ars.els-cdn.com · web [email protected] and [email protected] figure s1 (a) tem and...

10
Supporting Information Highly Stable Nitrogen-Doped Carbon Nanotubes Derived from Carbon Dots and Metal-Organic Frameworks Toward Excellent Ef cient Electrocatalyst for Oxygen Reduction Reaction Wen-Jun Niu* a,b , Ya-Ping Wang a,b , Jin-Zhong He a,b , Wen-Wu Liu a,b , Mao-Cheng Liu a,b , Dan Shan c , Ling Lee d , Yu-Lun Chueh* d,e,f a Key Laboratory of Advanced Processing and Recycling of Non- ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, PR China. b School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China. c School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.. d Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC. e Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC. 1

Upload: others

Post on 01-Dec-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web viewniuwenjun0509@163.com and ylchueh@mx.nthu.edu.tw Figure S1 (A) TEM and (B) HR-TEM images of the N-Cdots. Figure S2 (A) Low-resolution and (B) high-resolution

Supporting Information

Highly Stable Nitrogen-Doped Carbon Nanotubes Derived from Carbon

Dots and Metal-Organic Frameworks Toward Excellent Efficient

Electrocatalyst for Oxygen Reduction Reaction

Wen-Jun Niu*a,b, Ya-Ping Wanga,b, Jin-Zhong Hea,b, Wen-Wu Liua,b, Mao-Cheng Liua,b, Dan

Shanc, Ling Leed, Yu-Lun Chueh*d,e,f

aKey Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou

University of Technology, Lanzhou 730050, PR China.

bSchool of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou

730050, PR China.

cSchool of Environmental and Biological Engineering, Nanjing University of Science and

Technology, Nanjing 210094, PR China..

dDepartment of Materials Science and Engineering, National Tsing Hua University, Hsinchu,

30013, Taiwan, ROC.

eDepartment of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC.

fFrontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing

Hua University, Hsinchu 30013, Taiwan, ROC.

* E-mail Address: [email protected] and [email protected]

1

Page 2: ars.els-cdn.com · Web viewniuwenjun0509@163.com and ylchueh@mx.nthu.edu.tw Figure S1 (A) TEM and (B) HR-TEM images of the N-Cdots. Figure S2 (A) Low-resolution and (B) high-resolution

Figure S1 (A) TEM and (B) HR-TEM images of the N-Cdots.

2

Page 3: ars.els-cdn.com · Web viewniuwenjun0509@163.com and ylchueh@mx.nthu.edu.tw Figure S1 (A) TEM and (B) HR-TEM images of the N-Cdots. Figure S2 (A) Low-resolution and (B) high-resolution

Figure S2 (A) Low-resolution and (B) high-resolution SEM images of the ZIF-67.

3

Page 4: ars.els-cdn.com · Web viewniuwenjun0509@163.com and ylchueh@mx.nthu.edu.tw Figure S1 (A) TEM and (B) HR-TEM images of the N-Cdots. Figure S2 (A) Low-resolution and (B) high-resolution

Figure S3 XRD results of (A) N-Cdots and (B) ZIF-67, respectively.

4

Page 5: ars.els-cdn.com · Web viewniuwenjun0509@163.com and ylchueh@mx.nthu.edu.tw Figure S1 (A) TEM and (B) HR-TEM images of the N-Cdots. Figure S2 (A) Low-resolution and (B) high-resolution

Figure S4 CVs for (A) bare GCE, (B) N-Cdots, (C) Co-N-C nanohybrids and (D) Pt/C electrodes in N2-saturated (curve a) and O2-saturated (curve b) 0.1 M KOH at a scan rate of 10 mV s-1.

5

Page 6: ars.els-cdn.com · Web viewniuwenjun0509@163.com and ylchueh@mx.nthu.edu.tw Figure S1 (A) TEM and (B) HR-TEM images of the N-Cdots. Figure S2 (A) Low-resolution and (B) high-resolution

Figure S5 LSVs for (A) N-Cdots, (C) Co-C-N, and (E) Pt/C electrodes in the O2-saturated 0.1 M KOH solution at a series of rotation rates from 400 to 2025 rpm with a scan rate of 5 mV s-1. Koutecky−Levich plots (j−1 versus ω−1/2) of (B) N-Cdots, (D) Co-N-C, and (F) Pt/C electrodes at different potentials.

