topics in (nano) biotechnology dining with dna lecture 8 19th may, 2006 phd course

60
TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Upload: elijah-little

Post on 17-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

TOPICS IN (NANO) BIOTECHNOLOGY

Dining with DNALecture 8

19th May, 2006

PhD Course

Page 2: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Genetic Engineering: Is it the next Magic Pill?

Page 3: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Global Context

• Population growth

• Finite resources– (land and water)

• Access to food

• Technology options to increase productivity

• Agricultural and food policy options

Page 4: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Population Growth

• Increasing by 80 million people per year

• 95% of the increase in developing countries

• 1.3 billion people live in absolute poverty currently

Page 5: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Demand for Food

• Projected increase in global demand between 1993 and 2020– Cereals: 41%– Meats: 63%– Roots and Tubers: 40%

• Feed vs Food– Cereals for animal feed will double– Cereals for human consumption will increase by

47%

Page 6: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Food Availability

• Per capita availability of food will increase 7% by 2020

• Global income growth projected to increase 2.7% per year

• Availability does not imply access

Page 7: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Options to Meet Demand

• Increase in cultivated land: < 20% contribution

• Productivity increase: Cereal yields expected to decrease to 1.5% from 2.3%

• Water stress: Demand for water to increase by 2.4% per year

• Technology?

Page 8: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Technology Options

• Integrated Pest Management

• Improved cultural practices

• Improved food preservation techniques

• Identifying new genetic sources

• Genetic engineering

Page 9: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

What is Genetic Engineering?

Page 10: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Definitions

• Any food that has been made from genetically altered plants or animals

• Genetic alteration: Altering gene/s using recombinant technique

• Gene: Small segment of DNA that codes for a specific protein

• Recombinant technique (rDNA): Methods used to alter gene/s

Page 11: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Is Genetic Engineering Different from Traditional Breeding?

• No!– Traditional breeding also involves gene

transfer but thousands of genes, good and bad, are moved

Page 12: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Plant Breeding

Page 13: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Hybridization or Cross-breeding

1000 Genes inHybrid

1000 Genes inLine B

1000 Genes inLine A

Page 14: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

TEOSINTE TO MAIZE

DOMESTICATIONOF MODERN DAY CROPS

Page 15: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Some domestics and their (never domesticated) close relatives

Page 16: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Is Genetic Engineering Different from Traditional Breeding?

• Yes!– Specific gene/s from “any” source can be

introduced and is faster

Page 17: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

How are GMOs Created

Page 18: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Some history...

• In 1953 Francis Crick and James Watson published their discovery of the structure of DNA, which led to scientists being able to splice genes from one organism and insert them into the DNA of another.

• In 1973 Stanley Cohen and Herbert Boyer created the first successful recombinant DNA organism.

• In 1980 U.S. Supreme Court ruled that genetically altered life forms can be patented in the case of Diamond vs. Chakrabarty. This decision allowed an oil eating organism to be patented by Exxon Oil Company.

Page 19: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

• 1986 – Federal “Coordinated Framework” for regulating biotech

• 1993 – FDA approves rBGH• 1994 – First biotech food approved

(Flavr Savr tomato)• 1996 – First GM corn seed is sold;

GM crops enter the food supply

GMO Timeline

Page 20: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Non-US GMO Timeline

1996 – Mad cow disease linked to human brain disease

1997 – European consumers protest US shipments; Monsanto targeted

1999 – Activists get violent; Secretary Glickman is pummeled in Italy; Monsanto PR campaign backfires in the EU; Brazil, Australia and China threaten ban; Monarch butterfly scare

2000 –Starlink corn crisis

Page 21: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

World Political Timeline

• 2001 – Application for GM fish is submitted to FDA; EU says labeling will be mandatory, trade war lingers; Mexican maize contamination reported; Monsanto abandons New Leaf potato

• 2002 –Prodigene episode

• 2003 – SubSaharan African nations reject US food aid with GM corn; US sues EU in WTO

• 2004 – New EU rules go in effect; Monsanto shelves GM wheat; Glofish released unregulated

Page 22: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

GMO Foods - VERY controversial!

http://www.teachersdomain.org/9-12/sci/life/gen/lp_bioengfood/index.html

Page 23: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Example of genetically modified foods?

