soluções de topologia

3
Solutions to exercises for the course Topologie en Meetkunde 1 For a metric space (X, d), one denes T d  as the collection of all sets  U  ⊂  X  which are open with respect to  d . This denes a topology, called the topolo gy induced by the metric. Exercise 1.  Show that  T d  is a topology. Proof.  It is obvious that  X  and  φ  belong to T d . Next, assume that  U, V  T d . We want to show that  U  ∩  V  T d . If  U  ∩  V  =  φ  we are done. Assume then that x ∈ U  ∩ V . By denition there exist   1  >  0 and   2  >  0 such that B(x, 1 ) ⊂ U and B(x, 2 ) ⊂ V. Dene  = min{ 1 , 2 }, then B(x, ) ⊂ U  ∩ V. This proves that  U  ∩ V  T d . Now suppose that there is a family  {V α } αA  with  V α  ∈ T d , we need to prove that U  = αA V α  ∈ T d . Agai n, if   U  is emp ty we are done. Now, take x ∈  U . Then x ∈ V α  for some  α  and by denition there exists an   > 0 such that B(x, ) ⊂ V α  ⊂ U, this shows that  U  ∈ T d . Exercise 2.  Show that in a Hausdortopological space, if a sequence has a limit, then the limit is unique. Proof.  Let  X  be a Hausdortopological space and suppose that  x n   x  and x n   y. We need to pro ve that  x  =  y. Suppose that  x   =  y, then there are neighborhoods  U x  and  U y  of  x  and  y  respectively with U x  ∩ U y  = φ Since  x n  →  x  there exists  N x  >> 0 such that for all  k > N x ,  x k  ∈  U x . Simil arly , there exists  N y  >>  0 such that for all  k > N y ,  x k  ∈ U y . Dene N  = max{N x ,N y }, and one has that  x N +1  ∈  U x  ∩  U y , whi ch is a con tradic tio n. We con clude that x = y .   Exercise 3.  Prove that the euclidean and the square metric induce the same topol- ogy in  R n . Proof.  In view of Lemma 2.11 from the notes it is enough to show that given   > 0 and  x  = (x 1 ,...,x n ) ∈ R n there exist  δ 1 , δ 2  such that: B d (x, δ 1 ) ⊂ B ρ (x, ) and B ρ (x, δ 2 ) ⊂ B d (x, ) Dene δ 1  =   and δ 2  =  / √ n Now suppose that  y  = (y 1 , ··· y n ) ∈ B d (x, δ 1 ) then: ρ(x, y) =  max{|x 1 y 1 |, ···|x n y n |}  (x 1  − y 1 ) 2 + ··· + (x n  − y n ) 2 = d(x, y)  < 1

Upload: karina-emboaba

Post on 01-Mar-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Soluções de Topologia

7/25/2019 Soluções de Topologia

http://slidepdf.com/reader/full/solucoes-de-topologia 1/3

Solutions to exercises for the course Topologie en Meetkunde 1

For a metric space (X, d), one defines T d as the collection of all sets  U  ⊂ X  whichare open with respect to  d. This defines a topology, called the topology induced bythe metric.

Exercise 1.  Show that  T d   is a topology.

Proof.  It is obvious that  X   and  φ  belong to T d. Next, assume that  U, V  ∈ T d. Wewant to show that   U  ∩  V   ∈ T d. If   U  ∩  V    =   φ   we are done. Assume then thatx ∈ U  ∩ V . By definition there exist  1 >  0 and  2  >  0 such that

B(x, 1) ⊂ U 

and

B(x, 2) ⊂ V.Define  =  min{1, 2}, then

B(x, ) ⊂ U  ∩ V.

This proves that  U  ∩ V  ∈ T d.Now suppose that there is a family {V α}α∈A  with  V α ∈ T d, we need to prove thatU   =

α∈A V α ∈ T d. Again, if  U   is empty we are done. Now, take  x ∈  U . Then

x ∈ V α  for some  α  and by definition there exists an   > 0 such that

B(x, ) ⊂ V α ⊂ U,

this shows that  U  ∈ T d.

Exercise 2.  Show that in a Hausdorff topological space, if a sequence has a limit,

then the limit is unique.Proof.   Let   X   be a Hausdorff topological space and suppose that   xn  →   x   andxn →   y. We need to prove that   x   =   y. Suppose that   x =   y, then there areneighborhoods  U x  and  U y   of  x  and  y  respectively with

U x ∩ U y  = φ

Since  xn →  x   there exists  N x  >> 0 such that for all  k > N x,  xk ∈  U x. Similarly,there exists N y  >>  0 such that for all  k > N y, xk ∈ U y. Define N   = max{N x, N y},and one has that   xN +1 ∈   U x ∩ U y, which is a contradiction. We conclude thatx =  y.  

Exercise 3.  Prove that the euclidean and the square metric induce the same topol-ogy in  Rn.

