&DwillbeanimportantdriverofthefuturedevelopmentofoceanenergytechnologiesinAustralia.

11.1Summary

K E y m E s s a g E s

• Oceanenergy–wave,tideandoceanthermalenergysources–isanunderdevelopedbutpotentiallysubstantialrenewableenergysource.

• Australiahasworld-classwaveenergyresourcesalongitswesternandsoutherncoastline,especiallyinTasmania.

• Australia’sbesttidalenergyresourcesarelocatedalongthenorthernmargin,especiallythenorth-westcoastofWesternAustralia.

• Worldwide,oceanenergyaccountsforanegligibleproportionoftotalelectricitygeneration.Theshareofoceanenergyinworldelectricitygenerationisprojectedtoincreaseby2030,albeitonlymodestly.

• Currentoceanenergyuseismainlybasedontidalpowerstations.Waveenergytechnologiesareatearlystagesofcommercialisationandoceanthermaltechnologiesarestillatdevelopmentstage.

• AdoptionofoceanenergyinAustraliadependsontechnologiesfortidalorwaveenergyprovingcommerciallyviable.Thecostofaccesstothetransmissiongridmayalsobeanimpedimentformanysites.

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

286

projectsinAustralia.Ifsuccessful,these

projectscouldleadtocommercialscaleplants

generatingelectricityforthegrid,foroff-gridlocal

domesticandindustrialuse,ortopowerwater

desalinationplants.

11.2Backgroundinformationandworldmarket

11.2.1DefinitionsTherearetwobroadtypesofoceanenergy:

mechanicalenergyfromthetidesandwaves,and

thermalenergyfromthesun’sheat.Inthisreport,

oceanenergyisclassifiedastidalenergy,wave

energyandoceanthermalenergy.Potentialenergy

resourcesassociatedwithmajoroceancurrents,

suchastheEastAustraliaCurrentortheLeeuwin

Current,arenotconsideredhere.

Tidal energy Tidesresultfromthegravitationalattractionofthe

Earth-Moon-SunsystemactingontheEarth’soceans.

Tidesarelongperiodwavesthatresultinthecyclical

• ManyofAustralia’sbesttidalandwaveenergyresourcesareinareasdistantfromtheelectricitygrid.Theproximityoftheresourcetomajorpopulationcentresandtheelectricitygridappearstobesomewhatbetterforwaveenergythantidaloroceanthermalenergy.

• SomeofAustralia’sbesttidalenergyresourcesarealsolocatedinenvironmentallysensitiveareasandtherearesignificantenvironmentalimpactsassociatedwithtidalenergysystems.

• Newtidaltechnologiesbasedontheuseoftidalcurrentshaveenvironmentaladvantagesovertidalbarragesystems,but,likewaveandoceanthermalenergysystems,arestillatanearlystageofdevelopment.

11.1.4Australia’soceanenergymarket• Oceanenergytechnologiesarestillatanearly

stageofdevelopmentandhaveonlybeenusedatapilotscaleinAustralia.Fourtidalorwaveenergyplants,withacombinedcapacityoflessthan1MW,havebeendevelopedinrecentyears.

• Therearealsoplanstodevelopseveralcommercialscaletidalandwaveenergy

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

AERA 11.1

0 750 km

120°

10°

20°

30°

40°

140°130° 150°

2

0

Tidal energy (GJ/m2)

Figure 11.1 Totalannualtidekineticenergy(ingigajoulespersquaremetre,GJ/m2)ontheAustraliancontinentalshelf(lessthan300mwaterdepth)

Note: Thelowrangeofthecolourscaleisaccentuatedtoshowdetail.Thecolourscalesaturatesat2GJ/m2butthemaximumvaluepresent is195GJ/m2

source: GeoscienceAustralia

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

287

thatgenerateelectricityfromhorizontallyflowingtidalcurrents(analogoustowindturbines).

Wave energy Waves (swell)areformedbythetransferofenergyfromatmosphericmotion(wind)totheoceansurface.Waveheightisdeterminedbywindspeed,thelengthoftimethewindhasbeenblowing,thefetch(distanceoverwhichthewindhasbeenblowing),andthedepthandtopographyoftheseafloor.Largestormsgeneratelocalstormwavesandmoredistantregularwaves(swell)thatcantravellongdistancesbeforereachingshore.

Wave energyisgeneratedbyconvertingtheenergyofoceanwaves(swells)intootherformsofenergy(currentlyonlyelectricity).Itcanbeharnessedusingavarietyofdifferenttechnologies,severalofwhicharecurrentlybeingtrialledtofindthemostefficientwaytogenerateelectricityfromwaveenergy.

Ocean thermal energy Oceanscovermorethan70percentoftheEarth’ssurface.Thesun’sheatresultsinatemperaturedifferencebetweenthesurfacewateroftheoceananddeepoceanwater,andthistemperaturedifferencecreatesoceanthermalenergy.

riseandfalloftheocean’ssurfacetogetherwithhorizontalcurrents.Therotatingtidewavesresultindifferentsealevelsfromoneplaceonthecontinentalshelftothenextatanyonetime,andthiscausesthewatercolumntoflowhorizontallybackandforth(tidalcurrents)overtheshelfwiththetidaloscillationsinsealevel.

Tidal energyisenergygeneratedfromtidalmovements.Tidescontainbothpotentialenergy,relatedtotheverticalfluctuationsinsealevel,andkineticenergy,relatedtothehorizontalmotionof thewatercolumn.Itcanbeharnessedusingtwomaintechnologies:

• Tidal barrages (or lagoons) are based on the rise and fall of the tides–thesegenerallyconsistofabarragethatenclosesalargetidalbasin.Waterentersthebasinthroughsluicegatesin thebarrageandisreleasedthroughlow-headturbinestogenerateelectricity.

• Tidal stream generators are based on tidal or marine currents–thesearefree-standingstructuresbuiltinchannels,straitsoronthe shelfandaredesignedtoharnessthekineticenergyofthetide.Theyareessentiallyturbines

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

AERA 11.2

0 750 km

10°

20°

30°

40°

140°130° 150°120°

1.5

0

Wave energy (TJ/m)

Figure 11.2 Totalannualwaveenergy(inTerrajoulespermetre,TJ/m)ontheAustraliancontinentalshelf(lessthan300mwaterdepth)

source: GeoscienceAustralia

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

288

11.2.3WorldoceanenergymarketThereisonlyasmallmarketatpresentfortidal,waveandoceanthermalenergy.In2009,commercialapplicationswerelimitedtoelectricitygenerationbasedontidalenergyresourcesinFranceandCanadabutsignificantinvestmentinnewtidalenergyprojectswastakingplaceintheRepublicofKorea.FeasibilityassessmentsandRD&Dinvestmentsinoceanenergytechnologiesaretakingplaceinseveralcountries.

Resources

Tidal energy Thetidalenergyresourceisvastandsustainable.However,theeconomicallyexploitableresourceiscurrentlysmallbecauseoftheconsiderablecostsassociatedwithenergyextractionandtheenvironmentalimpactsofsometidalenergytechnologies,notablybarragesandlagoons(tidalpools).Therearefewestimatesoftheworldtidalenergyresourcepotential.

Wave energy Theglobalwavepowerresourceindeepwater(100mormore)hasbeenestimatedat1–10TW andtheeconomicallyexploitableresourcecould beashighas2000TWhperyear(WEC2007). Theaverageannualwavepoweracrosstheworld isshowninfigure11.4.Someofthecoastlines withthegreatestwaveenergypotentialarethewesternandsoutherncoastsofSouthAmerica,SouthAfricaandAustralia.Thesecoastsexperiencethewavesgeneratedbythewesterlywindbeltbetweenlatitudes40°and50°south,whichare

Ocean thermal energy conversion (OTEC)isameansofconvertingintousefulenergythetemperaturedifferencebetweensurfacewaterandwateratdepth.OTECplantsmaybeusedforarangeofapplications,includingelectricitygeneration.Theymaybeland-based,floatingorgrazing.

Moredetailedinformationontidal,waveandoceanthermalenergytechnologiesisprovidedinBox11.2insection11.4.

11.2.2OceanenergysupplychainFigure11.3providesaschematicrepresentationofthepotentialtidal,waveandoceanthermalenergyindustryinAustralia.Oceanenergyresourceshavethepotentialtogenerateelectricityusingvarioustypesofturbinesandotherenergyconverters.Theelectricitygeneratedcouldbeusedeitherlocally,orfedintotheelectricitygrid.Aswellaselectricitygeneration,someoceanenergyresourcescanbeusedforotherpurposessuchaspumpingseawaterthroughdesalinationplantstogeneratepotablewater.

Thesupplyoftidal,waveandoceanthermalenergyrequiresfirstlyidentifyingthesiteswiththebestenergyresourcesmatchedtotheenergyconvertertechnologybeingconsidered,sothattheirpotentialforgeneratingelectricitycanbedetermined.Whetherornotapotentialprojectthenproceedstodevelopmentwillrequiredetailedeconomicassessment,includingfactorssuchasthecapitalandoperatingcosts,accesstofinance,thecostofgridconnection,ifrelevant,includingtransmissiondistancesandassociatedlosses,environmentalandcommunityissuesandthepricereceivedfortheenergy generated.

End Use MarketProcessing, Transport,

StorageResources Exploration

Industry

Commercial

Residential

ElectricityGeneration

AERA 11.3

Development andProduction

Developmentdecision

Project

Domesticmarket

(proposed)Resource definitionand site location forspecific technology

Figure 11.3 Australia’soceanenergysupplychainsource: ABAREandGeoscienceAustralia

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

289

OTECmaybeusedincircumstanceswheretherearetemperaturedifferencesofatleast20°C.

