the optimal structural design of qsat fm (flight model) space system dynamics laboratory m2 takafumi...

Post on 11-Jan-2016

212 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

THE OPTIMAL STRUCTURAL DESIGN OF QSAT FM (Flight Model)

Space System Dynamics Laboratory

M2 Takafumi ImazuFebruary 27, 2007

2007 Master thesis

2 / 20ContentsContents

BackgroundObjectiveMicro Satellites QSATRequirement for satelliteConfiguration of analysis modelStructural Design

– Structural Analysis– Structural Test

Conclusions QSAT (Qshu SATellite)

3 / 20BackgroundBackground

QSAT

Science InstrumentsScience Instruments plasma probe magnetometer

• Structure subsystem will be critical during launch by H-IIA rocket.

4 / 20ObjectiveObjective

Optimal Structural Design of QSAT

• Based on QTEX-PR, the structural analysis and test are estimated.

Random vibration test is performed on QTEX-PR.

QTEX-PR (Qshu university Tether satellite EXperiments Public Relation)

5 / 20Micro satellite QSATMicro satellite QSAT

QSAT (Polar Plasma Observation Satellite)

OrbitSizeMass

MissionTerm

Depend H-IIA rocket≦ 500 mm Cube

≦ 50 kg

1 year

6 / 20

Directionz axis

x or y axis

Frequency>100Hz> 50Hz

Table.Stiffness Requirement

Requirement for SatelliteRequirement for Satellite

• Satellite Maximum size : 500×500×450mm3

Fig.Satellite Maximum Size

7 / 20Requirement for SatelliteRequirement for Satellite

PressureTension

z axis x or y axis-6G5G ± 5G

± 5G

Table Staic Load Acceleration

z axisx or y axis

5~100Hz5~100Hz

Table Dynamic Load AccelerationDirection Frequency Acceleration

2.5Go-p

2.0Go-p

20~200Hz200~2000Hz

Table Random vibration LevelFrequency range Power Spectral Density

+3dB/oct0.032

7.8GrmsRoot-Mean-Square value

8 / 20Configuration of analysis modelConfiguration of analysis model

③ ③

④ ④

Analysis model

i) Local partii) Whole satellite

Analysis

TopBottom

SideInsideFrange

Place Material Size (mm) Mass (kg)①②③④⑤

CFRP honeycombCFRP honeycombCFRP laminationCFRP lamination

Al5052

480× 480× 10480× 480× 10479× 180× 1314× 180× 2φ 225× 52

0.550.500.560.770.94

Angle & BoltsBus system

Al5052

Whole mass

1.499.9014.71

Table Element of analysis model

9 / 20Structural AnalysisStructural Analysis

Estimation of local part on analysis model

• CFRP Lam’s Side panel in itself where a unit is attached

f =π2 ρ h

D 1a2 + 1

b2(    )i) formula

ii) Nastran (Structural analysis software)

CFRP : (Carbon Fiber Reinforced Plastic)Lam Lamination⇒

Member Element characteristics Characteristics of figureModel 1Model 2

UnitUnit

MassSHELL & Solid

PointQuad, Tria & Hexa

Table Analysis model

10 / 20Structural AnalysisStructural Analysis

(i) Model 1 (ii) Model 2

• Local side panel analyzed with Nastran

Magnetic torquer

Mass model Surface & Solid model

Analysis model

11 / 20Structural AnalysisStructural Analysis

Results

Fig. Each plates estimatedLocal plate of frequency ≥ 100Hz

Frequency of each plate is estimated

in whole satellite structure.

Platemd_2

Model 1 Model 2formulaFrequency

86.52 Hz 88.28 Hz90.62 Hz

Table Result of Frequency

Requirement

Not enough

12 / 20Structural AnalysisStructural Analysis

CFRP lamination plate in whole satellite structure

(i) Mass model (ii) Surface & Solid modelFig. Analysis model

Member Element Characteristic

UnitSURFACE

SOLIDor Mass

Table Analysis model

13 / 20Structural AnalysisStructural Analysis

Fig . Analysis model

(i) Mass model (ii) Surface & Solid model

(i) Mass model (ii) Surface & Solid model

Fig . Analysis model

Results

The requirement for stiffness is satisfied.

md_2Mass model Surface & Solid modelPlate

125.55 Hz123.09 Hz

FrequencyTable Frequency (local part)

Direction

x or y axis

Mass model Surface & Solid model

69.97 Hz65.23 Hzz axis 146.97 Hz153.99 Hz

Table Frequency (whole)

14 / 20

Table Strength (Mass)

L type Angle

Material Maximum stress6.3

Al5052Top & bottom panel 195 MPaHoneycomb

Allowable stress MS

195 MPa26.71 MPa37.00 MPa 4.3

L type Angle

Material Maximum stress6.4

Al5052Top & bottom panel 195 MPaHoneycomb

Allowable stress MS

195 MPa26.40 MPa66.06 MPa 2.0

Table Strength (Surface & Solid)

Structural AnalysisStructural Analysis

Static load analysisF : allowable stressS.F : margin of safety ratioσmax : stress of analysis

Requirement for H-IIA rocket is satisfied

MS: Margin of safety

MS =F

S.F×σ max- 1

15 / 20

Table Strength analysis

L type Angle

Material Maximum stress4.4

Al5052

Allowable stress MS

195 MPa37.03 MPa36.42 MPa

4.3①②①:Mass model②:Surface & Solid model

Structural AnalysisStructural Analysis

Sine vibration analysis

The satellite structure has no problem in analysis.

z axis

frequency range acceleration

5~100Hz 2.5G× 1.5

Table Requirement

16 / 20Structural testStructural test

Sine vibration test

When frequency is set 177.9Hz, sine vibration test is done with acceleration 0.1, 0.2 and 0.5G.

