topics in (nano) biotechnology dining with dna lecture 8 6th november, 2006 phd course

60
TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 6th November, 2006 PhD Course

Upload: flora-grant

Post on 25-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

TOPICS IN (NANO) BIOTECHNOLOGY

Dining with DNALecture 8

6th November, 2006

PhD Course

Genetic Engineering: Is it the next Magic Pill?

Global Context

• Population growth

• Finite resources– (land and water)

• Access to food

• Technology options to increase productivity

• Agricultural and food policy options

Population Growth

• Increasing by 80 million people per year

• 95% of the increase in developing countries

• 1.3 billion people live in absolute poverty currently

Demand for Food

• Projected increase in global demand between 1993 and 2020– Cereals: 41%– Meats: 63%– Roots and Tubers: 40%

• Feed vs Food– Cereals for animal feed will double– Cereals for human consumption will increase by

47%

Food Availability

• Per capita availability of food will increase 7% by 2020

• Global income growth projected to increase 2.7% per year

• Availability does not imply access

Options to Meet Demand

• Increase in cultivated land: < 20% contribution

• Productivity increase: Cereal yields expected to decrease to 1.5% from 2.3%

• Water stress: Demand for water to increase by 2.4% per year

• Technology?

Technology Options

• Integrated Pest Management

• Improved cultural practices

• Improved food preservation techniques

• Identifying new genetic sources

• Genetic engineering

What is Genetic Engineering?

Definitions

• Any food that has been made from genetically altered plants or animals

• Genetic alteration: Altering gene/s using recombinant technique

• Gene: Small segment of DNA that codes for a specific protein

• Recombinant technique (rDNA): Methods used to alter gene/s

Is Genetic Engineering Different from Traditional Breeding?

• No!– Traditional breeding also involves gene

transfer but thousands of genes, good and bad, are moved

Plant Breeding

Hybridization or Cross-breeding

1000 Genes inHybrid

1000 Genes inLine B

1000 Genes inLine A

TEOSINTE TO MAIZE

DOMESTICATIONOF MODERN DAY CROPS

Some domestics and their (never domesticated) close relatives

Is Genetic Engineering Different from Traditional Breeding?

• Yes!– Specific gene/s from “any” source can be

introduced and is faster

How are GMOs Created

Some history...

• In 1953 Francis Crick and James Watson published their discovery of the structure of DNA, which led to scientists being able to splice genes from one organism and insert them into the DNA of another.

• In 1973 Stanley Cohen and Herbert Boyer created the first successful recombinant DNA organism.

• In 1980 U.S. Supreme Court ruled that genetically altered life forms can be patented in the case of Diamond vs. Chakrabarty. This decision allowed an oil eating organism to be patented by Exxon Oil Company.

• 1986 – Federal “Coordinated Framework” for regulating biotech

• 1993 – FDA approves rBGH• 1994 – First biotech food approved (Flavr

Savr tomato)• 1996 – First GM corn seed is sold; GM crops

enter the food supply

GMO Timeline

Non-US GMO Timeline

1996 – Mad cow disease linked to human brain disease

1997 – European consumers protest US shipments; Monsanto targeted

1999 – Activists get violent; Secretary Glickman is pummeled in Italy; Monsanto PR campaign backfires in the EU; Brazil, Australia and China threaten ban; Monarch butterfly scare

2000 –Starlink corn crisis

World Political Timeline

• 2001 – Application for GM fish is submitted to FDA; EU says labeling will be mandatory, trade war lingers; Mexican maize contamination reported; Monsanto abandons New Leaf potato

• 2002 –Prodigene episode

• 2003 – SubSaharan African nations reject US food aid with GM corn; US sues EU in WTO

• 2004 – New EU rules go in effect; Monsanto shelves GM wheat; Glofish released unregulated

GMO Foods - VERY controversial!

http://www.teachersdomain.org/9-12/sci/life/gen/lp_bioengfood/index.html

http://www.teachersdomain.org/resources/tdc02/sci/life/gen/breeding/index.html

Example of genetically modified foods?

• Also called genetically modified organisms (GMO).• Involves the insertion of DNA from one organism

into another OR modification of an organism’s DNA in order to achieve a desired trait.