• Also called genetically modified organisms (GMO).• Involves the insertion of DNA from one organism

into another OR modification of an organism’s DNA in order to achieve a desired trait.

+A

strawberry resistant to

frost

=

4 5

Arctic fish DNA strawberry

Page 24: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

A. Totipotency

• Definition– Entire plant can be generated from a single,

non-reproductive cell– Single cells can be separated from leaf, stem or

root tissue using enzymes to digest pectin holding cells together (pectinase)

Page 25: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

• Clones from cuttings in tissue culture– Asexual reproduction of plants can occur using

fragments of plants• Shoots or stems or leaves = EXPLANTS

– In tissue culture, cells divide from exposed cell a callus forms

• Callus = undifferentiated cluster of rapidly dividing cells

• Adventitious roots often form from callus

A. Totipotency

Page 26: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

• Callus tissue regeneration– Callus tissue will develop if cells are grown with proper

balance of nutrients and plant hormones• Magenta boxes, sterile medium and transfer instruments• Murishigee and Skoog medium (MS medium) – Artificial

medium (agarose, nutrients and hormones)• Under influence of increased cytokinin, shoots will

differentiate• Transferred to increased auxins, roots will establish• Eventually transferred to soil entire plant with

reproductive structures (ovules, pollen)– Calluses can be split into many smaller pieces before

hormones are added to increase # of plants

A. Totipotency

Page 27: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

B. DNA inserted into plants Transgenic plant

• Characteristics of transgenic plants– All cells in the plant are derived from one cell– All cells express the desired genetic information

• Why make transgenic plants?– Genes from distantly related plant families can be introduced

without need for breeding (some families of plants are incompatible)

– To improve crop hardiness and characteristics of final plant product

• Protein content• Ripening rate• Drought resistance…..

Page 28: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

• Procedures for generating transgenic plants

– Microinjection• DNA constructs injected using fine glass pipettes in

combination with phase contrast microscopy

– Electroporation of protoplasts• Electric pulses of high field strength• Reversibly permeabilize cell membranes

– Electric discharge gun – Gold beads• Firing DNA-coated pellets using a modified .22 caliber gun

B. DNA inserted into plants Transgenic plant

Page 29: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course
Page 30: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

– “Whiskers” of silicon carbide – holes punched, DNA introduced

– Agrobacterium tumefaciens

– Viral vectors• Cauliflower mosaic virus vectors• Gemini virus vectors

– Liposome-mediated transformation of protoplasts• Artificial lipid vesicles = Liposomes

– Chemically-stimulated DNA uptake by protoplasts • Polyethylene glycol + CaCl2

B. DNA inserted into plants Transgenic plant

Page 31: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

– Protoplast fusion can also be used to fuse two different plant types together New Plant Varieties (hybrid plantlet)

• Fused cell acquires some of the characteristic of both genetic backgrounds and can be regenerated into a plant with some traits from both parental plants

– Fusigenic agents (polyethylene glycol) or electroporation used to fuse membranes

• Useful if species are sexually incompatible or cross with difficulty

B. DNA inserted into plants Transgenic plant

Page 32: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

• US commercially important plants that can be grown from single somatic (non-seed) cells– Asparagus– Cabbage– Citrus fruits– Carrots– Alfalfa– Millet– Tomatoes– Potatoes– Tobacco

• More than 30 different crop plants developed with rDNA techniques are being tested in field studies

