sigma delta 1.3

Upload: balthier8745

Post on 14-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Sigma Delta 1.3

    1/144

    SIGMAIGMA-DELTA MODULATORSELTA MODULATORSIGMAIGMA DELTA MODULATORSELTA MODULATORSDESIGN ISSUESESIGN ISSUESJose Silva-Martinez

    Electrical and computer Engineering

    (Amesp02.tamu.edu/~jsilva)

    J. Silva-Martinez 1

    Part 1.3

  • 7/29/2019 Sigma Delta 1.3

    2/144

    Conventional (Conventional (NyquistNyquist) ADC) ADC

    J. Silva-Martinez 2

    . .. .

  • 7/29/2019 Sigma Delta 1.3

    3/144

    Basic concept inBasic concept in ModulatorsModulatorsVin

    1

    H(s) A/D

    Data

    Out

    DACs

    sF

    )s(HSTF NTF

    1

    J. Silva-Martinez 3

    )s(H1 )s(H1

  • 7/29/2019 Sigma Delta 1.3

    4/144

    FirstFirst--OrderOrder ModulatorModulatorw scre ew scre e-- me n egra orme n egra or

    The modulators order is defined as the loop filter order

    Number of bits is the bit number of the quantizer and DAC.

    -

    z-1

    integrator

    digital output

    Y(n)

    analog input

    xc(t)

    DAC

    If the integrator changes to a continuous-time integrator, with the- -

    J. Silva-Martinez 4

    delta modulator.

  • 7/29/2019 Sigma Delta 1.3

    5/144

    Waveforms with 0 V DC InputWaveforms with 0 V DC Input1

    1.5

    0

    0.5

    ltage

    -1

    -0.5

    v

    0 5 10 15 20 25 30 35 40 45 50-1.5

    sample #

    he out ut codes oscillate between 1 and -1.

    CT integrator output

    J. Silva-Martinez 5

  • 7/29/2019 Sigma Delta 1.3

    6/144

    Waveforms with 1/7 V DC InputWaveforms with 1/7 V DC Input

    1

    1.5

    oltage

    0

    0.5

    -1

    -0.5

    sample #0 5 10 15 20 25 30 35 40 45 50

    -1.5

    The output code period is 7, the sequence is [ -1, 1, -1, 1, -1, 1, 1].

    CT integrator output

    J. Silva-Martinez 6

    Average value of the sequence is 1/7.

  • 7/29/2019 Sigma Delta 1.3

    7/144

    Waveforms with 2/7 V DC InputWaveforms with 2/7 V DC Input

    1

    1.5

    oltage

    0

    0.5

    -1

    -0.5

    sample #0 5 10 15 20 25 30 35 40 45 50

    -1.5

    The output code period is 14, the sequence is [ -1, 1, 1, -1, 1, 1, -- -

    CT integrator output

    J. Silva-Martinez 7

    , , , , , , .

    Average value of the sequence is 2/7.

  • 7/29/2019 Sigma Delta 1.3

    8/144

    Waveforms with 3/7 V DC InputWaveforms with 3/7 V DC Input

    1

    1.5

    oltage

    0

    0.5

    -1

    -0.5

    sample #0 5 10 15 20 25 30 35 40 45 50

    -1.5

    The output code period is 7, the sequence is [ -1, 1, 1, -1, 1, 1, 1].

    CT integrator output

    J. Silva-Martinez 8

    Average value of the sequence is 3/7.

  • 7/29/2019 Sigma Delta 1.3

    9/144

    Waveforms with 4/7 V DC InputWaveforms with 4/7 V DC Input

    1.5

    oltage

    0

    0.5

    1

    -1

    -0.5

    sample #0 5 10 15 20 25 30 35 40 45 50

    -1.5

    The output code period is 14, the sequence is [ -1, 1, 1, 1, -1, 1, 1,

    CT integrator output

    J. Silva-Martinez 9

    , , - , , , , .

    Average value of the sequence is 4/7.

  • 7/29/2019 Sigma Delta 1.3

    10/144

    LinearizedLinearized DiscreteDiscrete--Time ModelTime Model

    1

    1z1H(z)

    zEzYzXzHzY DelayzzYSTF

    :FunctionTransferSignal

    1

    zE

    zH1

    1zX

    zH1

    zHzY

    :FunctionTransferNoise

    zEz1zXzzY

    HPz1zENTF

    J. Silva-Martinez 10

    Caveat: E(z) may be correlated with X(z) not white.