Primary energy consumptionOceanenergyiscurrentlyonlyusedtogenerateelectricityandhenceprimaryenergyconsumptionofoceanenergyisthesameasfuelinputstoelectricitygeneration.Worldoceanenergyusedecreasedatanaverageannualrateof1.4percentbetween2000and2008,andaccountedforonlyaverysmallproportionoftotalprimaryenergyconsumption

blowingoveraneffectivelyinfinitefetch.Thisproducessomeofthelargestandmostpersistentwaveenergylevelsglobally.

Ocean thermal energy Atpresent,itisnotpossibletoquantifyoceanthermalenergyresourcepotential(WEC2007).Figure11.5showsthetemperaturedifferencebetweenthesurfacewateroftheoceansintropicalandsubtropicalareas,andwateratadepthofaround1000metreswhichissourcedfromthepolarregions(WEC2007).

8463

7578

4326

401037

38

4381

29

1014

8 20

7282

3823

12

3417

5 125042

3018

4168

45

50

34

2123

91211

19

26 384865

7092

89

2950

2724

28

49123133

1912

1018

1317

15

25

33

9797

7242

66

74

5040

2420

111516

131215

133822

4940

17

100

30

33

102

AERA 11.4

0 5000 km

120°E60°E0°60°W120°W

60°N

30°N

30°S

2422

20

1618

120°E60°E0°60°W120°W 30°N

30°S

AERA 11.5

0 5000 kmTemperature difference (°C)

16

18

20

22

24

120°E60°E0° 30°N

120°W 60°W

30°S

Figure 11.4 Averageannualwavepowerlevels(inkW/m)source: WorldEnergyCouncil2007

Figure 11.5 Theareasavailableforoceanthermalenergyconversion(OTEC)andthetemperaturedifference(measuredin°C)

source: WorldEnergyCouncil2007

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

290

tidalenergypowerplantatLakeSihwa,nearSeoul,

RepublicofKoreaiscommissionedin2010.

• Canadaproduced0.1PJ(35GWh)in2007and

2008.Canadahasa20MWtidalbarragepower

plantinAnnapolisRoyal,NovaScotia,whichhas

beenoperatingsince1984.

Globally,thereissignificantRD&Dactivitythatwill

contributetothefuturecommercialisationofother

oceanenergytechnologies.Informationonglobal

RD&Dactivityisprovidedinsection11.4.

World ocean energy market outlookTheIEAprojectssomegrowthinoceanenergyproductionovertheoutlookperiodto2030,although

(table11.1).Tidalenergyhasbeenutilisedon acommercialscaletodateonlyinOECDcountries.

Electricity generationIn2008,544GWh(0.5TWh)ofelectricitywasgeneratedfromocean(tidal)energy,representingonly0.003percentofworldelectricitygeneration(figure11.6).OceanenergyhasbeengeneratedfromtidalenergyplantsinFranceandCanada;

• France,themainoceanenergyproducingcountry,

produced1.8PJ(512GWh)commerciallyin2007

and2008.A240MWtidalbarragepowerplanthas

beenoperatingatLaRanceinFrancesince1966

andiscurrentlythelargesttidalpowerstationin

theworld.Itwillbeovertakenwhenthe260GW

Table 11.1 Keyoceanenergystatistics

unit australia 2007–08

OECD 2008

World 2008

Primary energy consumptiona PJ - 2.0 2.0

Shareoftotalb % - 0.0009 0.0004

Averageannualgrowth,2000–2008 % - -1.3 -1.4

Electricity generation

Electricityoutput TWh - 0.5 0.5

Shareoftotalb % - 0.005 0.003

Electricitycapacity GW 0.0008 0.261 0.261

a EnergyproductionandprimaryenergyconsumptionareidenticalbTotalworldprimaryenergyconsumptionandelectricitygenerationdata arefor2007 source:IEA2009a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.002

0.004

0.006

0.008

0.010

0.012

%

1971 197719751973 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007

France Canada

Year

AERA 11.6Share of total electricity generation (%)

TWh

Figure 11.6 Worldwaveandtidalelectricitygenerationandshareoftotalelectricitygenerationsource: IEA2009a

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

291

electricity.Barrage-typesystemsrequirespecificcoastalgeomorphicsettings–typicallybaysorestuaries–astheyaredesignedtoharvestthepotentialenergyofthetide,whichdependsonboththetiderangeandthesurfaceareaofthebasin(i.e.thetidalprism).Becauseoftheirsite-specificrequirementsandthecomplexresponseofthetideinveryshallowwater,itisnotpracticaltoundertakeadetailednationalscaleassessmentofthetidalpotentialenergy.Nevertheless,figure11.1identifiesinbroadtermstheregionsthatmaysupporttideenergyconvertersofthebarragetype,andthereforehighlightswheremoresite-specificstudiescouldbedirected.

Barrage-typetideenergysystemsgenerallyrequiremacro-tideranges(greaterthan4m),whicharerestrictedtothebroadnorthernshelfofAustralia;fromPortHedlandnorthwardstoDarwinandthesouthernendoftheGreatBarrierReef.Othertypesoftidalenergyconverters(tidalturbines)harnessthekineticcomponentoftideenergy.Theyaresuitableforinstallationonthecontinentalshelf,andwhiletheydonotnecessarilyrequirehighly-specificcoastalconfigurationstheycanbedeployedinlocationswherelocalcoastalconfigurationsresultinincreasedtidalflows.

ThetotaltidalkineticenergyontheentireAustraliancontinentalshelfatanyonetime,onaverage,isabout2.4PJ.ThetotalamountoftidekineticenergyontheshelfadjacenttoeachstateislistedinTable11.3.Sincethetidalmovementofshelfwatersoccupiestheentirewatercolumn,thetideenergyadjacenttoeachstateatanyonetimereflectsboththevolumeofshelfwatersandthecurrentspeedofthosewaters.Table11.3providessomeinterestingcomparisons,butitisskewedbytheNorthWest

itisprojectedtoremainthesmallestsupplierofelectricity.In2030,oceanenergyisprojectedtoaccountfor0.1percentofOECDelectricitygenerationand0.04percentoftotalworldelectricitygeneration(table11.2).

MostofthegrowthisprojectedtooccurintheEuropeanUnion,whichisprojectedtoaccountforalmost70percentoftotaloceanenergyusein2030.Afurther3TWhisprojectedtobegeneratedinsmallquantitiesintheUnitedStates,CanadaandthePacific.TidalprojectscurrentlyunderdevelopmentintheRepublicofKoreaareplannedtobeproducing550GWhin2010withpotentialtoincreasesignificantlybeyondthattowardtheKoreangovernment’sgoalofproducing5TWhusingtidalpowerby2020(IEA2009b).

Table 11.2 IEAreferencecaseprojectionsforworldoceanenergyelectricitygeneration

unit 2007 2030

OECD TWh 1 12

Shareoftotal % 0.009 0.091

Averageannualgrowth % - 14.3

Non-OECD TWh 0.0 1

Shareoftotal % 0.000 0.005

Averageannualgrowth % - -

World TWh 1 13

Shareoftotal % 0.005 0.038

Averageannualgrowth % - 14.6

source: IEA2009b

Table 11.3 Totaltidalkineticenergy(onaverageatanyonetimeonthecontinentalshelfadjacenttoeachjurisdiction

state/Territory Total energy (TJ)

NorthernTerritory 311.63

Queensland 454.19

NewSouthWales 1.21

VictoriaandTasmania 151.41

SouthAustralia 27.15

WesternAustralia 1496.33

National Total 2441.92

Note: Thesedatawereobtainedbytakingthetime-averageofthe1-yeartimeseriesoftidekineticenergydensityavailableateachgridpoint,multiplyingbythewaterdepthandmultiplyingbytheareaofa0.1degreeby0.1degreequadrantateachgridpoint,andsummingtheresultsforallgridpointsacrosstheshelf source:GeoscienceAustralia

11.3Australia’soceanenergyresources and market

11.3.1OceanenergyresourcesThefollowingdiscussionfocusesonAustralia’stidalenergyandwaveenergyresources.TherehasbeenlimitedprogressinassessingAustralia’soceanthermalenergyresources,notleastbecauseofthegreaterprospectivityofotherrenewableenergyresources(WEC2007).

Tidal energyAssessmentofAustralia’stidalenergyresourcesisrestrictedtothetidekineticenergypresentonAustralia’scontinentalshelf.Tidalcurrentsofftheshelfareminimal.Moreover,significanttransmissionlosseswouldbeexpectedfortidalenergyconverterslocatedfarfromshore.Thecontinentalshelfforthisassessmentisdefinedaswaterdepthslessthan300m.Detailsofthedataandmethodsusedin thisassessmentanditslimitationsaredescribed inBox11.1.

IndicativevaluesforthemeanspringtiderangearoundAustraliaareshowninfigure11.7.Avarietyoftideenergyconvertersarepresentlyavailabletogenerate

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

292

Shelfregion,wherethereisalargeenergydensityduetothetiderangeandalargevolumeofwatermobilisedbythetide.Therearenumerousotherlocationsonshallowerornarrowerregionsofshelfwherethetotaltidekineticenergyisconsiderablyless,butstillmorethanenoughforthepurposeofelectricitygeneration(e.g.Darwin,TorresStraitandBassStrait).

Thespatialdistributionoftime-averagedtidalkineticenergydensityontheAustraliancontinentalshelfisshowninfigure11.8.Consistentwiththetiderangesshowninfigure11.7,theregionsofshelfthathavethelargestkineticenergydensitiesaretheNorthWestShelfandthesouthernshelfoftheGreatBarrierReef,withlargeareashavingdensitiesofmorethan100Joulespercubicmetre(J/m3).Darwin,BassStraitandTorresStraithavelocalisedareaswithsimilarenergydensities,despitemoremodesttideranges(figure11.8).Thisisduetotheconvergenceandaccelerationoftidalstreamsontheshelfbetweentheislandsandmainland.