B. DNA inserted into plants Transgenic plant

Page 33: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

C. Agrobacterium tumefaciens• Characteristics

– Plant parasite that causes Crown gall disease– Encodes a large (~250kbp) plasmid called Tumor-

inducing (Ti) plasmid• Portion of the Ti plasmid is transferred between

bacterial cells and plant cells T-DNA (Tumor DNA)

– T-DNA integrates stably into plant genome– T-DNA ss DNA fragment is converted to

dsDNA fragment by plant cell– Then integrated into plant genome

Page 34: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

C. Agrobacterium tumefaciens

Page 35: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

• How is T-DNA modified to allow genes of interest to be inserted?– In vitro modification of Ti plasmid

• T-DNA tumor causing genes are deleted and replaced with desirable genes (under proper regulatory control)

• Insertion genes are retained (vir genes)• Selectable marker gene added to track plant cells

successfully rendered transgenic [antibiotic resistance gene geneticin (G418) or hygromycin]

• Ti plasmid is reintroduced into A. tumefaciens• A. tumefaciens is co-cultured with plant leaf disks under

hormone conditions favoring callus development (undifferentiated)

• Antibacterial agents (e.g. chloramphenicol) added to kill A. tumefaciens

• G418 or hygromycin added to kill non-transgenic plant cells

• Surviving cells = transgenic plant cells

C. Agrobacterium tumefaciens

Page 36: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

• Techniques to transform plant cells by A. tumefaciens

– Wounding and direct inoculation– Inoculation of explants in vitro– Transformation of leaf-disks– Co-cultivation of Agrobacterium with protoplasts

C. Agrobacterium tumefaciens

Page 37: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

C. Agrobacterium tumefaciens

Page 38: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

II. Examples of Crop Improvement Measures

Page 39: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

A. Nitrogen fixation

• To enable plants to fix atmospheric N2 so that it can be converted into NH3, NO3

-, and NO2- providing a

nitrogen source for nucleic acid and amino acid synthesis– Thereby eliminating need to fertilize crops with nitrogen

• Exploit N2 fixation metabolic machinery of bacteria and fungi– Some live freely in soil and water – Some live in symbiosis

• Rhizobium spp. live in symbiosis with leguminous species of plants in root nodules (e.g. soy, peas, beans, alfalfa, clover)

Page 40: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

B. Frost Resistance

• Ice-minus bacteria– Ice nucleation on plant surfaces caused by bacteria that aid in protein-

water coalescence forming ice crystals @ 0oC (320F)– Ice-minus Pseudomonas syringae

• Modified by removing genes responsible for crystal formation• Sprayed onto plants

– Displaces wild type strains– Protected to 23oF

» Dew freezes beyond this point– Extends growth season– First deliberate release experiment – Steven Lindow – 1987-

sprayed potatoes• Frost Ban

– Different strain of bacteria – Julie Lindemann led different project – 1987

– Strawberries in California

Page 41: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

C. Resistance to biological agents• Anti-Insect Strategy – Insecticides

– From Bacillus thuringensis• Toxic crystals found during sporulation

• Alkaline protein degrades gut wall of lepidopteran larvae

– Corn borer caterpillars– Cotton bollworm caterpillars– Tobacco hornworm caterpillars– Gypsy moth larvae

• Sprayed onto plants – but will wash off

Page 42: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

• Monsanto Chemical Company – 1991 Trials– BT into cotton plants using A.

tumefaciens vector– Cottton bollworms protection in 6

loctions, 5 different states, consistent results– First crops – 1996

» Corn» Cotton» Seed potatoes» Soybean» Others

C. Resistance to biological agents

Page 43: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

– Cloned BT toxin gene into a different bacterium that lives harmlessly in corn plants

» Pressure applied to introduce modified bacterium into seeds

» Corn stalks protected from corn borers– BT in poplar and white spruce caterpillar

resistance• BT-resistant strains are beginning to emerge in

some caterpillars

C. Resistance to biological agents

Page 44: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

• Anti-Bacterial Strategies– Resistance to Xanthomonas oryzae (rice wilting)

