solution:# positive - nanohubweek6hwsolutions_s15.pdf · mark%lundstrom% % spring2015% ece8305% %...

9
Mark Lundstrom Spring 2015 ECE305 Spring 2015 1 ECE 305 Homework SOLUTIONS: Week 6 Mark Lundstrom Purdue University 1) This problem concerns a PN junction doped N A = 2 × 10 18 cm -3 on the Pside and N D = 3 × 10 17 cm -3 on the Nside. Answer the following questions. 1a) There is a builtin potential for this PN junction. Which side is more positive – the Pside or the Nside. Explain your answer. Solution: See the figure below. Holes diffuse from the left to the right. An electric field that points from the right to the left builds up to stop the flow of holes. If the electric field points from the right to the left, the right side, the Nside is more positive. Alternatively, see the figure below, which shows the P and N regions before they are connected. The Fermi level is higher on the Nside, so the Nside must develop a higher potential to lower the bands on the Nside and align the Fermi levels, which must be equal in equilibrium once the two sides are connected.

Upload: others

Post on 23-Apr-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solution:# positive - nanoHUBWeek6HWSolutions_S15.pdf · Mark%Lundstrom% % Spring2015% ECE8305% % 3% Spring2015% HW6#Solutions(continued):# % V bi = k B T q ln N A N D N C N V ⎛

Mark  Lundstrom     Spring  2015  

ECE-­‐305     Spring  2015  1  

ECE  305  Homework  SOLUTIONS:  Week  6    

Mark  Lundstrom  Purdue  University  

 1)     This  problem  concerns  a  PN  junction  doped  NA = 2 ×10

18 cm-3  on  the  P-­‐side  and  ND = 3×1017 cm-3  on  the  N-­‐side.    Answer  the  following  questions.  

 1a)   There  is  a  built-­‐in  potential  for  this  PN  junction.  Which  side  is  more  positive  –  

the  P-­‐side  or  the  N-­‐side.    Explain  your  answer.    Solution:  

See  the  figure  below.    Holes  diffuse  from  the  left  to  the  right.      An  electric  field  that  points  from  the  right  to  the  left  builds  up  to  stop  the  flow  of  holes.    If  the  electric  field  points  from  the  right  to  the  left,  the  right  side,  the  N-­‐side  is  more  positive.  

 Alternatively,  see  the  figure  below,  which  shows  the  P  and  N  regions  before  they  are  connected.    The  Fermi  level  is  higher  on  the  N-­‐side,  so  the  N-­‐side  must  develop  a  higher  potential  to  lower  the  bands  on  the  N-­‐side  and  align  the  Fermi  levels,  which  must  be  equal  in  equilibrium  once  the  two  sides  are  connected.  

   

Page 2: Solution:# positive - nanoHUBWeek6HWSolutions_S15.pdf · Mark%Lundstrom% % Spring2015% ECE8305% % 3% Spring2015% HW6#Solutions(continued):# % V bi = k B T q ln N A N D N C N V ⎛

Mark  Lundstrom     Spring  2015  

ECE-­‐305     Spring  2015  2  

HW6  Solutions  (continued):    

1b)   Assume  that  the  PN  junction  is  made  of  silicon.    What  is  the  magnitude  of  the  built-­‐in  potential?    You  may  assume  that   NC = 3.23×1019 cm-3 ,  

NV = 1.83×1019 cm-3 , ni = 1×1010 cm-3 ,  and   EG = 1.125 eV .    Solution:    

Vbi =

kBTq

lnN AN D

ni2

⎝⎜⎞

⎠⎟= 0.026ln 2×1018 × 3×1017

1020

⎛⎝⎜

⎞⎠⎟= 0.95 V    

Vbi = 0.95 V  

 1c)   Assume  that  the  PN  junction  is  made  of  GaAs.    What  is  the  magnitude  of  the  

built-­‐in  potential?    You  may  assume  that   NC = 4.21×1017 cm-3 ,  

NV = 9.52×1018 cm-3 ,   ni = 2.25×106 cm-3 ,  and   EG = 1.422 eV .    