Therateofdeliveryoftidalkineticenergy,orenergyflux,isalsoreferredtoastidal (kinetic) power.Thespatialdistributionoftime-averagedtidal(kinetic)

3.2

2.5

1.6

1.51.7

2.82.95.5

6.6

9.2

8.2

3.6

1.8

1.1

0.5

0.5

0.4

0.7

1.21.0

2.0

1.7

0.6 0.6

2.6

0.8

1.13.2

2.01.1

1.3

1.2

1.2

1.7

3.3

8.2

4.9

2.4

1.8

1.6

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

AERA 11.7

0 750 km

120°

10°

20°

30°

40°

140°130° 150°

Figure 11.7 Tideranges(inmetres)forthemainstandardportsaroundAustraliasource: AustralianNationalTideTables;AustralianHydrographicService

powerontheAustraliancontinentalshelfisshowninfigure11.9.Tidal(kinetic)powerisalsogreatestonthenorthernhalfoftheAustraliancontinentalshelf,withmanyareashavingmorethan100Wattspersquaremetre(W/m2).ThesouthernhalfoftheAustralianshelf(withtheexceptionofBassStrait)hasrelativelylittletidalkineticenergyorpower(figures11.8and11.9).Thetidalkineticenergydeliveredinagiventimeperiod,forexample,inoneyear(totalannualtidalkineticenergy),canbeobtainedbyintegratingthetidal(kinetic)powertimeseriesoveroneyear.

Thespatialdistributionoftotalannualtidekineticenergyisshowninfigure11.10.ThisannualresourceisexpressedinGJ/m2oftidalflow.Inprinciple,thetotalannualtidalkineticenergyadjacenttoeachstatecouldbeestimatedbyintegratingwithrespecttothecross-sectionalarea,butinpracticetheresultdependsonwherethecross-sectionisdrawn.

Theestimatedmaximumtime-averagetidal(kinetic)poweroccurringontheshelfadjacenttoeachstate islistedintable11.4.Themeanaswellasthe 10th,50th,and90thpercentilepoweratthatlocationislistedtogetherwiththetotaltidalkinetic

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

293

continentalshelf(Hasselmannetal.1988).TheassessmentmethodologyisdescribedinmoredetailinBox11.1.

Severaltypesofwaveenergyconvertersarepresentlyavailabletogenerateelectricity.Thechoiceofconvertertechnologyplaceslimitsonthelocationsfromwhichwaveenergycanbeharvested.Forexample,thePelamisdeviceiscapableofgeneratingelectricityinwaterdepthsof60to80metres,whereasCETOissuitedtoshallowerwaterdepths(15to50metres).Giventheseconsiderations,andthetransmissionlossesexpectedifawaveenergyconverteristoofarfromshore,thisresourceassessmentisrestrictedtothewaveenergypresentonAustralia’scontinentalshelf.Theshelfisdefinedhereaswaterdepthslessthan300metres.Thespatialdistributionoftime-averagedwaveenergydensityontheAustraliancontinentalshelfisshowninfigure11.11.ThenorthernAustralianshelf(i.e.abovelatitude23degreessouth)ischaracterised byrelativelylowwaveenergydensitiesofgenerallylessthan2.5kJ/m2.ThesouthernAustralianshelf,ontheotherhand,ischaracterisedbyenergy

energydeliveredannually.Inallcasesthemaximumtidalpoweroccursinwaterdepthslessthanorequalto50m,whichinalllikelihoodisthedepthrangeinwhichthepresentgenerationoftidalenergyconverterscouldbeinstalled.

ThebestresourcedjurisdictionsareWesternAustralia,QueenslandandtheNorthernTerritory.WesternAustraliahaslocationsoffitscoastwheretheaveragetidal(kinetic)powerinwaterdepthslessthanorequalto50mexceed6.1kWpersquaremetre(KW/m2),deliveringatotaltidalkineticenergyofover195GJ/m2 annually.

Wave energyPreviousstudiesofAustralia’swaveclimatehavefocusedmainlyontheenergeticsouth-western,southernandsouth-easternmarginsofthecontinent,buttherehasbeennopreviouspubliclyavailablecomprehensivenationalassessmentofAustralia’swaveenergyresources.ThewaveenergyresourceassessmentpresentedhereisbasedonwavedatahindcastbytheBureauofMeteorologyat6-hourlyintervalsoveranelevenyearperiodfrom24090locationsevenlydistributedoverAustralia’sentire

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

AERA 11.8

0 750 km

120°

10°

20°

30°

40°

140°130° 150°

100

0

Tidal energy density (J/m3)

Figure 11.8 SpatialdistributionoftimeaveragedtidalkineticenergydensityontheAustraliancontinentalshelf (notdepthintegrated).TheenergydensityateachlocationrepresentstheaverageoveranyoneyearinJ/m3. Notethatthecolourscalesaturatesat100J/m3toshowdetail;themaximumvaluepresentis2696J/m3

source: GeoscienceAustralia

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

294

Tidal energyTherearenopreviousnationalassessmentsofAustralia’stidalenergyresourcepubliclyavailable(althoughCSIRO’sMarineandAtmosphericResearchunithasworkinprogress).ThisassessmentofAustralia’stideenergyresourceisbasedonthemeanspringtidalrangescalculatedusingtheAustralianNationalTideTablesproducedbytheAustralianHydrographicService(2006)togetherwiththedepth-averagedtidalcurrentspeedpredictedusingahydrodynamicmodel.TidalcurrentsareonecomponentofGeoscienceAustralia’sGEOMACSModel(GeologicalandOceanographicModelofAustralia’sContinentalShelf).AfulldescriptionofthetidecomponentofthemodelispresentedinPorter-Smithetal.(2004).

Tidalwaterlevelsatagivensitearehighlypredictable,providedmorethanayearofmeasurementsisavailable.Thetidalrangespresentedinfigure11.7areallfromstandardportswithlong-termtidegaugesinstalled,andarethereforeconsideredsufficientlyreliableforuseintheresourceassessment.Thepredictionoftidalwaterlevelsatsiteswherenotidegaugemeasurementsexistislessstraightforward.Theaccuracythendependsonthenatureofthehydrodynamicmodelusedandthecomplexityoftheshelfandcoastalbathymetry.Predictionsoftidalcurrentsareevenmoresensitivetothesenaturalcomplexities.Thehydrodynamicmodelusedinthisassessmenttopredicttidalcurrentspeeds,andultimatelytidalkineticenergyandpower,providesreasonable,butatbestapproximateandasyetunsubstantiated,estimatesofcurrentspeedontheshelf.However,itproducessomewhatlessadequateresultsinareassuchaselongatedcoastalbaysandinnarrowseawaysbetweenislandsandbetweenislandsandthemainland.ThepredictionsfortidalkineticenergyandpowerinKingSound,WesternAustralia,forexample,aresmall,yetthisiswherethelargesttidesinAustraliaoccur(figure11.11).

Overall,thetidalenergyresourceassessmentpresentedhereisacceptableasafirst-estimateatthenationalscale.Itindicatestherelativeimportanceofregions,butitcannotbeconsideredaccurateataregionalorlocalscaleanditcannotbereliedupontoanydegreeotherthanontheopenshelf.Thereisaneedtodevelopanew,nationalscalehydrodynamicmodel,basedonthelatestavailablenationalbathymetricgridandverifiedbysatellitealtimetry,oceanographicmoorings,andtidalstreamdata.Regionalscalehydrodynamicmodelssuitableforelongatecoastalbaysandconvolutedcoastlinesneedtobedevelopedfordetailedsiteassessment.

Wave energyThedatausedtoundertakethewaveenergyresourceassessmentarewaveconditionshindcastusingtheWAMModel–athirdgenerationoceanwavepredictionmodel(Hasselmannetal.1988)–implementedbytheAustralianBureauof

BOx 11.1 DETAILSOFASSESSMENTMETHODS,DATAANDANALySIS:TIDALANDWAVEENERGy

Meteorology.ThehindcastwavedatafromtheWAMmodelwereconvertedtowaveenergyandpower(energyflux)usinglinearwavetheoryforarbitrarydepth.DetailsofthemethodsusedarediscussedinfullinHughesandHeap(2010).TheAustralianWAMmodelgridhasaresolutionof0.1degreeandtheresolutionforsignificantwaveheightinthehindcastwavedatais0.1metre.Theaccuracyvarieswithconditions,butisnominally0.25metreforwaveheightsintherangeusedforelectricitygeneration.Theresolutionofthewaveperiodis0.1secondandtheaccuracyisnominally1second.Thisequatestoapercentagerangeofuncertaintyinthecalculatedwaveenergydensityandpowerof100percentormoreforsmallwaveheights(lessthan1metre),butdecreasingrapidlyto17percentorlessforlargerwaveheights(greaterthan6m).Inessence,thepercentageuncertaintyisleastforthesouthernhalfofAustralia’scontinentalshelfwheretheresourceisofmostpromise.

TheresultsofthisassessmentappearbroadlyconsistentwiththoseofastudyofAustralia’swaveenergyresourcebyRPSMetOceanfortheCarnegieCorporation(nowCarnegieWaveEnergyLimited),anextractofwhichwaspublishedintheCorporation’s2008AnnualReport.TheMetOceanwaveenergyresourceassessmentconcludedthat,onthesouthernhalfofAustralia’sshelf,thereisanestimatedresourceof525000MWindeepwaterand171000MWinshallowwater(adepthoflessthan25metres)(CarnegieCorporation2008).TheMetOceanrankingsofeachjurisdiction’sresourcearealsoconsistentwiththerelativemagnitudesofvaluesintables11.5to11.6,butcannotbedirectlycomparedbecausetheirdataarepresentedindifferentunitsofmeasurement.