  • 7/29/2019 Sigma Delta 1.3

    11/144

    11stst

    --Order Noise ShapingOrder Noise Shaping

    f

    2

    Ne2

    2

    12 1

    fs 2 0

    fm

    NTF2

    df

    2 fm 2

    fs

    f

    fsfm

    12

    fs 2

    2sin fs

    0

    df

    2

    1 f fm

    2

    12 fs 2 fs 0

    2

    12

    2fmf

    3

    2

    3

    222

    :noiseonquantizatiband-In

    33OSR12

    J. Silva-Martinez 11

    . .

  • 7/29/2019 Sigma Delta 1.3

    12/144

    22ndnd

    --OrderOrder ModulatorModulator

    2zSTF

    :FunctionTransferSignal

    In - band quantization noise :

    2 4

    NTF 1 z1 2

    Ne2 12 5M5

    J. Silva-Martinez 12

    Doubling OSR (M) increases SQNR by 15 dB (2.5 bit/oct).

  • 7/29/2019 Sigma Delta 1.3

    13/144

    22ndnd--OrderOrder Modulator (1Modulator (1--BitBit QuantizerQuantizer))

    1

    2 jy

    1

    zE1z

    zX1z

    zY22

    z-plane

    Simple, stable, highly-linear

    Insensitive to componentmismatch

    0 1 x

    J. Silva-Martinez 13

    Less correlation b/t E(z) and X(z)

  • 7/29/2019 Sigma Delta 1.3

    14/144

    Generalization (Generalization (LLthth--Order Noise Shaping)Order Noise Shaping)

    Modulator transfer function:

    Y z zLX z 1 z1 L

    E z

    2L2

    :noiseonquantizatiband-In

    12Le

    O12L12

    N

    SR

    2L

    O12L

    SRSQNR

    N 212

    2

    3

    , . .

    Potential instability for 3rd- and higher-order single-loop modulators.

    J. Silva-Martinez 14

  • 7/29/2019 Sigma Delta 1.3

    15/144

    Feedback DAC

    In DT modulators, the feedback DAC gives sampled.

    However, in CT implementations, the DAC shouldprov e e oop er w a a.

    DAC should convert the DT data into CT pulses.

    Most common y use DA wave orms are rectangu arDAC pulses.

    The can be easil enerated and loo filter

    coefficients can be obtained in a straightforwardmanner.

    J. Silva-Martinez 15

  • 7/29/2019 Sigma Delta 1.3

    16/144

    Feedback DAC

    Typical DAC Rectangular Pulses

    J. Silva-Martinez 16

  • 7/29/2019 Sigma Delta 1.3

    17/144

    DT andDT and CTCT EquivalenceEquivalence

    Continuous timeDiscrete time

    Vin

    sT

    1

    H(s)

    Vin

    sT1

    H(z)

    DAC

    s

    |)()( txnx

    nTt s

    DAC

    s

    |)(*)()(

    |)()()(

    thtRnh

    sHsRLzHZ

    nTtD

    nTtD

    s

    s

    Open loop impulse response is equal at t=nTs

    D

    J. Silva-Martinez 17

  • 7/29/2019 Sigma Delta 1.3

    18/144

    Equivalence of ContinuousEquivalence of Continuous--Time & DiscreteTime & Discrete--TimeTime

    The key feature of the modulator is the noise shaping (NTF)

    To achieve equivalence between a continuous-time and discrete-timeimplementations, Loop Gain should have the same properties

    -discrete-time loop filters ?

    The NTF is mainly determined by the transfer function of theThe NTF is mainly determined by the transfer function of the

    J. Silva-Martinez 18

    oop ter an t e ee acoop ter an t e ee ac

  • 7/29/2019 Sigma Delta 1.3

    19/144

    Impulse Invariant TransformationImpulse Invariant Transformation

    DT (Z-domain) loop filter into partial fractions and use S-domain

    e uivalences for the Z-domain oles to et the CT loo filter.