0.1

0.12

0.08

Acc

eler

atio

n(G

)

170.0 180.0 190.0Frequency (Hz)

177.9Hz 180.2Hz

Fig. frequency of satellite

Table Sweep test

Frequency range

Acceleration

Sweep velocity

100~300Hz

0.1G

4.0 octave/min

17 / 20Structural testStructural test

The analysis’s value is different from the test’s value.

The damping value with Nastran will be related

Comparing analysis with test

Unit

BatteryAttitude control

Camera 1

Top plate

2.5× 1.5GAnalysis

0.1G 0.2G 0.5GTest

1.100.970.37

1.76

0.64 0.91 1.411.00 1.00 1.081.36 1.56 1.89

5.46 3.30 4.15

Direction

YXZ

Z

Table Acceleration ratio

18 / 20

1e-7

1.0

1e-6

1e-5

1e-4

1e-3

0.01

0.1

20.0 100.0 1000.0

Pow

erS

pect

rum

Den

sity

(m/s

2 )/H

z

Frequency (Hz)Fig. result of random test

Structural testStructural test

Random test

19 / 20Structural testStructural test

Cause:Constraint for this panel is light.

rms (root mean square)

Unit

BatteryAttitude control

Camera 1

Top plate

Grms (base:0.078Grms)

0.4860.5461.544

2.618Sun sensor 1

Side plate

1.536

2.795

Direction

YX

ZZ

ZY

Table Acceleration ratio

20 / 20ConclusionsConclusions

Stiffness and strength of QTEX-PR have no problem in analysis.

It is difficult that each unit is attached in side panel of QTEX-PR.

About QSAT’s layout Some measure for side panel must be formulated

Power supplyUnit

TNC

Sun sensor

Sun sensor

Fig. QSAT’s layout (preliminary version)

21 / 20

Thank you very much Thank you very much for your kind attentionfor your kind attention

ご清聴ありがとうございました

22 / 20

AppendixAppendix

23 / 20Micro satellites being developed in Kyushu Micro satellites being developed in Kyushu universityuniversity

QTEX QTEX-PR

Mission RequirementDemonstration of tether deployment

Tether is 2km length

Demonstration of bus units

This size is a half QTEX’s sizeMission

Orbit Altitude : 800km, Sun synchronized orbit

Size

Mass

less than 500×500×500 mm3

less than 50 kg less than 25 kg

MissionTerm 3 months 3 months

24 / 20Requirement for satelliteRequirement for satellite

Mass

Gravity point offset

Moment of inertia

Product of inertia

less than 50 kg

x, y ≦ 25 mm

z ≦ 250 mm

≦ 1 kgm2

≒ 0 kgm2

Table Characteristics of satellite

25 / 20Structural design of QTEX-PRStructural design of QTEX-PR

Based on old QTEX-PR, QTEX-PR was renewed.• Change of L angle’s design• Boring CFRP plate

Fig. QTEX-PR configuration

Fig. L angle type

26 / 20Micro Satellite QSATMicro Satellite QSAT

1) To investigate plasma physics in the Earth’s aurora zone in order to better understand spacecraft charging

2) To conduct a comparison of FAC (Field-Aligned Current) observed in orbit with ground-based observation

Primary Objective

27 / 20Random vibration testRandom vibration test

Frequency of local part

Frequency of satellite

28 / 20Unit attached in satelliteUnit attached in satellite

Attitude controlGyro sensor

Electric power supplyBattery

Magnetic sensorCamera control

TNCCommunication instrument

MainCamera 1Camera 2

Sun sensor 1Sun sensor 2

Magnetic torquer 1Magnetic torquer 2Magnetic torquer 3

Boom

145,92,67145,92,67146,130,95146,92,68145,92,67145,92,67

141.5,92,110141.5,92,16145,92,67

40,60,4240,60,42

84,84,17284,84,172φ 10× 160φ 10× 160φ 10× 160

140,140,180

0.4100.4600.5000.9400.4100.4100.4500.3000.410

0.0300.030

0.9000.900

0.2500.250

0.250

3.000

(-82,-111.5,152)(12,-111.5,152)(111.5,10,152)(111.5,-85,152)(176,111.5,152)(-12,111.5,152)(-111.5,-10,152)

(-87,85,152)(-111.5,190,152)

(158,0,77)(0,158,77)

(197,-197,148)(-197,197,156)(-220,-200,152)

(-200,30,87)(-110,-200,87)

(0,0,123.5)

123456789

10111213141516

17

Unit Size (W,D,H mm) Mass (kg) Gravity Point (mm)

total mass 9.900 (kg)

29 / 20Unit attached in satelliteUnit attached in satellite

Fig. Equipment layout

30 / 20Sine wave vibrationSine wave vibration

31 / 20Random vibration testRandom vibration test

top related