Overall,thewaveenergyresourceassessmentpresentedhereisconsideredtobesufficientlyreliableasanationalscaleassessment.Itisbestsuitedtowaterdepthsgreaterthan25m.Inwaterdepthslessthan25mtheWAMmodeldoesnotsufficientlyaccountforshallowwaterprocesses(e.g.frictioneffectsandrefraction)thatdissipateorredistributethewaveenergy.Giventhatmanyofthecurrenttechnologiesaredesignedfordeploymentinwaterdepthsof25morless,andsomeontheshoreline,amorerefinedassessmentiswarranted.Thiswouldinvolve:

1. usingthespatiallylimitedwaveriderbuoydatatoverify/calibratetheWAMModeldata,providingamoreaccuratedatasetwithcompletecoverage oftheshelf.

2. Integratinggeographicinformationlayerssuchasbathymetry,seabedtype(gravel,sand,mud,reef),andcoastalgeomorphologyintoaGIStogetherwiththewaveclimatologytoidentifytheaccessibleresource.Thisintegratedapproach willhaveastronginfluenceondeterminingwhetherasiteissuitableforawavefarm,irrespectiveofthewaveclimate.

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

295

table11.5.Thewaveenergyadjacenttoeachjurisdictionatanyonetimereflectsboththearea ofshelfwatersandtheenergydensityinthosewaters.Forexample,VictoriaandTasmaniahave, onaverage,aboutthesametotalwaveenergyas theNorthernTerritory;however,itisconcentrated inasmallershelfarea.

TheshelfwatersoffVictoriaandTasmaniaaresuitablesitesforharvestingwaveenergy,whereastheshelf

densitiesofmorethan2.5kJ/m2,withlargeareasoftheshelfexperiencingtwicethisvalue(e.g.westernandsouthernTasmania).MuchofthesouthernAustraliancoastlineexperiencessignificantwaveheights(inexcessof1m)virtuallyallofthetime.

ThetotalwaveenergyontheentireAustraliancontinentalshelfatanyonetime,onaverage, isabout3.47PJ.Thetotalamountofwaveenergy ontheshelfadjacenttoeachstateislistedin

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

AERA 11.9

0 750 km

120°

10°

20°

30°

40°

140°130° 150°

100

0

Tidal power (W/m2)

Figure 11.9 Spatialdistributionoftime-averagedtide(kinetic)power(W/m2)ontheAustraliancontinentalshelf (notdepthintegrated).The(kinetic)powerateachlocationrepresentsatime-averageoveranyoneyear.Notethat thecolourscalesaturatesat100W/m2toshowdetail;themaximumvaluepresentis6179W/m2

source: GeoscienceAustralia

Table 11.4 Meanandpercentilesoftide(kinetic)power(W/m2)andtotaltidekineticenergydeliveredannually(GJ/m2)onthecontinentalshelfadjacenttoeachstate

JurisdictionPower (W/m2)

Energy (gJ/m2)mean 10th percentile 50th percentile 90th percentile

NorthernTerritory 2069.50 18.07 1029.68 5979.38 65.45

Queensland 4153.19 33.97 2316.85 10679.20 131.35

NewSouthWales 0.36 0.024 0.19 0.96 0.0011

VictoriaandTasmania 488.93 6.03 378.06 1193.56 15.46

SouthAustralia 317.16 0.43 78.86 1014.65 10.03

WesternAustralia 6179.39 249.42 7529.65 10679.20 195.43

source: GeoscienceAustralia

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

296

Therateofdeliveryofwaveenergy,orenergyflux,

isalsoreferredtoaswavepower.Thespatial

distributionoftime-averagedwavepoweronthe

Australiancontinentalshelfisshowninfigure11.12.

Wavepowerisalsogreatestonthesouthernhalf

oftheAustralianshelf,with25–35kW/mbeing

commonontheoutershelf.Despitethefactthat

thereisaconsiderableamountofenergyonthe

northernhalfoftheAustralianshelfatanyonetime

duetothelargeshelfarea(table11.6),theenergy

densityandpowerorratethattheenergyisdelivered

issmall(figures11.11and11.12).Forexample,

wavepowerofftheNorthernTerritoryshelfistypically

lessthan10kW/mandunsuitableforharvesting

withcurrenttechnologies.

Thespatialdistributionoftotalannualwaveenergy

(thetotalwaveenergydeliveredinayear)isshown

infigure11.13.Thisannualresource(expressedin

joulespermetre),isthetheoreticaltotalannualwave

energyavailablealongalineorthogonaltothewave

direction.Inpractice,theresultdependsonwhere

watersofftheNorthernTerritoryarenotsuitable, atleastwithexistingtechnology.Considerationmustalsobegiven,however,totherateatwhichusefulenergycanbedelivered.Inthecaseoftidalandwaveenergyresources,thelackofcontroloverthetiming,rateorlevelofdeliverycanimpactsignificantlyontheirpotentialasanelectricitysource.

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

AERA 11.10

0 750 km

120°

10°

20°

30°

40°

140°130° 150°

Work in progress

Transmission linesExisting and proposed tidal project

2

0

Tidal energy (GJ/m2)

Figure 11.10 SpatialdistributionoftotalannualtidekineticenergyontheAustraliancontinentalshelf(lessthan 300mwaterdepth),withexistingandproposedprojects

Note: Thekineticenergyateachlocationrepresentsthetotaldeliveredinayear.Dataobtainedfromalinearised,shallowtidemodel. Thecolourscalesaturatesat2GJ/m2toshowdetail;themaximumvaluepresentis195GJ/m2

source: GeoscienceAustralia

Table 11.5 Totalwaveenergy(onaverageatanyonetime)onthecontinentalshelfadjacenttoeachstate

Jurisdiction Total energy (TJ)

NorthernTerritory 458.20

Queensland 805.04

NewSouthWales 69.53

VictoriaandTasmania 485.49

SouthAustralia 631.62

WesternAustralia 1018.10

National Total 3467.98

Note: Thesedatawereobtainedbytakingthetime-averageofthe11-yeartimeseriesofwaveenergydensityavailableateachgridpoint,multiplyingbytheareaofa0.1by0.1degreequadrantateachgridpoint,andsummingtheresultsforallgridpointsacrosstheshelf source:GeoscienceAustralia

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

297

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

AERA 11.11

0 750 km

10°

20°

30°

40°

140°130° 150°120°

7

0

Wave energy density (kJ/m2)

Figure 11.11 Spatialdistributionoftime-averagedwaveenergydensityontheAustraliancontinentalshelf,inkJ/m2. Theenergydensityateachlocationrepresentstheaverageoftheavailable11-yeartimeseriesfromMarch1997toFebruary2008

source: GeoscienceAustralia

Table 11.6 Meanandpercentilesofwavepower(kW/m)andtotalenergy(GJ/m)deliveredannuallyinwaterdepthsequaltoorlessthen50m

Jurisdiction Power Energy

mean 10th percentile 50th percentile 90th percentile mean

NorthernTerritory 5.32 0.33 2.68 13.09 167.90

Queensland 14.72 3.52 9.03 29.82 442.80

NewSouthWales 13.61 2.77 7.31 27.19 391.04

VictoriaandTasmania 34.87 4.88 18.22 70.66 1100.80

SouthAustralia 25.51 4.28 15.35 54.96 885.13

WesternAustralia 26.38 4.65 15.05 56.86 901.44

source: GeoscienceAustralia

thelineisdrawn.Generally,thefurtheroffshorethelineisdrawnthegreaterthetotalenergyresourceavailable,becausewavesloseenergyandpowerastheyapproachthecoast.

Theenergyandpoweravailableforwaterdepthslessthanorequalto50m(atwhichcurrentgenerationenergyconverterspredominate)arelistedintable11.6.Boththepowerandthetotalannualenergyavailableinthelessthanorequalto50mdepthrangearegenerallyslightlysmallerthanthetotalenergyandpoweravailableindeeperwater.The

differencesbetweenthetwoaremorepronouncedinNewSouthWales,VictoriaandTasmania.

Onthebasisoftheassessmentsummarisedintable11.6,thestateswiththebestwaveenergyresourceareWesternAustralia,SouthAustralia,VictoriaandTasmania.Tasmaniaisparticularlywellendowedwithwaveenergyresources.Therearelocationsoffitscoastwheretheaveragewavepowerinwaterdepthslessthanorequalto50mreachalmost35kW/m,deliveringatotalwaveenergyof1100GJ/mannually.

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

298

environmentatPortKemblaandisduetobecommissionedinearly2010.Oceanlinxisalsodevelopingalargescaledemonstrationproject(upto2.5MWperwaveenergyconverter)atPortland,Victoria(www.oceanlinx.com).

Themostrecentoceanenergyprojectbasedontidalenergybeganoperationsin2008.The150kWtidalplantwasinstalledbyAtlantisResourcesCorporationatPhillipIsland(southofMelbourne)(www.atlantisresourcescorporation.com).

11.4Outlookto2030forAustralia’soceanenergyresources and marketOceanenergyresourceshavesignificantpotentialforfutureutilisationbutareatanearlystageofdevelopmentandhaveyettobedemonstratedtobeacommerciallyviableoptionforelectricitygenerationinAustralia.However,giventhelevelofglobalRD&Dactivity,itispossiblethattechnologicalandeconomicadvanceswillincreasethecommercialattractivenessofoceanenergy.