• Conferred by cloning resistance genes from wild rice strains

• Anti-Worm Strategies (Animal pest)– Nematode resistance gene from wild beet plants

• To protect sugar beet

C. Resistance to biological agents

Page 45: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Resistance to herbicides• Glyphosate resistance

– Glyphosate = “Roundup”, “Tumbleweed” = Systemic herbicide

– Glyphosate inhibits EPSP synthase (S-enolpyruvlshikimate-3 phosphate – involved in chloroplast amino acid synthesis)

– Escherichia coli EPSP synthase = mutant form less sensitive to glyphosate

• Cloned via Ti plasmid into soybeans, tobacco, petunias– Increased crop yields of crops treated with herbicides

Page 46: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

• Bromoxynil– = bromine-based herbicide– Bromoxynil resistant cotton

• Concern over movement of resistance genes into weeds making compounds useless

Resistance to herbicides

Page 47: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Examples

Page 48: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Examples

Page 49: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Specific Examples

Page 50: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Specific Examples

Page 51: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Specific Examples

Page 52: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

III. Bioengineered foods

Page 53: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

A. US-FDA Regulations• 1978 transgenic bacteria produce human insulin

• 1983 First transgenic plant produced (tobacco with kanamycin resistance gene from bacteria)

• May 26, 1992– US-FDA declares no special regulation for genetically modified

food compared to foods generated by conventional means• No special testing• No mandatory labeling

• 1994 FDA approves release of first transgenic crop: Flavr Savr tomatoes that show delayed fruit softening

Page 54: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Dining with DNA

Page 55: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Impact on Humans & Ecosystem• Unwanted transfer of genes

• Loss of diversity

• Safety– Allergic reactions– Toxicity– Antibiotic resistance

Page 56: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

GM crops have increased the use of chemical herbicides

GM crops threaten biodiversity; once released, they cannot be recalled

Effects of constant exposure to Bt not well known

Environmental Issues: 2 Opposing Views

GM crops are safer for the environment because they reduce use of chemical pesticides

GM crops are safe because they can’t survive in the wild; gene flow happens

GM Bt crops have been tested for safety on non-target organisms

GM crops have increased the use of chemical herbicides

GM crops threaten biodiversity; once released, they cannot be recalled

Effects of constant exposure to Bt not well known

but

but

but

Page 57: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Dining with DNA

Page 58: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

I am required by law to tell you that everything you ordered today may be

harmful to your health.

Consumer Perception

Page 59: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

Creating a balance• So are GM foods a good or bad thing?• It depend on each individual case.• Consumers, the government and scientists should be responsible

for weighing the benefits against the costs.

Improved Nutrition

Resistance to disease

Reduced use of chemicals

Environmental risks

Health risks

Economic risks

Page 60: TOPICS IN (NANO) BIOTECHNOLOGY Dining with DNA Lecture 8 19th May, 2006 PhD Course

www.enn.comwww.propanefl.com/ images/corn.jpgwww.columbia.edu/cu/ opg/images/dna.jpgwww.arctictravel.com/ GJOA/haven.htmlwww.foodsubs.com/ Fruitber.htmlwww2.utmb.edu/scccb/mouse/ images/microinjection.jpgss.jircas.affrc.go.jp/engpage/ jarq/32-4/hagio/fig4.htmwww.enn.comTransgenic pollen harms monarch larvae (Nature, Vol 399, No 6733, p 214, May

1999)GM corn poses little threat to monarch (Nature Biotechnology, Vol 17, p 1154, Dec

1999) www.vme.net/dvm/ARNHA/ monarch.htmlhttp://www.csa.com/hottopics/gmfood/overview.htmlwww.greenpeace.orgwww.biotechknowledge.monsanto.comhttp://www.inspection.gc.ca/english/ppc/biotech/labeti/response.shtml

Interesting sites