    J. Silva-Martinez 19

  • 7/29/2019 Sigma Delta 1.3

    20/144

    J. Silva-Martinez 20

  • 7/29/2019 Sigma Delta 1.3

    21/144

    Inherent AntiInherent Anti--aliasing for narrowaliasing for narrow--bandband

    app ca onsapp ca ons

    According to impulse invariant, the above two loopsare equivalent, L(z) = 1 / (1 + H(z)) !

    J. Silva-Martinez 21

  • 7/29/2019 Sigma Delta 1.3

    22/144

    Inherent AntiInherent Anti--aliasingaliasing

    For CT case

    J. Silva-Martinez 22

  • 7/29/2019 Sigma Delta 1.3

    23/144

    Inherent AntiInherent Anti--aliasingaliasing

    J. Silva-Martinez 23

  • 7/29/2019 Sigma Delta 1.3

    24/144

    Continuous Time vs. Discrete TimeContinuous Time vs. Discrete Time

    Continuous Time Discrete Time

    Not drastically limited by Limited by GBW of loopamplifiers GBW filter amplifiers

    Power ConsumptionLower (No high GBW required!)

    Higher

    Anti-aliasing-

    applications

    ADC

    Sampling Errors Shaped by loop filter

    Appear directly at ADC

    output

    Clock JitterSensitive to clock jitter infeedback DAC

    Robust to Clock Jitter

    Loop DelayModify the loop filter poles

    Very little effect

    Rise-Fall Time AsymmetryYield even order harmonics inthe DAC feedback signal

    Very little effect

    Sensitivit to Process Absolute RC or Gm C values Ca acitance ratios can be as

    J. Silva-Martinez 24

    variations can vary by 30 % accurate as 0.5%

  • 7/29/2019 Sigma Delta 1.3

    25/144

    Continuous-time ADC

    Key Features ower power consump on

    Inherent anti-alias filtering

    Lower area requirements

    -

    Easier to drive from external sources

    Sensitive to DAC clock-jitter and non-linearity

    Sensitive to excess loop delay

    J. Silva-Martinez 25

    Sensitive to time-constant variations

  • 7/29/2019 Sigma Delta 1.3

    26/144

    CTCT ADC NonADC Non--idealitiesidealitiesDAC Non-idealities

    Excess loop delay : Constant delay between ideal and implemented

    DAC feedback pulse Decision time required by quantizer affecting latches used for

    Finite response time of DAC to its clock and inputs

    Excess Loop Delay can be incorporated: Z

    -1Z

    -1+

    Inter-symbol interference : Finite slew rate of DAC outputs with

    unequal rise and fall times

    Clock jitter in DACProcessed by STF

    J. Silva-Martinez 26

    DAC and Filter Non-linearityNot noise-shaped

  • 7/29/2019 Sigma Delta 1.3

    27/144

    Design Example: 12Design Example: 12--bit, 20MHz CTbit, 20MHz CT ADCADCSystem-level Design Considerations

    Design Trade-offs:

    Order of modulator, L L Reduced stability, Less robust to PVT variations

    Oversampling ratio, OSR OSR Limited by fT of technologyQuantizer resolution, N N Improved stability

    Improved clock jitter tolerance More power, area in quantizer

    -feedback DAC

    Max. NTF gain, NTFmax NTFmax Reduced stability

    J. Silva-Martinez 27

    Max. stable amplitude, MSA MSA L, N, NTFmax

  • 7/29/2019 Sigma Delta 1.3

    28/144

    SystemSystem--level Optimizationlevel Optimization

    Peak SQNR vs NTFmax

    , No. of Quantizer levels

    ,settling time requirements on 1st integrator stage

    L = 5, OSR = 10

    88

    90

    Order of modulator (L),

    and OSR set by targetSQNR (~80dB)

    82

    84

    86

    NR

    (dB)

    L = 5, OSR = 10

    A number of tradeoffs

    76

    78

    80

    PeakS

    Just pickingJust picking

    9

    10

    113.5

    472

    74

    good approachgood approach

    J. Silva-Martinez 28

    7

    82.5

    No. of Quantizer levelsNTFmax

    GUESSES!GUESSES!