Vbi =kBTq

lnN AN D

ni2

⎝⎜⎞

⎠⎟= 0.026ln 2×1018 × 3×1017

2.25×106( )2

⎝⎜⎜

⎠⎟⎟= 1.38 V  

 1c)    Compare  your  answers  in  1b)  and  1c)  to  the  corresponding  bandgaps    Solution:  

Vbi Si( ) = 0.95 V = 0.84 EG eV( )   Vbi GaAs( ) = 1.38 V = 0.97 EG eV( )    The  built-­‐in  potential  of  a  PN  junction  is  typically  a  little  less  than  the  bandgap  of  the  semiconductor  (in  eV).    (Which  can  be  understood  from  the  energy  band  diagram  shown  above.)  

 1d)   Derive  an  expression  that  relates   Vbi  to   EG .    Solution:  

Vbi =

kBTq

lnN AN D

ni2

⎝⎜⎞

⎠⎟   ni

2 = NCNVe−EG /kBT

 

 

Vbi =

kBTq

lnN AN D

NC NV e−EG /kBT

⎝⎜⎞

⎠⎟=

kBTq

lnN AN D

NC NV

⎛⎝⎜

⎞⎠⎟+

kBTq

ln eEG /kBT( )        

Page 3: Solution:# positive - nanoHUBWeek6HWSolutions_S15.pdf · Mark%Lundstrom% % Spring2015% ECE8305% % 3% Spring2015% HW6#Solutions(continued):# % V bi = k B T q ln N A N D N C N V ⎛

Mark  Lundstrom     Spring  2015  

ECE-­‐305     Spring  2015  3  

HW6  Solutions  (continued):    

Vbi =

kBTq

lnN AN D

NC NV

⎛⎝⎜

⎞⎠⎟+ EG  

 

Vbi =EG

q−

kBTq

lnNC

N D

⎝⎜⎞

⎠⎟−

kBTq

lnNV

N A

⎝⎜⎞

⎠⎟  

 For  a  non-­‐degenerate  semiconductor,   p0 = N A < NV  and   n0 = N D < NC ,  so  the  built-­‐in  potential  is  a  little  less  than  the  bandgap.  

   2)   For  the  energy  band  diagram  below,  answer  the  following  questions.    

 2a)   Is  the  potential  at   x = 0  more  or  less  positive  than  the  potential  at   x = L ?    

Explain  your  answer.    

Solution:  A  positive  potential  lowers  the  bands.    At   x = 0 ,   EC    is  lower  than  at   x = L ,  so  the  potential  at   x = 0  must  be  more  positive  than  the  potential  at   x = L .  

 2b)   What  is  the  magnitude  of  the  built-­‐in  potential?    

Solution:  

Ei x = L( ) q = EF q + 0.025  

Ei x = 0( ) q = EF q − 0.030  

Vbi = Ei x = L( ) q − Ei x = 0( ) q = 0.025+ 0.030 = 0.055 V  

Vbi = 0.055 V  

 

Page 4: Solution:# positive - nanoHUBWeek6HWSolutions_S15.pdf · Mark%Lundstrom% % Spring2015% ECE8305% % 3% Spring2015% HW6#Solutions(continued):# % V bi = k B T q ln N A N D N C N V ⎛

Mark  Lundstrom     Spring  2015  

ECE-­‐305     Spring  2015  4  

HW6  Solutions  (continued):    3)   This  problem  concerns  a  Si    “isotype”  junction  at  room  temperature  with  the  doping  

profile  shown  below.    Answer  the  following  questions  assuming  room  temperature  silicon.    Note  that  the  doping  is  N-­‐type  on  both  sides  of  the  junction.  

 

   

3a)   Draw  an  energy  band  diagram  for  this  junction.    

Solution:    

EC − EF

q=

kBTq

lnNC

N D

⎝⎜⎞

⎠⎟  

 

on  the  left:    

EC − EF

q= 0.026ln 3.23×1019

1015

⎝⎜⎞

⎠⎟= 0.27 eV  

on  the  right:    

EC − EF

q= 0.026ln 3.23×1019

1018

⎝⎜⎞

⎠⎟= 0.09 eV

   

     

Page 5: Solution:# positive - nanoHUBWeek6HWSolutions_S15.pdf · Mark%Lundstrom% % Spring2015% ECE8305% % 3% Spring2015% HW6#Solutions(continued):# % V bi = k B T q ln N A N D N C N V ⎛

Mark  Lundstrom     Spring  2015  

ECE-­‐305     Spring  2015  5  

HW6  Solutions  (continued):    3b)   Is  the  left  contact  more  or  less  positive  in  potential  than  the  right  contact.    

Explain  your  answer.    