11.3.2OceanenergymarketInAustralia,fourelectricitygenerationunitsbasedoneithertidalorwaveenergyhavebeendevelopedinrecentyears(table11.7).Allfourunitsarepilotordemonstrationplantswithcapacitiesoflessthan0.5MW.Thesefourprojectshavecollectivelyaddedlessthan1MWofgeneratingcapacity,buttheyrepresentanimportantstageinthetechnologyinnovationprocessforoceanenergyinAustralia.

CarnegieWaveEnergyLimited(formerlyCarnegie

Corporation)holdstheintellectualpropertyand

globaldevelopmentrightsfortheCylindricalEnergy

TransformationOscillator(CETO)waveenergy

converter(seeBox11.2foratechnologydescription).

CarnegiecompletedtheCETO2pilottest(proofof

concept)atFremantleandinlate2009announced

plansforademonstrationproject(box11.3).

Oceanlinxhashada500kWprototypeoscillating

watercolumnwavepowerunit(box11.2)atPort

Kembla,NewSouthWalessince2006.Thisunit

iscurrentlybeingreplacedbyathirdgeneration

demonstrationscaledevicedesignedtosuitthe

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

AERA 11.12

0 750 km

10°

20°

30°

40°

140°130° 150°120°

50

0

Mean wave power (kW/m)

Figure 11.12 Spatialdistributionoftime-averagedwavepowerontheAustraliancontinentalshelf(kW/m). Thewavepowerateachlocationrepresentsatime-averageoftheavailable11-yeartimeseriesfromMarch 1997toFebruary2008

source: GeoscienceAustralia

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

299

projectatPortland.ThegrantwasfundedfromtheRenewableEnergyDemonstrationProgram.

Despiteitspotential,therearesignificantconstraintsonthefuturedevelopmentofoceanenergyinAustralia.Twolimitationsinparticularneedtobeaddressed:technologiesforthecommercialconversionandutilisationofoceanenergyarestillimmature;andcapitalcosts,includinggridconnection,arehighrelativetootherenergysources.Anumberoftechnologieshavepassedproof-of-conceptstagebutmanyareyettodeliverelectricitytoagrid.Someofthemhavereachedthecommercialscaledemonstrationstageandmaybeincommercialoperationbymid-thisdecade,buttheywillstillbein

11.4.1KeyfactorsinfluencingthefuturedevelopmentofAustralia’soceanresourcesAustraliahasasignificantpotentialoceanenergyresource,especiallyalongitswestern,northernandsoutherncoastlinesifbothwavesandtidesareconsidered.GovernmentpoliciessuchastheexpandedRenewableEnergyTarget(RET)andtheproposedemissionsreductiontargetcouldcontributetoamorefavourableenvironmentforoceanenergyresourcedevelopment.Therehasalsobeendirectgovernmentfundingforoceanenergy:VictorianWavePartnersobtaineda$66milliongrantfromtheAustralianGovernmenttowardsthecostofa19MWcommercial-scalewavepowerdemonstration

PERTH

SYDNEY

DARWIN

HOBART

ADELAIDE

BRISBANE

MELBOURNE

AERA 11.13

0 750 km

10°

20°

30°

40°

140°130°

Transmission linesExisting and proposedwave energy projects

150°120°

1.5

0

Wave energy (TJ/m)

Figure 11.13 Totalannualwaveenergy(TJ/m)ontheAustraliancontinentalshelf(waterdepthslessthan300m) andwaveenergyprojects.Thetotalannualwaveenergyateachlocationrepresentsanaverageofthe11years fromMarch1997toFebruary2008

source: GeoscienceAustralia

Table 11.7 OceanenergypilotanddemonstrationplantsinAustralia

Project Company state start up Capacity

Portland(waveenergy) OceanPowerTechnologiesandPowercorAust

VIC 2002 0.02MW

Fremantle(waveenergy) CarnegieWavePowerLtd WA 2005 0.1MW

PortKembla(waveenergy) Oceanlinx NSW 2006 0.5MW

SanRemo(tidalenergy) AtlantisResourceCorporation VIC 2008 0.15MW

source: GeoscienceAustralia

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

300

competitionwithother–insomecasesmorematureandlowercost–renewableenergytechnologies.

Ocean energy provides a low emissions source of energy with potential for base load electricity generation Oceanenergyisarelativelypredictable,andthereforeapotentiallyattractivesourceofelectricity,generatedwithlowgreenhousegasemissions.Thereliabilityofsomeformsofoceanenergysuchasoceanthermalmaymakeitpotentiallysuitableforbaseloadelectricitygeneration.Otherformsofoceanenergy,suchastidalenergy,whilenotconsistentinprovidingenergy,canbeaccuratelypredicted,andtherefore,shouldfacilitategridintegration:

• Tidal energyisverypredictable,butcannotbeusedtogenerateelectricityatconsistentlevelsconstantly.Twiceinevery12.42hours(24hoursinsomelocations)thetidalcurrentspeedandhencetheelectricitygenerationcapabilityfallstozero.Iftidalenergyisrequiredtoproduceasustainedbaseloadforthelocalgrid,someformofenergystorageorback-upwillbeneeded.

• Wavesarerarelyofconsistentlengthorstrength.Waveenergylevelsmayvaryconsiderablyfromwavetowave,fromdaytoday,andfromseasontoseason,becauseofvariationsinlocalanddistantwindconditions.Thisinherentvariabilityneedstobeconvertedtoasmoothelectricaloutputtobeareliablesourceofelectricitysupply.Moreover,therearesitesonthewesternandsoutherncoastlineswhereregularstormsintheSouthernOceangenerateconsistentswellswithperiodsofwaveenergyfailurebothoflowfrequencyandshortduration.Higherlevelforecasting,gridmanagementorpossiblyenergystoragesystemsareneededtosmoothoutsuchpeaksandtroughsinsupply.

• Ocean thermal energyispotentiallysuitableforbaseloadelectricitygeneration,astheoceantemperaturesonwhichitreliesshowonlyslightvariationbetweenseasons(WEC2007).

RD&D activity is critical for the future development of ocean energy resourcesDespitethelargepotentialoceanenergyresource,thelowlevelofmarketuptakecanbelargelyattributedtothecurrentlyimmatureextractiontechnologyandthelargenumberofdifferenttechnologiesbeingtrialled.Tidalcurrentsystems areconvergingonafewdifferentconverterdesigns;forotherformsofoceanenergy,therehassofarbeennosuchconvergence:

• Tidal energy technologies–tidalenergyextractiontechnologyisessentiallyanalogoustothatofwindenergy.Bothrequireapassingcurrenttodrivearotatingturbine.Tidal

energyturbinesaresubjecttolessturbulentenvironmentsthanwaveenergy.

• Wave energy technologies–Manydifferentwaveenergyconvertersareattheprototypestageandareundergoingtrialsinanumberofcountries.Thisispartlyexplainedbytheneedtodeveloptechnologiesforarangeofdifferentwaveenergyenvironmentsandclimaticconditions,includingtheabilitytosurvivesignificantstorms,andbythelackofindividualtechnologiesthathavebeenshowntobecommerciallyviable.

• Ocean thermal energy technologies –oceanthermalenergyconversiontechnologiesarerelativelynewandstillneedtobeproveninpilotscaleanddemonstrationscaleplants.Land-based,floatingandgrazingplantsarealloptions.OTECisbestsuitedtotropicalwaterswithwarmsurfacewaters.

Currently,25countriesareparticipatinginthedevelopmentofoceanpower,withtheUnitedKingdomleadingthedevelopmenteffort,followedbytheUnitedStates,Canada,Norway,AustraliaandDenmark.InPortugalthreePelamiswaveenergyconverterswithacombinedcapacityof2.25MWhavebeentrialled,butarecurrentlynotinuse.

Althoughthereispotentialenergyfromother oceansources,currentoceanpowerdevelopmenteffortshavefocussedontidalandwaveenergy (IEA2009c).

Tidal energyAtleastninecountriesoutsideAustraliahaveademonstratedinterestintidalenergyforcommercialelectricitygeneration(table11.8).AllofthesecountriesprovidesupportforR&Dinuniversitiesand/orgovernment-fundedresearchinstitutes;theR&Dcommitmentextendstothecommercialsectorineightofthecountries.Therearefull-scaleplantscurrentlyoperatinginthreecountries.Inaddition,in2009a1MWtidalplantwascommissionedintheRepublicofKoreaandthe260MWtidalplantutilisinganexistingseawallattheentrancetoLakeSihwaisunderconstruction.Theprojectwillcreateenvironmentalflowsforthelake.AmajortidaldevelopmentprojecthasalsobeenadvancedfortheSevernRiverintheUnitedKingdom,basedonaseriesofthreeproposedbarragesandtwolagoons.

Wave energyAsignificantnumber(atleast20)ofcountries,includingAustralia,havedemonstratedaninterestinwaveenergyforcommercialelectricitygeneration(table11.9).AllbutSpainareinvolvedinR&Dinuniversitiesand/orgovernment-fundedresearchinstitutes;theR&Dcommitmentextendstothecommercialsectorin14ofthecountries.

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

301

Currentlyoperatingfull-scaleprojects,albeitatthedemonstrationstage,existin10countriesoutsideAustralia.Thesizeofthesecurrentprojectsrangefromsmallplantsofhundredsofkilowattsinsize,tothelargestbeingthe2.25MWAguçadouraWaveParknearPóvoadeVarziminPortugal.Thisproject,anditsproposedexpansionto21MW,havebeensuspendedpendingresolutionoftechnicalissuesandobtainingnewfinancing.A4MWwavefarmisplannedforSiadarontheIsleofLewisinScotland.