  • 7/29/2019 Sigma Delta 1.3

    29/144

    SystemSystem--level Optimizationlevel Optimization

    L = 5, OSR = 10, N = 9Order of modulator

    (L), and OSR set by

    tar et S NR ~80dB

    82

    84

    86

    High-Q filters give

    76

    78

    80

    kS

    QNR(dB)

    (due to picking in

    the gain; better in-

    band noise

    70

    72

    74Pe

    Implications onImplications on

    4

    6

    8

    2

    4

    6

    868er s s gnaer s s gnaswing and outswing and out--

    ofof--band noise?band noise?

    J. Silva-Martinez 29

    00Q

    2(

    0= 10.8MHz)Q1 (0 = 18.1MHz)

  • 7/29/2019 Sigma Delta 1.3

    30/144

    SystemSystem--level Optimizationlevel Optimizationvs max, o. o uan zer eve s

    Maximum Signal

    Amplitude Increase

    with number of levels

    -1.5

    -1

    and with small NTF

    values

    -3

    -2.5

    -

    SA

    (dB)SeveralSeveral

    tradeoffstradeoffs

    -4.5

    -4

    -3.5nvo venvo ve

    8

    9

    10

    11

    2.5

    3

    3.5

    -5

    J. Silva-Martinez 30

    7 4NTF

    max

    No. of Quantizer levels

  • 7/29/2019 Sigma Delta 1.3

    31/144

    SystemSystem--level Optimizationlevel Optimization

    NTF vs Bi uad ualit Factorsmax L = 5, OSR = 10, N = 9

    HighHigh--Q sectionsQ sections

    is synonymous ofis synonymous of

    hi her hi her NTFmaxNTFmax

    3.6

    3.8

    and better inand better in--

    band NTFband NTF

    3.2

    3.4

    N

    TF

    maxHowever, MSAHowever, MSA

    decreases,decreases,

    2.8

    3en sen s

    unclear if yourunclear if your

    SQNR is betterSQNR is better

    2

    4

    6

    8

    2

    4

    6or notor not

    J. Silva-Martinez 31

    00Q

    2(

    0= 10.8MHz)

    Q1

    (0

    = 18.1MHz)

  • 7/29/2019 Sigma Delta 1.3

    32/144

    AvoidAvoid SaturationSaturation atat internalinternal nodesnodes andand quantizerquantizerinputinput;; checkcheck signalsignal swingswing everywhereeverywhere::

    TheseThese simulationssimulations mustmust includeinclude inin--bandband andand outout--ofof--bandband inputinputsignalssignals toto emulateemulate realreal ADCADC operationoperation inin presencepresence ofof blockersblockers

    J. Silva-Martinez 32

  • 7/29/2019 Sigma Delta 1.3

    33/144

    Selected System Parameters

    10

    NTF Magnitude Response

    -10

    0

    NTFmax

    = 3.431 Parameter Value

    Sampling Frequency 400MHz

    -30

    -20

    de

    (dB)(dB)

    Signal Bandwidth 20MHz

    Order 5

    -50

    -40Magnit

    Quantizer levels 9

    Peak SQNR 80dB

    -60

    max .

    MSA -3dBFS

    J. Silva-Martinez 33

    10-3

    10-2

    10-1

    100

    -

    Normalized Frequency (rad/sec)

  • 7/29/2019 Sigma Delta 1.3

    34/144

    Implementation DecisionsImplementation Decisions

    Loop filter

    -

    gm-C type for other two. Or, you may use 3 active-RC type integrators.

    uan zer

    5-bit flash type,

    Proper sizing of the comparator transistors is necessary to ensurea small enough offset.

    DAC

    Current steering is chosen for straightforward implementation,

    Current calibration is utilized to linearize the DAC. Pulse shaping

    J. Silva-Martinez 34

    compared.

  • 7/29/2019 Sigma Delta 1.3

    35/144

    Loop Filter Design ConsiderationsLoop Filter Design Considerations -- 11

    Low powerdue to lower internal

    signal swings

    High gain in 1st stage of filter

    Relaxed noise and linearity

    specs on later stages Reduced complexity: Only one DAC

    s or er an -a as ng

    Out-of-band peaking in STF

    Reduced stable input range for

    adjacent channels

    Higher power consumption due to

    larger internal signal swings

    Moderate ain in 1st sta e of

    filter Higher bias currents in later

    stages to reduce noise and non-

    J. Silva-Martinez 35

    Multiple DACs

    Lth - order anti-aliasing

  • 7/29/2019 Sigma Delta 1.3

    36/144

    CTCT ADC NonADC Non--idealitiesidealitiesInput locations for non-idealities in a CT ADC