Solution:  From  the  energy  band  diagram,  the  bands  are  higher  in  energy  on  the  left  side,  so  the  potential  must  be  negative  with  respect  to  the  right  side.    The  left  contact    is  less  positive  in  potential  than  the  right  contact.    

 3c)   Compute  the  magnitude  of  the  built-­‐in  potential  for  this  junction.    Compare  it  to  

the  bandgap  of  Si.    

Solution:  At   x = 0 ,  we  have  

n0 x = 0( ) = nieEF −Ei 0( )( ) kBT      

Ei 0( ) = EF − kBT ln

n0 0( )ni

⎝⎜

⎠⎟  

Ei 0( ) eV( ) = EF eV( )− 0.026ln 1015

1010

⎛⎝⎜

⎞⎠⎟

eV( ) = EF eV( )− 0.299    

At   x = L ,  we  have  

n0 x = L( ) = nieEF −Ei L( )( ) kBT    

Ei L( ) = EF − kBT ln

n0 L( )ni

⎝⎜

⎠⎟  

Ei L( ) eV( ) = EF eV( )− 0.026ln 1018

1010

⎛⎝⎜

⎞⎠⎟

eV( ) = EF eV( )− 0.479  

Vbi = Ei x = 0( ) q − Ei x = L( ) q = −0.299+ 0.479 = 0.18 V    

Vbi = 0.18 V  

 Note  that   Vbi  for  an  isotype  junction  is  much  less  than  the  bandgap  of  the  semiconductor  in  eV.  

 3d)   Derive  a  general  formula  for  the  built-­‐in  potential  in  terms  of  the  doping  density  

on  the  left,   N DL  and  on  the  right,   N DR  .    

Solution:  We  can  follow  the  approach  of  prob.  3c),  but  without  putting  in  specific  numbers.          

Page 6: Solution:# positive - nanoHUBWeek6HWSolutions_S15.pdf · Mark%Lundstrom% % Spring2015% ECE8305% % 3% Spring2015% HW6#Solutions(continued):# % V bi = k B T q ln N A N D N C N V ⎛

Mark  Lundstrom     Spring  2015  

ECE-­‐305     Spring  2015  6  

HW6  Solutions  (continued):  

qVbi = Ei x = 0( )− Ei x = L( ) = EF − kBT ln

n0 x = 0( )ni

⎝⎜

⎠⎟ − EF + kBT ln

n0 x = L( )ni

⎝⎜

⎠⎟  

qVbi = kBT ln

n0 x = L( )n0 x = 0( )

⎝⎜

⎠⎟  

N DL = n0 x = 0( )   N DR = n0 x = L( )  

Vbi =kBTq

lnN DR

N DL

⎝⎜⎞

⎠⎟  

 Note  that  we  might  have  guessed  this  from  the  formula  for  the  PN  junction:

     

Vbi =

kBTq

lnN AN D

ni2

⎝⎜⎞

⎠⎟=

kBTq

lnN D

ni2 N A

⎝⎜⎞

⎠⎟=

kBTq

lnn0 N

n0 P

⎛⎝⎜

⎞⎠⎟  

 The  last  result  says  that   Vbi  is  related  to  the  log  of  the  ratio  of  the  electron  concentration  on  the  N-­‐side,   n0 N ,  to  the  electron  concentration  on  the  P-­‐side,   n0 P .    So  the  PN  junction  expression  can  be  given  in  terms  of  the  electron  concentration  on  the  two  sides,  just  as  we  got  for  the  nN  junction.  

   4)   The  electric  field  vs.  position  for  a  Si  NP  junction  is  sketched  below.    (The  depletion  

approximation  is  assumed).    Given  the  information  provided,  answer  the  following  questions.  

   4a)    What  is  the  doping  density  on  the  P-­‐side?            

Page 7: Solution:# positive - nanoHUBWeek6HWSolutions_S15.pdf · Mark%Lundstrom% % Spring2015% ECE8305% % 3% Spring2015% HW6#Solutions(continued):# % V bi = k B T q ln N A N D N C N V ⎛

Mark  Lundstrom     Spring  2015  

ECE-­‐305     Spring  2015  7  

HW6  Solutions  (continued):    Solution:  

According  to  the  Poisson  equation:    

d εSiE( )dx

= ρ x( ) = −qN A    

 

dEdx

=−qN A

εSi

  N A = −

εSi

qdEdx

 

From  the  figure:    

dEdx

= −1.12×104 − 0( )V/cm

0.73×10−4 = −1.53×108 V/cm2  

 

N A = −11.7 ×8.854×10−14 F/cm

1.6×10−19 C× −1.53×108 V/cm2( ) = 9.91×1014 cm−3  

N A = 9.91×1014 cm−3  

   4b)   What  is  the  doping  density  on  the  N-­‐side?    