Amoresubstantialproject,theSouth-westRegionDevelopmentAuthority’sWaveHubinCornwall,iswelladvancedinorganisationofa20MWwaveenergyarray,involvinganumberoftechnologysupplierseachinstalling4–5MWsystems.OPT,whichasamemberofVictorianEnergyPartners,isdevelopingademonstrationprojectatPortlandwiththeAustralianGovernment’sassistance,isthefirsttechnologysupplierengagedtoinstallgeneratorsattheCornwallWaveHub.

Ocean thermal energyAnimportantfocusinRD&Dactivity,particularlyinEurope,isthecombinationofOTECtechnologieswithotherdeepwaterapplications,suchaspotablewaterproduction,thatresultinbenefitsinadditiontoelectricitygeneration(WEC2007).ThreemajorstudiesinEurope(EuropeanCommission,MaritimeIndustriesForumandUKForesight)haveresultedinrecommendationsforbothOTECandotherdeepwaterenergyapplicationsthatemphasisedfundingandconstructionofaplantinthe5–10MWrange.

Ademonstrationplantwithacapacityof1–1.2MWplannedforconstructioninHawaiiisawaitinggovernmentapprovalfollowingcompletionofanenvironmentalimpactassessment.Plansfor10and25MWoceanthermalenergyprojectsarebeingconsidered(WEC2008).

R&DonOTECandotheroceanenergytechnologieshasbeenundertakensince1974byanumberoforganisationsinJapan.SagaUniversityconductedthefirstOTECelectricitygenerationexperimentsinlate1979andmorerecentlyhasbeencollaboratingwiththeNationalInstituteofOceanTechnologyofIndiaona1MWplantofftheIndiancoast(WEC2008).

Ocean energy technologies are expected to be relatively high cost options until technologies matureGiventhelargelypre-commercialstatusofthecurrentoceanenergyindustries,theoutlookishighlydependentontheamountofresourcesdevotedtoRD&D,andthepotentialforcostreductionovertime.ThisincludesRD&Dactivitybothinsurveyingtechniquestoassessenergypotentialandenergyconversiontechnologies.

Table 11.9 Countryinvolvement(otherthanAustralia)inwaveenergyR&Dand/orwithfull-scaleprojects

Country govt and academic

R&D

Commercial R&D

Currently Operating Projects

Canada ✓ ✓

China ✓ ✓ ✓

Denmark ✓ ✓ ✓

Finland ✓ ✓

France ✓

Germany ✓

Greece ✓ ✓

India ✓ ✓

Ireland ✓ ✓ ✓

Japan ✓ ✓ ✓

Mexico ✓

Netherlands ✓ ✓

NewZealand ✓ ✓ ✓

Norway ✓ ✓ ✓

Portugal ✓ ✓ ✓

Spain ✓

SriLanka ✓

Sweden ✓

UnitedKingdom

✓ ✓ ✓

UnitedStatesofAmerica

✓ ✓ ✓

source: IEA2009c

Table 11.8 CountryinvolvementintidalenergyR&Dand/orwithfullscaleplant

Country govt and academic

R&D

Commercial R&D

Currently Operating Projects

Canada ✓ ✓ ✓

China ✓ ✓ ✓

France ✓ ✓ ✓

India ✓

Republic ofKorea

✓ ✓ Underconstruction

Norway ✓ ✓

RussianFederation

✓ ✓

UnitedKingdom

✓ ✓

UnitedStatesofAmerica

✓ ✓

Note: Tablemaynotincludeallprojects,especiallysmallerR&Dprojects,butincludesthemaincountriesinvolved source:IEA2009c

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

302

australia’s population is mainly located in coastal areas, but grid access may be a significant issue for more remote future ocean energy projects

Tidal energyThebesttidalenergyresourcestendtobelocatedoffthemoreremotecoastlinesalongthenorthernmarginofAustralia.Withthepresenttechnologyconstraints,themostsuitablesitesforharvestingwithgoodaccesstotheelectricitygridfavouronlyafewregionalcentres,althoughtherearelargeresourceswithinreasonableproximitytothemajorcentresofDarwinandMackay.Thedomesticdemandforelectricityisrelativelysmallintheverywell-resourcedareasoftheKimberleyandPilbara,buttide-generatedelectricitycouldpotentiallycontributetotheenergyrequirementsoftheminingsector.

Theenvironmentalimpactofabarrage-typepowerstationmaynotbeacceptableintheseenvironmentallysensitiveregions.However,thereisthepotentialforconvertersthatharvestkineticenergyfromtidalcurrentswithmuchlowerenvironmentalimpact.The1.2MWtideturbinebeinginstalledatKoolanIsland(WesternAustralia)willmeetupto20percentofthepowerneedsoftheminingoperationstherewhenoperationalin2010(box11.3).Ingeneral,however,theindustrialloadsofremoteminingoperationsarecommonlyservicedbygas-firedgenerators.Newrenewableenergyoptionssuchastidalorwave,intheabsenceofcapitalgrantsorothersubsidiessuchasfeed-intariffs,willneedtocompetewiththeprevailing,long-run,marginalcostofgasgeneration.

Wave energyThebestwaveenergyresourcestendtobelocatedoffthemoreremotecoastlinesalongthesouthernmarginofAustralia.Withthecurrenttechnologyconstraints,themostsuitablesitesforharvestingwithaccesstotheelectricitygridfavouronlyafewregionalcentres.Thismaychangeintimeifthecurrentsmall-scaleprojectsof0.5MWto1MWevolveintosignificantprojectsof100MWormore,andthepossibilityofconnectingoverlongerdistancestothegrid–orexpandingthegrid–totakeadvantageofthisresourceisdemonstratedtobeeconomic.

Ocean energy is a zero or low emissions renewable resource, but other environmental impacts also need to be assessedElectricitygenerationfromwaveortidalenergyproducesnogreenhousegasemissions;however,emissionsassociatedwiththeproductionofthewaveortideenergydeviceandotherenvironmentalissuesmustalsobetakenintoaccount.

Investmentcostsarecurrentlylowerfortidalbarrage

systemsthanfortidalcurrentorwavesystems.

Investmentcostsfortidalbarragesystemsare

estimatedtohavebeenUS$2–4millionperMW

in2005,whileinvestmentcostsfortidalcurrent

andwavesystemsareestimatedtohavebeen

US$7–10millionperMWandUS$6–15millionper

MW,respectively(IEA2008).Shorelineinstallations

andtidalbarragesystemstypicallyhavealower

productioncostthandeepwaterdevices,butmost

deepwatertechnologiesarestillattheR&Dstage.

However,waveenergytechnologiestendtohave

highercostsbecauseofunscheduledmaintenance

causedbystormdamage.

Oceanenergytechnologiesareexpectedtoremain

relativelyhighcostoptionsfordevelopmentinthe

mediumterm.

Investmentandproductioncostsforoceanenergy

systemsareprojectedtofallovertime.Theyare

projectedtofallmoresignificantlyforwaveenergy

systemsthanfortidalbarragesystemsaswave

technologiesarecurrentlylessmature.Tidalbarrage

systemscurrentlyhavethelowestproductioncost

ofalloceanenergytechnologies.Tidalbarrage

productioncostswereestimatedtohaveranged

fromUS$60toUS$100perkWin2005,whilethe

productioncostoftidalcurrentsystemsisestimated

tohavebeenUS$150–200andtheproductioncost

ofwaveenergysystemstohavebeenUS$200–300

(IEA2008).Astherelativelynewerwaveandtidal

currenttechnologiesmature,thedifferencebetween

theproductioncostsofthesetechnologiesandtidal

barragesystemsisprojectedtofall.By2030,the

productioncostsofoceanenergytechnologiesare

projectedtorangefromUS$45toUS$100perkW

(in2005dollars)(figure11.14).

0

50

100

150

200

250

300

Tidal barrage Tidal current Wave

2005 2030 2050

AERA 11.14

Year

2005

US$

/kW

Figure 11.14 Oceanenergyproductioncostssource: IEA2008

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

303

inKingSoundandtheBonaparteGulf(WesternAustralia),Darwin(NorthernTerritory),theTorresStraitandsouthernpartsoftheGreatBarrierReef(Queensland).Thequalityoftheresourceisspatiallyvariable,butalsohighlypredictableoncefieldmeasurementsofoneyear’sdurationhavebeenobtainedforasite.Thesuitabilityofsiteswillalsobeinfluencedbywaterdepthandseabedtype,whichaffecttheengineeringoftideenergyconvertersandplacementofcablesacrosstheseabed.

ThewaveenergyresourceassessmentdiscussedinSection11.3.1suggeststhatthereisfuturedevelopmentpotentialacrossthesouthernhalfofAustralia’scontinentalshelffromExmoutharoundtoBrisbane.Thequalityoftheresourceisvariable,withthefailurerateofthewavestodeliversufficientenergyandthefrequencyoffailuresgenerallyincreasinginthemorenortherlywaters.Theremayalsobestronglocalvariabilityinboththeresourceanditsaccessibility;thelatterbeingdeterminedbyrequirementsforparticularwaterdepthsandseabedtypesforinstallationofthewaveenergyconvertersandnetworksofpipeorcableacrosstheseabed.

11.4.3OutlookforoceanenergymarketThemajoroceanenergydevelopmentsoccurringinAustraliaarefocussedonprovinguptechnologiesfortidalorwaveenergy.Severalcompanieshaveplansforpilotanddemonstrationplants(box11.3).Importantlyforthefutureoftheoceanenergyindustry,companiesarenowinvestingincommercialscalepowerprojects.Thisisanessentialstepindemonstratingthetechnicalandeconomicviabilityofthesetechnologies.EarlydemonstrationofthecommercialviabilityoftheseorcomparabletechnologiescouldwellacceleratethedevelopmentofwaveandtideenergyinAustralia.