    Most critical

    Quantizer Non-idealities

    DC offset, non-linearity are noise-shaped by the loop

    -,

    Filter Non-idealities

    Finite op-amp GBW product causes incomplete settling of integrator outputs

    Finite slew rate and output swing introduce non-linearity

    J. Silva-Martinez 36

    Circuit noise and non-linearity of 1st integrator

    Integrator time constant variation may cause instability

  • 7/29/2019 Sigma Delta 1.3

    37/144

    Broadband ADC Architecture: 3Broadband ADC Architecture: 3rdrd order LPorder LP

    k4

    k5

    k6kz

    quantizer

    k1Ts/s k2Ts/s k3Ts/s

    Integrator_1Integrator_2 Integrator_3

    fb2

    kfb1

    z-1

    DAC

    z-1/2

    J. Silva-Martinez 37

    A broadband continuous-time sigma-delta modulator architecture Blockers tolerant ?

  • 7/29/2019 Sigma Delta 1.3

    38/144

    Loop Filter Design ConsiderationsLoop Filter Design Considerations -- 22

    AC1

    AC3

    Block Order DC Gain Cut-off Q IM3 SNR

    BIQUAD1 2 20 18.4 3 -78 74

    BIQUAD2 2 20 10.8 4 -60 60

    J. Silva-Martinez 38

    . - -

    Filter 5 59 20 - < -76 72

  • 7/29/2019 Sigma Delta 1.3

    39/144

    System ArchitectureSystem Architecture

    - -

    Feed-forward architecture

    9-level quantizer-

    High linearity Low power, area, less complexity

    Realizability

    J. Silva-Martinez 39

    o eran o c oc er

  • 7/29/2019 Sigma Delta 1.3

    40/144

    Loop Filter Design ConsiderationsLoop Filter Design Considerations -- 22

    60

    70

    )

    Loop filter H(s) : Bode Diagram

    20

    30

    40

    Magnitude(d

    106

    107

    108

    0

    10

    -100

    -50

    0

    (deg)

    -250

    -200

    -

    Pha

    se

    J. Silva-Martinez 40

    106

    107

    108

    -

    Frequency (Hz)

  • 7/29/2019 Sigma Delta 1.3

    41/144

    Loop FilterLoop Filter

    Active-RC

    Higher linearity (+)RZ CI

    Rail-to-rail signal swing (+)

    Slower speed (-)

    -

    RIN

    In Outwith higher power consumption (-) RIN

    gm-C

    Higher bandwidth (+)

    Poor linearit -CI

    Smaller signal swing (-) Parasitic sensitive (-) CI

    In Outgm

    J. Silva-Martinez 41

  • 7/29/2019 Sigma Delta 1.3

    42/144

    Local calibrations: Loop Filter RCLocal calibrations: Loop Filter RC

    To overcome large ( > 10% ) RC product variation, automatic tuning

    RZ CI

    RIN

    In Out

    RZ CI

    RIN

    4 bitcontrolword

    J. Silva-Martinez 42

  • 7/29/2019 Sigma Delta 1.3

    43/144

    RC Time Constant VariationsRC Time Constant Variations

    96

    RC time constant variation may hurt stability and SNR of theRC time constant variation may hurt stability and SNR of themodulatormodulator

    92

    94

    Unstable10% RC productaccuracy could

    88

    90

    N

    R

    (dB)

    Stable operation

    sa s y our nee s

    84

    86S

    80

    82

    J. Silva-Martinez 43

    0.8 1 1.2 1.4 1.6 1.8 278

    Normalized RC time constant

  • 7/29/2019 Sigma Delta 1.3

    44/144

    Loop Filter RC Time Constant TuningLoop Filter RC Time Constant Tuning

    CI 4-bit control word

    R

    C

    A(s)

    Vref

    Counter &AA

    Vo

    LogicAA

    integratorcomparator

    Vo

    time

    J. Silva-Martinez 44

    BetterBetter to tune the loop gain (to be discussed)to tune the loop gain (to be discussed)