+A

strawberry resistant to

frost

=

4 5

Arctic fish DNA strawberry

A. Totipotency

• Definition– Entire plant can be generated from a single,

non-reproductive cell– Single cells can be separated from leaf, stem or

root tissue using enzymes to digest pectin holding cells together (pectinase)

• Clones from cuttings in tissue culture– Asexual reproduction of plants can occur using

fragments of plants• Shoots or stems or leaves = EXPLANTS

– In tissue culture, cells divide from exposed cell a callus forms

• Callus = undifferentiated cluster of rapidly dividing cells

• Adventitious roots often form from callus

A. Totipotency

• Callus tissue regeneration– Callus tissue will develop if cells are grown with proper

balance of nutrients and plant hormones• Magenta boxes, sterile medium and transfer instruments• Murishigee and Skoog medium (MS medium) – Artificial

medium (agarose, nutrients and hormones)• Under influence of increased cytokinin, shoots will

differentiate• Transferred to increased auxins, roots will establish• Eventually transferred to soil entire plant with

reproductive structures (ovules, pollen)– Calluses can be split into many smaller pieces before

hormones are added to increase # of plants

A. Totipotency

B. DNA inserted into plants Transgenic plant

• Characteristics of transgenic plants– All cells in the plant are derived from one cell– All cells express the desired genetic information

• Why make transgenic plants?– Genes from distantly related plant families can be introduced

without need for breeding (some families of plants are incompatible)

– To improve crop hardiness and characteristics of final plant product

• Protein content• Ripening rate• Drought resistance…..

• Procedures for generating transgenic plants

– Microinjection• DNA constructs injected using fine glass pipettes in

combination with phase contrast microscopy

– Electroporation of protoplasts• Electric pulses of high field strength• Reversibly permeabilize cell membranes

– Electric discharge gun – Gold beads• Firing DNA-coated pellets using a modified .22 caliber gun

B. DNA inserted into plants Transgenic plant

– “Whiskers” of silicon carbide – holes punched, DNA introduced

– Agrobacterium tumefaciens

– Viral vectors• Cauliflower mosaic virus vectors• Gemini virus vectors

– Liposome-mediated transformation of protoplasts• Artificial lipid vesicles = Liposomes

– Chemically-stimulated DNA uptake by protoplasts • Polyethylene glycol + CaCl2

B. DNA inserted into plants Transgenic plant

– Protoplast fusion can also be used to fuse two different plant types together New Plant Varieties (hybrid plantlet)

• Fused cell acquires some of the characteristic of both genetic backgrounds and can be regenerated into a plant with some traits from both parental plants

– Fusigenic agents (polyethylene glycol) or electroporation used to fuse membranes

• Useful if species are sexually incompatible or cross with difficulty

B. DNA inserted into plants Transgenic plant

• US commercially important plants that can be grown from single somatic (non-seed) cells– Asparagus– Cabbage– Citrus fruits– Carrots– Alfalfa– Millet– Tomatoes– Potatoes– Tobacco

• More than 30 different crop plants developed with rDNA techniques are being tested in field studies

B. DNA inserted into plants Transgenic plant

C. Agrobacterium tumefaciens• Characteristics

– Plant parasite that causes Crown gall disease– Encodes a large (~250kbp) plasmid called Tumor-

inducing (Ti) plasmid• Portion of the Ti plasmid is transferred between

bacterial cells and plant cells T-DNA (Tumor DNA)

– T-DNA integrates stably into plant genome– T-DNA ss DNA fragment is converted to

dsDNA fragment by plant cell– Then integrated into plant genome

C. Agrobacterium tumefaciens

• How is T-DNA modified to allow genes of interest to be inserted?– In vitro modification of Ti plasmid

• T-DNA tumor causing genes are deleted and replaced with desirable genes (under proper regulatory control)

• Insertion genes are retained (vir genes)• Selectable marker gene added to track plant cells

successfully rendered transgenic [antibiotic resistance gene geneticin (G418) or hygromycin]

• Ti plasmid is reintroduced into A. tumefaciens• A. tumefaciens is co-cultured with plant leaf disks under

hormone conditions favoring callus development (undifferentiated)

• Antibacterial agents (e.g. chloramphenicol) added to kill A. tumefaciens

• G418 or hygromycin added to kill non-transgenic plant cells

• Surviving cells = transgenic plant cells

C. Agrobacterium tumefaciens

• Techniques to transform plant cells by A. tumefaciens

– Wounding and direct inoculation– Inoculation of explants in vitro– Transformation of leaf-disks– Co-cultivation of Agrobacterium with protoplasts

C. Agrobacterium tumefaciens

C. Agrobacterium tumefaciens

II. Examples of Crop Improvement Measures

A. Nitrogen fixation

• To enable plants to fix atmospheric N2 so that it can be converted into NH3, NO3

-, and NO2- providing a

nitrogen source for nucleic acid and amino acid synthesis– Thereby eliminating need to fertilize crops with nitrogen

• Exploit N2 fixation metabolic machinery of bacteria and fungi– Some live freely in soil and water – Some live in symbiosis

• Rhizobium spp. live in symbiosis with leguminous species of plants in root nodules (e.g. soy, peas, beans, alfalfa, clover)

B. Frost Resistance

• Ice-minus bacteria– Ice nucleation on plant surfaces caused by bacteria that aid in protein-

water coalescence forming ice crystals @ 0oC (320F)– Ice-minus Pseudomonas syringae

• Modified by removing genes responsible for crystal formation• Sprayed onto plants