6

Page 7: ars.els-cdn.com · Web viewniuwenjun0509@163.com and ylchueh@mx.nthu.edu.tw Figure S1 (A) TEM and (B) HR-TEM images of the N-Cdots. Figure S2 (A) Low-resolution and (B) high-resolution

Table S1 A summary of various electrocatalysts for ORR performance.

Onset Half-wave CV peak ElectronElectrocatalysts Potential Potential potential Transfer

(V) (V) (V) NumberN-CNTs 0.88 0.82 0.80 3.92

NCNTFs[1] 0.97 0.87 0.87 3.97

N-CNTs-650[2] 0.94 0.85 0.87 3.94

CNT/grapheme hybrid[3] 0.89 0.76 0.75 4.0

Defective grapheme[4] 0.91 0.76 — 3.87

NC@Co-NGC DSNC[5] 0.92 0.82 0.81 4.0

Co3O4/N-rmGO[6] 0.88 0.79 0.83 3.9

ZIF-67-900[7] 0.91 0.85 — 4.0

Co-NC[8] 0.92 0.83 — 3.72

P-Z8-Te-1000[9] 0.88 0.79 — 4.0

Co,N-CNF[10] 0.88 0.81 0.77 3.8

Co/N-C-800[11] 0.83 — 0.73 3.94

[CoN4]3/C[12] 0.82 — 0.70 3.7

Co-N-GN[13] 0.86 0.80 0.78 3.7

Co/N/rGO(NH3)[14] 0.85 0.81 0.72 3.9

CoMn2O4 nanotubes[15] 0.89 0.72 0.81 3.6

References

1. B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. Lou, X. Wang, Nat. Energy 2016, 1, 15006–

15013.

2. J. Meng, C. Niu, L. Xu, J. Li, X. Liu, X. Wang, Y. Wu, X. Xu, W. Chen, Q. Li, Z. Zhu,

D. Zhao, L. Mai, J. Am. Chem. Soc. 2017, 139, 8212−8221.

3. Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. Idrobo, S. J. Pennycook, H. Dai,

Nat. Nanotech. 2012, 7, 394−400.

4. Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, X. Yao, Adv. Mater.

2016, 28, 9532–9538.

5. S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C. Y. Chiang, W. Zhou, J. Zhao, J. Qiu, Adv.

Mater. 2017, 29, 17008741700883.

6. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10,

7

Page 8: ars.els-cdn.com · Web viewniuwenjun0509@163.com and ylchueh@mx.nthu.edu.tw Figure S1 (A) TEM and (B) HR-TEM images of the N-Cdots. Figure S2 (A) Low-resolution and (B) high-resolution

780–786.

7. X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, X. Li, J. Mater. Chem. A

2014, 2, 14064–14070.

8. A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. J. R. Botz, R. A. Fischer, W.

Schuhmann, M. Muhler, Angew. Chem. Int. Ed. 2016, 55, 4087–4091.

9. W. Zhang, Z. Wu, H. Jiang, S. Yu, J. Am. Chem. Soc. 2014, 136, 14385–14388.

10. L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G. I. N. Waterhouse, Li. Wu, C. T,

T. Zhang, Adv. Mater. 2016, 28, 1668–1674.

11. Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, Nanoscale 2014, 6, 1508015089.

12. R. Liu, C. Malotki, L. Arnold, N. Koshino, H. Higashimura, M. Baumgarten, K.

Muellen, J. Am. Chem. Soc. 2011, 133, 1037210375.

13. S. Jiang, C. Zhu, S. Dong, J. Mater. Chem. A 2013, 1, 35933599.

14. K. Niu, B. Yang, J. Cui, J. Jin, X. Fu, Q. Zhao, J. Zhang, J. Power Sources 2013, 243,

6571.

15. J. Meng, C. Niu, X. Liu, Z. Liu, H. Chen, X. Wang, J. Li, W. Chen, X. Guo, L. Mai,

Nano Res. 2016, 9, 24452457.

8