  • 7/29/2019 Sigma Delta 1.3

    45/144

    Loop Filter Design ConsiderationsLoop Filter Design Considerations -- 33

    Biquad section 1st order lossy integrator

    Quality factors of biquadratic sections optimized

    Lower Qs minimize sensitivity to saturation at internal nodes

    Lower Qs suitable for practical realization

    To suppress noise and distortion of later stages To minimize peaking in STF

    BIQUAD1 has maximum bandwidth to suppress noise over a wider frequency range

    J. Silva-Martinez 45

    Overall input-referred noise designed to be limited by input resistance of loop filter

    and 1st integrator

    Excess phase in loop filter amplifiers critical to minimize excess loop delay

    Oversampled A/D ConversionOversampled A/D Conversion

  • 7/29/2019 Sigma Delta 1.3

    46/144

    Oversampled A/D ConversionOversampled A/D Conversion Specifications and Matlab/Verilog-A simulations Order and quantization levels Feedback, Feedforward, Mixed-mode

    er rea za on Noise, Power, linearity

    Quantizer (ADC) Input impedance, Kickback noise, Power consumption, Delay

    DAC Speed, Jitter performance, Linearity, Output impedance

    Clocks , System verification (Cadence)

    SQNR, SJNR, SNR, SDNR, stability, loop delay Clocks

    Calibration Cover PVT variations, mismatch, add non-linearities

    Extensive post-layout Simulations

    J. Silva-Martinez 46

    Isolate as much as possible critical blocks from noisy digital.

    Be careful with your assumptions; in many cases are not totally

    true!

  • 7/29/2019 Sigma Delta 1.3

    47/144

    T icalT ical uantizeruantizer:: FlashFlash ArchitectureArchitecture S/H operates at clock rate

    Kick back noise

    Re uires a recise low-

    impedance resistive ladder:

    Power-accuracy-Speed

    tradeoff

    Limited by comparator

    Speed and accuracy

    se vo age

    Hard to improve its resolution

    J. Silva-Martinez 47

    State of the art:State of the art: ~ 2.4~ 2.4 GS/s 6 bits resolutionGS/s 6 bits resolution

    Fl h B dFl h B d Q tiQ ti A hit tA hit t

  • 7/29/2019 Sigma Delta 1.3

    48/144

    Flash BasedFlash Based QuantizerQuantizer ArchitectureArchitecture

    Reference ladderVFS Vi Strobe

    consists of 2N equal

    size resistors

    In ut is com ared

    fs

    to 2N-1 reference

    voltages.

    coder

    Dout

    Fastest ADC

    architecture

    En

    a ency = = s

    Throughput = fs

    Complexity = 2N2

    N-1

    com arators

    J. Silva-Martinez 48

    Th t C dTh t C d

  • 7/29/2019 Sigma Delta 1.3

    49/144

    Thermometer CodeThermometer Code

    b2 b1 b0VFS Vi Strobe Thermometer code

    1111

    fs

    0

    01101

    1

    1010

    1

    1

    000

    2N-1 1-of-n code

    J. Silva-Martinez 49

    ROM encoder

    M Off t R l tiM Off t R l ti

  • 7/29/2019 Sigma Delta 1.3

    50/144

    Max. Offset vs. ResolutionMax. Offset vs. Resolution

    DNL < .5 L B

    s,

    max

    Large VFS relaxes

    offset tolerance

    Small VFS benefits

    convers on spee

    (settling, linearity)

    J. Silva-Martinez 50

    ADC Input CapacitanceADC Input Capacitance

  • 7/29/2019 Sigma Delta 1.3

    51/144

    ADC Input CapacitanceADC Input Capacitance

    22

    00

    2 /10 mfFCWL

    AV g

    VTT

    N = 6 bits

    V = 1V

    63 comparators

    1 LSB = 16mV

    N (bits)# of

    comp. Cin (pF)

    = LSB/4

    AVT0 = 10mVm

    = 4mV

    L = 0.24m,

    .

    8 255 250

    10 1023 ??!=

    SmallSmall VVosos leads to large device sizes, hence large area and power.leads to large device sizes, hence large area and power.

    Large comparator leads to large input capacitance, difficult to drive andLarge comparator leads to large input capacitance, difficult to drive and

    difficult to maintain bandwidth.difficult to maintain bandwidth.