Proof.  In view of Lemma 2.11 from the notes it is enough to show that given  > 0and  x  = (x1,...,xn) ∈ R

n there exist δ 1, δ 2  such that:

Bd(x, δ 1) ⊂ Bρ(x, )

andBρ(x, δ 2) ⊂ Bd(x, )

Defineδ 1  =  

andδ 2  =  /

√ n

Now suppose that y  = (y1, · · · yn) ∈ Bd(x, δ 1) then:

ρ(x, y) =  max{|x1−y1|, · · · |xn−yn|} ≤ (x1 − y1)2 + · · · + (xn − yn)2 = d(x, y) < 1

Page 2: Soluções de Topologia

7/25/2019 Soluções de Topologia

http://slidepdf.com/reader/full/solucoes-de-topologia 2/3

2

Thus,  y ∈ Bρ(x, ).On the other hand, assume that  y  = (y1, · · · yn) ∈ Bρ(x, δ 2), then:

d(x, y) = 

(x1 − y1)2 + · · · + (xn − yn)2 < 

nδ 22  = 

Thus,  y ∈ Bd(x, )  

Exercise 4.  Find an example of a space that satisfies the first countability axiom but does not satisfy the second one.

Proof.  Take the space R with the discrete topology. For any point x ∈R, {{x}} is abasis of neighborhoods for x. However, this space has no countable basis: suppose{U α}α∈A   is a countable basis. Then for each   x ∈   R   there is   α ∈ A   such thatx ∈ U α ⊂ {x}  which implies that  U α = {x}. So the basis cannot be countable.  

Exercise 5.   Consider two topological spaces   (X, T X),   (Y, T Y  ),   A ⊂   X   endowed 

with the induced topology  T A,  B ⊂ Y  endowed with the induced topology  T B. Show that 

•   If  B  is a basis for the topology  T X, then  B|A := {U  ∩ A :  U  ∈ B}   is a basis  for the induced topology on  A.

•   The restriction of the product topology   T X × T Y    to   A × B   coincides with the product topology  T A × T B.

Proof.  For the first part we need to show that given an open set  U   of  A  and a pointx ∈ U   there exist  W  ∈ B|A  with:

x ∈ W  ⊂  U 

Since U   is open in  A, there exists  U  open in  X   such that  U 

A =  U . Since  B  isa basis for the topology of  X , there exists  W  ∈ B  such that

x ∈ W  ⊂ U .

Then one can choose  W   = W  ∩ A. This shows that  B|A   is a basis for  T A.

Let us now look at the second part: Let  B be a basis for the topology of  Y . Itis enough to show that

B|A × B|B

is a basis for T A × T B  and for (T X × T Y  )A×B. Let us first see that  B|A × B|B   is a

basis for  T A × T B. From Part (a) we know that  B|A  and  B|B  are basis for T A  andT B  respectively. Then we know from Lemma 3.2 in the notes that  B|A ×B

|B   is abasis for  T A × T B.Now,

B|A ×B

|B  = (B× B

)|A⊗Bso, by the first part of this exercise (applied to the space  X  × Y ) it follows thatB|A × B

|B  is a basis for (T X × T Y  )A×B.  

Exercise 6.   (ex. 6, pp. 101) Let  A  and  B  denote subsets of a topological space  X .Prove that 

(a)   If  A ⊂ B   then  A ⊂ B.(b)   A ∪ B =  A ∪ B.

Proof.  We will present to solutions to this exercise, the first one is more ”formal”and the second one may be more ”natural”.First solution:Part(a) It is clear that

A ⊂ B ⊂ B

Page 3: Soluções de Topologia

7/25/2019 Soluções de Topologia

http://slidepdf.com/reader/full/solucoes-de-topologia 3/3

3

now,

A =

D∈D

D

where  D  is the set of all closed subsets of  X   that contain  A. Then since  B ∈  D, itfollows that A ⊂ B .Part(b) Since

A ⊂ A ∪ B

andB ⊂ A ∪ B

then from part (a) it follows that A ⊂ A ∪ B  and  B ⊂ A ∪ B, hence

A ∪ B ⊂ A ∪ B

On the other hand:A ∪ B ⊂ A ∪ B

so, again by part (a)A ∪ B ⊂ A ∪ B =  A ∪ B

Second solution: Here we use the characterization of points in the closure of asubset A  given in Lemma 3.16:

x ∈ A  iff  U x ∩ A = φ  for all  U x  neighborhood of x

Part(a) Suppose that  x ∈ A  and let  U x  be a neighborhood of  x. Then

U x ∩ A ⊂ U x ∩ B

and since U x ∩ A   is nonempty, so is  U x ∩ B. We conclude that  x ∈ B .Part(b) We argue by contradiction: Take x ∈ A ∪ B  and assume that

x /

∈ A

andx /∈ B

Then, there exist neighborhoods  U, V   of  x  such that

U  ∩ A =  φ

andU  ∩ B =  φ

Define W   := U  ∩ V , then  W  is neighborhood of  x  and

W  ∩ (A ∪ B) = (W  ∩ A) ∪ (W  ∩ V ) =  φ

this is a contradiction because x ∈ A ∪ B. We conclude that  x  belongs to  A ∪ B.