Tidalbarragesdisruptthesurroundingenvironmentmorethanothertidalorwaveenergysystems.Tidalbarragesreducetherangeoftidesthatoccurinsidethebarrage.Thismayhavenegativeimpactsonwaterqualityandbiodiversityinthesurroundingareaandcauselossofhabitatwhereintertidalzonesarereducedinarea(IEA2008).Offshoretidalorwaveenergyprojectstypicallyhavealowerimpactontheenvironment.However,offshoresystemsmayposeanavigationhazard,andthereforemustbelocatedinareasthatarenotheavilynavigated.Theremayalsobepotentialconflictswithotherlocalusesofthemarineareaandapossibleimpactonmigratingmarinemammals.Theextentofthepotentialimpactswilldependonthetypeofwaveenergyconvertertechnology;underseatechnologiestendtohave lessimpacts.

Waveandtidalenergysystemslocatedneartheshorelinemaybeobjectedtobynearbycommunitiesonthegroundsofnoiseandpossiblyvisualpollution.Thismayresultinpublicoppositiontoprojects,particularlyiftheyarelocatedinpopulatedareas.

11.4.2OutlookforoceanenergyresourcesWaveandtidalenergyarenon-depletableresources;increaseduseoftheresourcesdoesnotaffectresourceavailability.However,estimatesofresourceavailabilitymaychangeovertimeasnewmeasurementmethodsbecomeavailable.Inaddition,thequantityoftheresourcethatcanbeutilisedwillchangeovertimeasnewtechnologydevelopmentsallowincreasedexploitationofoceanresources.

ThetidalenergyresourceassessmentpresentedinSection11.3.1suggeststhatthereisfuturedevelopmentpotential,largelyonthenorthernhalfofAustralia’scontinentalshelfandparticularly

BOx 11.2 CURRENTOCEANENERGyTECHNOLOGIES

Tidal energy technologiesTherotatingtidewavesresultindifferentsealevelsfromoneplaceontheshelftothenextatanyonetime,andthiscausesthewatercolumntoflowhorizontallybackandforth(tidalcurrents)overtheshelfwiththetidaloscillationsinsealevel.Twodifferenttechnologieshavebeendevelopedtoharnessthesetidalmovements.

Thedesignofunderwaterturbineshasadvancedconsiderablyinrecentyears,butthereisstillconsiderableresearchanddevelopmentseekingtomaximiseefficiencyandrobustnesswhileminimisingoverallsize(figure11.15).

Barragesharnesssomeofthepotentialenergyofthetide.Inessence,abarragewithsluicegatesallowswatertoenterthebasinontherisingtide,andat

hightidethesluicegatesareclosed,thustrappinga

largebodyofwater(figure11.15).Asthewaterlevel

ontheoceansideofthebarragefallswiththeebbing

tide,theelevatedwaterfrombehindthebarrageis

releasedthroughthesluicegates,whereturbines

arelocated,togenerateelectricity.Theprincipleis

similartohydro-electricschemesondammedrivers.

Morecomplicatedsystemsofbasinsandbarrages

canbedesignedtogenerateelectricityonboththe

ebbingandfloodingtide.Thepotentialenergythatis

availabletobeharnessedisrelatedtothevertical

tiderangeandthehorizontalareaofthebasin

(thetidalprism).

Tidalstreamgeneratorsfocusonthekinetic

energycomponentofthetide.Aturbineisplaced

withinatidalcurrentandthekineticenergy

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

304

Table 11.10 Examplesofdifferenttypesofwaveenergyconverters

Device Example Location of installation

Location of generator

Proof of concept

Electricity to grid

Oscillatingwatercolumns

LIMPET Shoreline Onshore ✓ ✓

EnergetechOWC Seabed,shallowwater Offshore ✓ ✓

OPTPowerBuoy Seabed,shallowwater Offshore ✓

Hinged(andsimilar)devices

Oyster Seabed,shallowwater Onshore ✓ ✓

CETO Seabed,shallowwater Onshore ✓

Overtoppingdevices

WaveDragon Surface,tetheredtoseabed

Offshore ✓ ✓

Seawaveslotcone Shorelineoroffshore Onshoreoroffshore

Other

Pelamis Surface,tetheredtoseabed

Offshore ✓ ✓

Archimedesswing Immediate Offshore ✓

associatedwiththehorizontalmotionofthe waterdrivestheturbinetogenerateelectricity. Thereareturbinesdevelopedforrelativelyshallowwaterinstallationthatrotateinaverticalplane, andothersthatrotateinahorizontalplane.

Thefirst(andstillthelargest)tidalpowerstationwasbuiltontheRanceRiverestuaryinFrance,between1961and1966.Ithasbeenoperatingcontinuouslysincethen.Itisabarrage-typesystemconsistingofan800-metrelongdamenclosingabasinwithasurfaceareaof22.5km2.Thespringtiderangeisupto13m.Theplanthasapowergeneratingcapacityof240MWanditdelivers2.3PJofenergyannuallytothegrid(WorldEnergyCouncil2007).Asmallerbarrage-typestationatAnnapolis,ontheBayofFundy,Canadawascompletedin1984.Thetiderangeinthislocationcanexceed12m(Pugh2004).Thisplanthasapowercapacityof20MWanddelivers108TJannually.TheRepublicofKoreaiscurrentlybuildingthelargestbarrage-typepowerstation(260MW)atSihwaLakewithcompletionduethisyear.Chinahassevensmallbarrage-typepowerstationswithatotalcapacityof11MW,andplansformore.Indiaalsohasplansforabarrage-typepowerstation(WorldEnergyCouncil2007).

Powerstationsseekingtoharnessthekineticenergyoftidalcurrentsarepresentlymuchsmaller,andstillinthedevelopmentalphase.NorwayhasthefirstgridconnectedunderwaterturbinelocatedatKvalsundet,whichhasa300kWpowercapacity(WorldEnergyCouncil2007).TherearesimilarpilotprojectsintheRussianFederation,theUnitedKingdomandtheUnitedStates.

Wave energy technologiesTooperateefficientlyawaveenergyconvertermustbetunedforthemodalwaveenergyconditions,butalsodesignedandengineeredtowithstandextremeenergyconditions.Thisposesasignificantchallenge,

becauseitisthelowerenergylevelsthatproducethenormaloutput,butthecapitalcostisdrivenbythedesignstandardnecessarytowithstandextremewaves(WEC2007).Thereisalargenumberofdesignsforwaveenergyconverters.Forthemostpart,theycanbebroadlygroupedintooneoffourtypes(table11.10).

Oscillating water columns(OWCs)consistofasemi-enclosedairchamberthatispartiallysubmerged(figure11.16).Thepassageofwavespastthechambercausesthewaterlevelinsidethechambertoriseandfall,andtheoscillatingairpressuredrivesairthroughaturbinetogenerateelectricity.OWCshavebeendevelopedforinstallationontheshoreline,inshallowwaterrestingontheseabed,andindeepwatermountedonasurfacebuoy.

Hinged (and similar) devicesaresubmergedunitsthatconsistofapaddleorbuoythatoscillateswiththepassageofwaves(figure11.16).BoththeOysterandCETOusethismotiontopumphighpressurewaterashore.Theintentionisforthiswatertobepushedthroughturbineslocatedonshoreforelectricitygeneration.Thewatercanalsoundergoreverseosmosistoproducepotablewater.Theseexampleshavepassedproofofconcept,deliveringhighpressureseawaterashore.However,theseareyettodeliverelectricitytothegrid.

Overtopping devicesaredesignedtocauseoceanwavestopushwateruptoareservoirsituatedabovesealevel,fromwhichthewaterdrainsbacktosealevelthroughseveralturbines(figure11.16).Thesedeviceshavebeendesignedforbothshorelineandoffshoreinstallation.

Oftheremainingtypes,the Pelamis wave energy converterconsistsoftwoormorecylindricalsectionslinkedtogether(figure11.16).Thepassageofwavescausesthesectionstoundulate,andthemovementatthehingedjointsisresistedbyhydrauliccylinders

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

305

Figure 11.15 Examplesofdifferenttypesoftidalenergyconverters.(a)LaRanceRiverestuarytidalbarrage (b) Schematicshowingthewaterlevelseithersideofabarrageduringpowergeneration(c)SeaGenerationLtd’sSeaGenturbinewithbladeselevatedforservicing(d)BioPowerSystem’sbioStreamturbine(e) and (f)AtlantisResourcesCorporation’sNereusandSolonturbines,respectively

source: WikimediaCommons;www.seageneration.co.uk;www.biopowersystems.com;AtlantisResourcesCorporation

Ocean

Estuary

Ocean

Estuary

Tide going in

Tide going out

AERA 11.15b

Turbine andgenerator

a

c

e

b

d

f

thatpumphighpressurefluidthroughhydraulicmotorsandelectricalgenerators.Thearchimedes Waveswingconsistsofasub-surfacevertical cylindertetheredtotheseabed(figure11.16). Anair-filleduppercylindermovesagainstalowerfixedcylinderwiththepassageofeachwave.Theverticaloscillatorymotionisconvertedtoelectricitywithalineargenerator.

Ocean thermal energy conversion (OTEC) technologiesTherearethreetypesofelectricityconversionsystemsforoceanthermalenergy:closedcyclesystems,opencyclesystemsandhybridsystems.

• Closed-cycle systemsusetheocean’swarm

surfacewatertovaporiseaworkingfluidwitha

lowboilingpoint,suchasammonia.Thisvapour

expandsandturnsaturbinewhichactivatesa

generatortoproduceelectricity.