– Displaces wild type strains– Protected to 23oF

» Dew freezes beyond this point– Extends growth season– First deliberate release experiment – Steven Lindow – 1987-

sprayed potatoes• Frost Ban

– Different strain of bacteria – Julie Lindemann led different project – 1987

– Strawberries in California

C. Resistance to biological agents• Anti-Insect Strategy – Insecticides

– From Bacillus thuringensis• Toxic crystals found during sporulation

• Alkaline protein degrades gut wall of lepidopteran larvae

– Corn borer caterpillars– Cotton bollworm caterpillars– Tobacco hornworm caterpillars– Gypsy moth larvae

• Sprayed onto plants – but will wash off

• Monsanto Chemical Company – 1991 Trials– BT into cotton plants using A.

tumefaciens vector– Cottton bollworms protection in 6

loctions, 5 different states, consistent results– First crops – 1996

» Corn» Cotton» Seed potatoes» Soybean» Others

C. Resistance to biological agents

– Cloned BT toxin gene into a different bacterium that lives harmlessly in corn plants

» Pressure applied to introduce modified bacterium into seeds

» Corn stalks protected from corn borers– BT in poplar and white spruce caterpillar

resistance• BT-resistant strains are beginning to emerge in

some caterpillars

C. Resistance to biological agents

• Anti-Bacterial Strategies– Resistance to Xanthomonas oryzae (rice wilting)

• Conferred by cloning resistance genes from wild rice strains

• Anti-Worm Strategies (Animal pest)– Nematode resistance gene from wild beet plants

• To protect sugar beet

C. Resistance to biological agents

Resistance to herbicides• Glyphosate resistance

– Glyphosate = “Roundup”, “Tumbleweed” = Systemic herbicide

– Glyphosate inhibits EPSP synthase (S-enolpyruvlshikimate-3 phosphate – involved in chloroplast amino acid synthesis)

– Escherichia coli EPSP synthase = mutant form less sensitive to glyphosate

• Cloned via Ti plasmid into soybeans, tobacco, petunias– Increased crop yields of crops treated with herbicides

• Bromoxynil– = bromine-based herbicide– Bromoxynil resistant cotton

• Concern over movement of resistance genes into weeds making compounds useless

Resistance to herbicides

Examples

Examples

Specific Examples

Specific Examples

Specific Examples

III. Bioengineered foods

A. US-FDA Regulations• 1978 transgenic bacteria produce human insulin

• 1983 First transgenic plant produced (tobacco with kanamycin resistance gene from bacteria)

• May 26, 1992– US-FDA declares no special regulation for genetically modified

food compared to foods generated by conventional means• No special testing• No mandatory labeling

• 1994 FDA approves release of first transgenic crop: Flavr Savr tomatoes that show delayed fruit softening

Dining with DNA

Impact on Humans & Ecosystem• Unwanted transfer of genes

• Loss of diversity

• Safety– Allergic reactions– Toxicity– Antibiotic resistance

GM crops have increased the use of chemical herbicides

GM crops threaten biodiversity; once released, they cannot be recalled

Effects of constant exposure to Bt not well known

Environmental Issues: 2 Opposing Views

GM crops are safer for the environment because they reduce use of chemical pesticides

GM crops are safe because they can’t survive in the wild; gene flow happens

GM Bt crops have been tested for safety on non-target organisms

GM crops have increased the use of chemical herbicides

GM crops threaten biodiversity; once released, they cannot be recalled

Effects of constant exposure to Bt not well known

but

but

but

Dining with DNA

I am required by law to tell you that everything you ordered today may be

harmful to your health.

Consumer Perception

Creating a balance• So are GM foods a good or bad thing?• It depend on each individual case.• Consumers, the government and scientists should be responsible

for weighing the benefits against the costs.

Improved Nutrition

Resistance to disease

Reduced use of chemicals

Environmental risks

Health risks

Economic risks

www.enn.comwww.propanefl.com/ images/corn.jpgwww.columbia.edu/cu/ opg/images/dna.jpgwww.arctictravel.com/ GJOA/haven.htmlwww.foodsubs.com/ Fruitber.htmlwww2.utmb.edu/scccb/mouse/ images/microinjection.jpgss.jircas.affrc.go.jp/engpage/ jarq/32-4/hagio/fig4.htmwww.enn.comTransgenic pollen harms monarch larvae (Nature, Vol 399, No 6733, p 214, May

1999)GM corn poses little threat to monarch (Nature Biotechnology, Vol 17, p 1154, Dec

1999) www.vme.net/dvm/ARNHA/ monarch.htmlhttp://www.csa.com/hottopics/gmfood/overview.htmlwww.greenpeace.orgwww.biotechknowledge.monsanto.comhttp://www.inspection.gc.ca/english/ppc/biotech/labeti/response.shtml

Interesting sites