swiss quant

Upload: lameune

Post on 03-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Swiss Quant

    1/24

  • 8/12/2019 Swiss Quant

    2/24

  • 8/12/2019 Swiss Quant

    3/24

  • 8/12/2019 Swiss Quant

    4/24

  • 8/12/2019 Swiss Quant

    5/24

    t it ii t r ,,)(

    I D D t t t ~~~ 21

    )()(

    )),(()(

    ,

    ,

    t x P

    S Dt y

    t x f t y

    l

    e

    l el

    l eel

    t t

    t m

    t

    t

    ,

    ,1

    m

    ik ikik t t r t x

    1

    )()()(

  • 8/12/2019 Swiss Quant

    6/24

    66

    Risk Modeling MethodologiesDelta NormalApproximation

    Pure HistoricalSimulation

    Filtered HistoricalSimulation

    Monte-CarloNormal Simulation

    Modeling assumptions

    Simplified but highperformance approach

    Accounting for covariance

    dynamicsImproved forward looking

    Handling of instrument withInsufficient historical data

    Linearization

    Normality assumption

    Cross-product dependencyby Covariance

    Risk factor compression

    No distribution assumption

    Easy to understand / oftenused

    Exact treatment ofderivatives

    Modeling assumptions

    Modeling assumptionsModeling assumptions Future = past

    Constant volatility

    Constant correlations

    Risk factor compression

    Dynamic correlation/vola

    Non parametricassumption of residuals

    Risk factor compression

    Normality assumption

    Cross-product dependency

    by VCV No inclusion of fat-tail

    Risk factor compression

    Accounting for covariancedynamics

    Inclusion of fat-tails

    Improved forward looking

    Exact treatment ofderivatives

    Handling of instrument withInsufficient historical data

    Accounting for covariancedynamics

    Improved forward looking

    Exact treatment ofderivatives

    Features Features Features Features

    1

    3

    Ensured by:Volatility filter &Quantilecorrection 1

    Ensured by:Inclusion ofspecific risk

    2

    3

    Large-scaleMedium-term

    Medium-scaleShort-term

    Ensured by:Analyticalmapping ofinstruments

    3

    2

    1

    2

    2

    Improvements

  • 8/12/2019 Swiss Quant

    7/24

  • 8/12/2019 Swiss Quant

    8/24

    T

    t

    m

    ikii

    m

    iikik T t r t x

    ki 1 1

    2

    1,

    )()(min

    see Tibshirani, R. J. (1996)

  • 8/12/2019 Swiss Quant

    9/24

    , 1

    , 2

    , 3

    2

  • 8/12/2019 Swiss Quant

    10/24

  • 8/12/2019 Swiss Quant

    11/24

  • 8/12/2019 Swiss Quant

    12/24

    21

    0,

    2,

    1

    0

    ,

    )(11

    ,)(

    1

    1

    J

    j jt ii

    j J t i

    J

    j

    i j

    J t i

    jt r

    jt r

    t it ii t r ,,)(

    .

    )

    )1((

    ,

    ,

    1, t i

    t ii

    t i

    t r

    t iT iT i t r

    ,,,

    )(~

    1

    see Barone-Adesi et al.(1998)

  • 8/12/2019 Swiss Quant

    13/24

    1

  • 8/12/2019 Swiss Quant

    14/24

    1

    see Franconi and Herzog (2012)

  • 8/12/2019 Swiss Quant

    15/24

    1

  • 8/12/2019 Swiss Quant

    16/24

    0 500 1000 1500 2000 2500-0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    Time points

    F r e q u e n c y o f V i o l a t i o n s

    0 500 1000 1500 2000 250-0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    Time points

    F r e q u e n c y o

    f V i o l a t i o n s

    1

  • 8/12/2019 Swiss Quant

    17/24

    Portfolio Aggregation using the Delta Normal Approximation

    Risk Factor Data it r ,

    r : Returnt : Time

    mt

    t

    t

    r

    r

    r

    ,

    1,

    ...)( t r mean

    Client PositionWeights

    Instrument Data

    Derivatives andStructured Products

    , z k v

    ,k t x

    ,k e

    Betas on RiskFactors k,i , k

    v : Weights z : Client portfolio id x : Instrument returnsk : Instrument no.