Solution:  We  could  do  this  just  as  in  4a),  but  we  can  also  recognize  that  charge  must  balance.  

N Dxn = N Axp    

N D = N A

xp

xn

= 9.91×1014 × 0.730.37

= 1.95×1015  

N D = 1.95×1015 cm−3  

 4c)   If  the  voltage  is  zero  at  

x = xp ,  then  what  is    the  voltage  at   x = 0 ?      

 Solution:  

Remember  the  definition  of  the  electric  field:     E = − dV

dx,  so  

V xp( )−V 0( ) = − E dx

0

xp

∫ =  

Since   V xp( ) = 0 ,  we  find  

V 0( ) = E dx

0

xp

∫  

 

Page 8: Solution:# positive - nanoHUBWeek6HWSolutions_S15.pdf · Mark%Lundstrom% % Spring2015% ECE8305% % 3% Spring2015% HW6#Solutions(continued):# % V bi = k B T q ln N A N D N C N V ⎛

Mark  Lundstrom     Spring  2015  

ECE-­‐305     Spring  2015  8  

HW6  (continued):    The  voltage  at   x = 0  is  just  the  area  under  the   E x( )  vs.   x  curve  between   x = 0  and   x = xP .  

V 0( ) = 1

2E 0( )xp = 0.5×1.12×104 × 0.73×10−4 = 0.41  

V 0( ) = 0.41 V  

   5)   Consider  the  problem  sketched  below.    A  sheet  of  negative  charge  is  imbedded  in  an  

N-­‐type  semiconductor.    The  number  of  negative  charges  per  cm2  is   NS ,  so  the  charge  in  Coulombs  per  cm2  is   QS = −q × NS .    Answer  the  following  questions.  

 5a)   Sketch  the  space  charge  density  vs.  position  in  the  semiconductor  assuming  the  

depletion  approximation  in  the  semiconductor.    

Solution:  The  negative  charge  pushes  electrons  away  in  both  directions.    The  semiconductor  is  depleted  for   −xn < x < 0  and  for   0 < x < +xn .      

   

Page 9: Solution:# positive - nanoHUBWeek6HWSolutions_S15.pdf · Mark%Lundstrom% % Spring2015% ECE8305% % 3% Spring2015% HW6#Solutions(continued):# % V bi = k B T q ln N A N D N C N V ⎛

Mark  Lundstrom     Spring  2015  

ECE-­‐305     Spring  2015  9  

HW6  (continued):    

5b)   Sketch  the  electric  field  vs.  position  in  the  semiconductor  assuming  the  depletion  approximation  in  the  semiconductor.  

 Solution:  The  electric  field  points  from  the  positive  depletion  charge,   qN D

+ ,  to  the  negative  charge  on  the  sheet,  so   E > 0  for   −xn < x < 0  and   E < 0  and  for  

0 < x < xn .  The  electric  field  is  zero  outside  of  the  depletion  regions,  so   E =0  for   x ≤ −xn  and     E =0  for  for  

x ≥ xp .    

dE dx  is  given  from  the  Poisson  equation  as  

dEdx

=+qN D

εSi

.    The  slope  is  

positive  and  the  same  value  for   −xn < x < 0  and  for   0 < x < xn .  

We  conclude  that   E x( )  looks  as  in  the  figure  below.    Note  the  discontinuity  at   x − 0 .    

 Note  that  there  is  a  discontinuity  in  the  electric  field,  which  is  caused  by  the  delta  function  of  charge.  This  can  be  seen  from  the  Poisson  equation:    

d εSiE( )dx

= ρ x( )    

dEdx

=ρ x( )εSi

 

dEdx

=QSδ x( )εSi

 

integrate  across   x = 0 :    

dEE 0−( )

E 0+( )∫ =

QS

εSi

δ x( )dx0−

0+

∫ =QS

εSi

    E 0+( )−E 0−( ) = QS

εSi

 

E 0+( ) =E 0−( ) + QS

εSi

      E 0+( ) =E 0−( )− q ×1013

εSi

 

So  there  is  an  abrupt  change  in  the  electric  field  across  the  sheet  of  charge.