• Open-cycle systemsboiltheseawaterby

operatingatlowpressures,producingsteam

thatpassesthroughaturbinetogenerate

electricity.

• Hybrid systemscombinebothclosed-cycleand

open-cyclesystems.

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

306

Figure 11.16 Examplesofdifferenttypesofwaveenergyconverters.(a)SchematicofOceanlinxMK3PC(oscillatingwatercolumn)plannedforinstallationatPortKembla(b)OceanPowerTechnologies’PowerBuoy®,AtlanticCity, NewJersey(c)CETOwaveenergyconverter(d)SchematicofCETOwavefarm(e)WaveDragonovertoppingdevice(f)SchematicshowingtheoperationofWaveDragon(g)Pelamiswaveenergyconverter(h)SchematicofArchimedeswaveswing

source: www.oceanlinx.com;www.oceanpowertechnologies.com;www.carnegiecorp.com.au;www.wavedragon.co.uk;www.pelamiswave.com;OregonStateUniversity

Overtopping

Reservoir

Turbine outlet

Reservoir

AERA 11.16f

OFF-THE-SHELF TECHNOLOGY

HIGH PRESSURE SEAWATER

20-50 METRESWATER DEPTH

LOW PRESSURE SEAWATER RETURN PELTON TURBINE

WITH ELECTRICAL GENERATOR

POWER TO THE USER

CETO TECHNOLOGY

ZERO EMISSION DESALINATED WATER

ZERO EMISSION ELECTRICITY INTO GRID

COPYRIGHT © / NOT TO SCALE

a

e

g

c

b

f

h

d

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

307

• Floating plantsrequireatransmissioncabletoshoreandmooringsindeepwater,buthavethe

advantagethatthecoldwaterpipeisshorter.

TechnologydevelopmentsinhighvoltageDC

transmissionandmooringintheoffshoreoiland

gasindustrymaybeutilisedinfloatingplants.

• grazing plantsareabletodriftinoceanareasthatareprospectiveforoceanthermalenergywhere

theoutput,liquidhydrogen,wouldbeoffloadedinto

shuttletankersfortransporttomarket.

OTECplantsmaybeland-based,floatingorgrazing

(WEC2007):

• Land-based plantshavetheadvantageofnotransmissioncabletoshoreandnomooring

costs,butrequireacoldwaterpipetocrossthe

surfzoneandfollowtheseabedtotherequired

depth.Thisresultsinlowerefficiencybecausea

longerpipehasgreaterfrictionlossesandthere

isgreaterwarmingofthecoldwaterbeforeit

reachestheheatexchanger.

Australiacurrentlyhasnocommercialscaleoceanenergyprojectsatanadvancedstageofdevelopment.

Therearefourcommercialscaleprojectsthatareatalessadvancedstageofdevelopment,threeofwhicharebasedonutilisingtidalenergy(table11.11).TheseprojectsaresignificantlylargerthanthosepreviouslycommissionedinAustralia,withacombinedcapacityof805MW.Twoprojectsaccountforaround93percentofthisadditionalcapacity–theClarenceStraitTidalEnergyproject(450MW)intheNorthernTerritoryandtheBanksStraightTidalEnergyproject(302MW)inTasmania.BothprojectshavebeenproposedbyTenaxEnergyandareexpectedtoenterproductionin2011and2013respectively.

Thereareatpresentnobarrage-typetidalpowerstationsinAustralia.SeveralproposalshavebeenputforwardforastationatDerby,WesternAustralia,includinga2001proposalfora5MWplanttodeliver68.4TJperyear(HydroTasmania2001).Ithasbeensetasidebecauseoftheenvironmentalimpactsofaconstructionof thisscaleonsensitivewetlandsandhighgridconnectioncosts.

AtlantisResourcesCorporationcurrentlyoperatesa150kW(soontobeupgradedto400kW)NereusturbineatatestsiteatSanRemo,Victoria,thatisconnectedtotheelectricitygrid.Thecompanyisinstallinga1.2MWtidalplantnearCockatooandKoolanIslandsinKingSound,northofDerbyinWesternAustraliathatisexpectedtobeoperationalinearly2010.Theprojectinvolvestheinstallationofa16.5metreNereusturbinethatwillprovideupto20percentofthepowerneedsofMtGibsonIron(www.atlantisresourcescorporation.com).

BioPowerSystemshasaproposalforasmallpilotplant(250kW)atFlindersIsland,Tasmania,

BOx 11.3 PROPOSEDOCEANENERGyDEVELOPMENTPROJECTSINAUSTRALIA

tocommencethisyear.Theprojectinvolvestheinstallationofa20metrebioSTREAMturbine.

Thereareseveralcommercialscalewaveenergydemonstrationprojectseitherproposedorunderway,inWesternAustralia,SouthAustralia,VictoriaandTasmania.CarnegieWaveEnergyLimitedannouncedthatithadcompletedafeasibilityassessmentthatidentifiedGardenIslandasthepreferredsiteforthedevelopmentofa5MWdemonstrationwaveenergyprojectbasedonCETO3waveconverter.ThecompanyhasfiveotherprojectsitesinAustraliaatthelicensingagreementstagespreadacrossWesternAustralia,SouthAustraliaandVictoria(Albany,PortMacDonnell,Portland,WarnamboolandPhillipIsland)andisundertakingafeasibilitystudytoassesstheviabilityofusingwaveenergytosupplypowertotheremotenavalbaseatExmouthinWA(www.carnegiecorp.com.au).

VictorianWavePartners,apartnershipbetweenOceanPowerTechnologiesAustralasia(OPTA) andLeightonContractorsPtyLtd,havebeenawardedagrantundertheAustralianGovernment’sRenewableEnergyDemonstrationProgram(REDP)todevelopa19MWwavepowerdemonstrationprojectnearPortlandinVictoria,Australia.TheprojectwilluseOceanPowerTechnologiesInc’sPowerBuoy®waveenergyconverter(box11.2; www.oceanpowertechnologies.com).

BioPowerSystemshasa250kWpilotprojectplannedforKingIsland,Tasmania,incollaborationwithHydroTasmaniausingitsBioWAVEseabed-mountedhingedwaveenergyconverterThepilotisscheduledtobeoperationalin2010,withtheintentionofconnectingittotheisland’selectricitygrid.

OceanlinxisplanningdemonstrationprojecttrialsofitswaveenergyconvertertechnologyinPortland,Victoria.Theprojectwillinvolvetheinstallation

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

308

IEA,2009a,WorldEnergyBalances(2009edition),Paris

IEA,2009b,WorldEnergyOutlook2009,Paris

IEA,2009c,OceanEnergy:Globaltechnologydevelopment

status,Paris

Porter-SmithR,HarrisPT,AndersenOB,ColemanR,

GreensladeDandJenkinsCJ,2004,Classificationofthe

Australiancontinentalshelfbasedonpredictedsediment

thresholdexceedencefromtidalcurrentsandswellwaves.

MarineGeology,211,1–20

PughD,2004,ChangingSeaLevels:EffectsofTides,

WeatherandClimate,CambridgeUniversityPress

WEC(WorldEnergyCouncil),2007,SurveyofEnergy

Resources2007,London,<http://www.worldenergy.org/

documents/ser2007_final_online_version_1.pdf>

WEC(WorldEnergyCouncil),2008,SurveyofEnergy

Resources,InterimUpdate2009,<http://www.worldenergy.

org/publications/survey_of_energy_resources_interim_

update_2009/default.asp>

11.5ReferencesABARE(AustralianBureauofAgriculturalandResourceEconomics),2009,ElectricityGenerationMajorDevelopmentProjects–October2009Listing,Canberra,November2009

AustralianHydrographicService,2006,AustralianNationalTideTables,RoyalAustralianNavy,Canberra

CarnegieCorporation,2008,Carnegie2007AnnualReport,CarnegieCorporationLtd

HasselmannKandtheWAMDIGroup,1988,TheWAMModel–Athirdgenerationoceanwavepredictionmodel.JournalofPhysicalOceanography,18,1775–1810

HydroTasmania,2001,StudyofTidalEnergyTechnologiesforDerby.HydroElectricCorporation,ReportNo.WA-107384-CR-01

HughesMGandHeapAD,2010,National-scalewaveenergyresourceassessmentforAustralia.RenewableEnergy(inpress)

IEA(InternationalEnergyAgency),2008,EnergyTechnologyPerspectives2008–Scenarios&Strategiesto2050,Paris

Table 11.11 CommercialscaletidalenergyprojectsatalessadvancedstageofdevelopmentinAustralia

Project Company Location status start up Capacity Capital Expenditure

VictorianWavePowerDemonstrationProject

VictorianWavePartnersPtyLtd

Portland,Vic Govtgrantawarded

na 19MW na

ClarenceStraitTidalEnergyProject

TenaxEnergyPtyLtd

ClarenceStrait,NT

Govtapprovalunderway

2011 450MW na

PortPhillipHeadsTidalEnergyProject

TenaxEnergyPtyLtd

PortPhillipHeads,Vic

Govtapprovalunderway

2012 34MW na

BanksStraitTidalEnergyFacility

TenaxEnergyPtyLtd

BanksStrait,TAS Govtapprovalunderway

2013 302MW na

source: ABARE2009

ofmultipleunitsintegratedintoasinglewavefarm(www.oceanlinx.com).TheVictorianGovernmentisaninvestmentpartnerinthisproject,throughitsCentreforEnergyandGreenhouseTechnologies.Subject

tothesuccessfulcompletionofthedemonstrationphase,thecompanyisconsideringinstallationofawaveenergyconversionarraywithatotalcapacity of30MW.