    : Delta (first order derivative)e : Derivative no.

    k : Idiosyncratic risk (specific risk) : Intrinsic covariance matrix: Beta value of k-th instrument

    to i-th benchmark/risk factor: covariance matrix risk factors

    k,i = OLS(x t,k , r t,i , selection rules) = [ k,i ] matrix nxm

    ndiag ...1

    Risk LT

    , z k v

    ik ,

    z corrected

    T T T z

    VaR

    Dv Dvv D Dv

    )(

    1

    k e

    k

    D

    ,

    ,1

    .00

    .....0

    0.....

    00.

    D

    3

    3

  • 8/12/2019 Swiss Quant

    18/24

    Portfolio Aggregation using scenarios

    Risk Factor Data it r ,

    r : Returnt : Time

    mt

    t

    t

    r

    r

    r

    ,

    1,

    ...)( t r mean

    Client PositionWeights

    Instrument Data

    Derivatives andStructured Products

    , z k v

    ,k t x

    ,k e f

    Betas on RiskFactors k,i , k

    v : Weights z : Client portfolio id x : Instrument returnsk : Instrument no.

    f : derivative fomulae : Derivative no.

    k : Idiosyncratic risk (specific risk): scenarios of the risk factors: Beta value of k-th instrument

    to i-th benchmark/risk factor: scenarios of the idiosyncratic risk

    k,i = OLS(x t,k , r t,i , selection rules) = [ k,i ] matrix nxm

    Risk)(~ , sr T k

    , z k v

    ik , ~ ))(~())(~(

    )(~)(~)(~)(~)(~

    2

    1

    2

    111 1

    sr quantileVaR sr

    s sr f v s sr v sr

    port Z port

    S

    s z

    l i

    m

    ilie

    E

    ee

    K

    k k i

    m

    ikik port

    corrected

    e f

    3

    3

    )(~ , sr T k

    )(~ sk

  • 8/12/2019 Swiss Quant

    19/24

  • 8/12/2019 Swiss Quant

    20/24

  • 8/12/2019 Swiss Quant

    21/24

  • 8/12/2019 Swiss Quant

    22/24

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    -0.6 -0.4 -0.2 0 0.2

    A n a

    l y t i c a

    l B e t a s

    ( P C 1

    )

    Regressed Betas (PC1)-0.4

    -0.2

    0

    0.2

    -0.4 -0.2 0 0.2 0.4

    A n a

    l y t i c a

    l B e t a s

    ( P C 2

    )

    Regressed Betas (PC2)

    -1

    -0.5

    0

    0.5

    1

    -0.6 -0.4 -0.2 0 0.2 0.4

    A n a

    l y t i c a

    l B e t a s

    ( P C 3

    )

    Regressed Betas (PC3)

    2

  • 8/12/2019 Swiss Quant

    23/24

    1

    )()()( t t t r j j

    23

    In order to improve the forward-looking properties of themodel

    A volatility filtering procedure is applied A weighing factor is used in the computation of historical

    volatilities (EWMA) or a GARCH type model

    23

    96.0

    95.0

    94.0 9.0

    99.5% 99% 95% 90%

    99.87% 99.62% 96.55% 91.86%

    99.78% 99.43% 96.02% 91.24%

    99.73% 99.35% 95.81% 90.93%

    99.68% 99.27% 95.61% 90.74%

    Problem: While forward-looking properties are ensured, thereis still uncertainty in tail estimation

    Solution: Use weighing factor and quantile correction

    Original quantile (before correction)

    However: leads to the usage of a smaller effectivenumber of historical data used in the computation of thevolatilities

    To mitigate this effect a quantile correction is calculatedbased on a look-up table

    Depending on the value of a higher quantile is computedthan was originally aimed at.

    The difference to the original quantile (before correction) isthe quantile correction add-on

    C o r r e c t e

    d q

    u a n t i l e

    R e

    t u r n s

    Scenario Scenario

    Volatilityfiltering

    Instrument returnsbefore volatility filteri ng

    Instrument residualsafter volatility filtering

    Positions showinstabilities in volatilities

    Positions showstationary behavior (noinstabilities, thus goodforecastability)

  • 8/12/2019 Swiss Quant

    24/24