    J. Silva-Martinez 51

    KickKick back noise and couplingback noise and coupling

  • 7/29/2019 Sigma Delta 1.3

    52/144

    KickKick--back noise and couplingback noise and coupling

    capac orscapac ors

    M3 M4 M5 M6

    Cgd1 Cgd2 Mode

    M1 M2

    VinCgs1 Cgs2

    VRRS

    M8M7

    M9Vo

    +Vo

    - high Track

    low Regen.

    th 9 -

    signal-dependent sampling point (aperture error)

    A major challenge of distributing clock signals across 2N-1 comparators

    J. Silva-Martinez 52

    n as w t m n mum c oc s ew rout ng, th m smatc o 9

    FullyFully Differential ArchitectureDifferential Architecture

  • 7/29/2019 Sigma Delta 1.3

    53/144

    FullyFully--Differential ArchitectureDifferential Architecture

    VFS doubled

    3-dB gain in SNR

    e er

    Noise immunity

    Input feedthroughder

    cancelled

    Cin nonlinearityEnc

    Effect of Vcmi diff.mitigated

    J. Silva-Martinez 53

    55--bitbit QuantizerQuantizer Design (Flash ADC)Design (Flash ADC)

  • 7/29/2019 Sigma Delta 1.3

    54/144

    55 bitbit QuantizerQuantizer Design (Flash ADC)Design (Flash ADC)

    J. Silva-Martinez 54

    5 bit5 bit quantizerquantizer schematic; looks a bit complex but it is a S/Hschematic; looks a bit complex but it is a S/H--FlashFlash

    FullyFully--Differential ComparatorDifferential Comparator

  • 7/29/2019 Sigma Delta 1.3

    55/144

    FullyFully--Differential ComparatorDifferential Comparator

    Double-balanced, fully-differential preamp Switches (M7, M8) added to stop input propagation during regeneration

    -

    J. Silva-Martinez 55

    DAC NonDAC Non idealitiesidealities

  • 7/29/2019 Sigma Delta 1.3

    56/144

    DAC NonDAC Non--idealitiesidealities

    Sources of jitter error Jitter errors in rectangular DACpulse

    Pulse-width jitter: Random variation in charge fed back per clock cycle

    - - -

    quantization noise to in-band

    Pulse-position jitter: Random variation in integration interval of constant charge

    J. Silva-Martinez 56

    Amplitude errors due to PP jitter are at least 1st-order noise-shaped

    Ideal DAC TransferIdeal DAC Transfer CharacteristicsCharacteristics

  • 7/29/2019 Sigma Delta 1.3

    57/144

    Ideal DAC TransferIdeal DAC Transfer CharacteristicsCharacteristics

    out

    FS

    FS

    000in

    001 011 101010 100 110 111

    DigitalDigital quantizerquantizer output to Analog Filter input converteroutput to Analog Filter input converter

    J. Silva-Martinez 57

    Diff ti l d I t l N li itDiff ti l d I t l N li it

  • 7/29/2019 Sigma Delta 1.3

    58/144

    Differential and Inte ral NonlinearitDifferential and Inte ral Nonlinearit

    out

    DNL < -1 ?

    FS

    FS

    i

    000in

    001 011 101010 100 110 111

    jji

    0

    DNL = deviation of an output step from 1 LSB (= = VFS/2N)

    J. Silva-Martinez 58

    = ev a on o e ou pu rom e ea rans er c arac er s c

    DNL and INLDNL and INL

  • 7/29/2019 Sigma Delta 1.3

    59/144

    DNL and INLDNL and INL

    Vout Vout

    VFS

    VFS-

    VFS

    VFS-

    2 2

    000Din

    001 011 101010 100 110 111 000Din

    001 011 101010 100 110 111

    Smooth Noisy

    DNL measures the incremental (local) nonlinearity.

    J. Silva-Martinez 59

    INL measures the cumulative (global) nonlinearity.

    BinaryBinary--Weighted CR DACWeighted CR DAC

  • 7/29/2019 Sigma Delta 1.3

    60/144

    yy gg

    Cu = unit capacitance VoCP

    VX

    2C C C8C 4C

    R

    b3 b2 b1 b0

    Binary-weighted capacitor array most efficientarchitecture

    J. Silva-Martinez 60

    R

    Binary-Weighted CR DAC

  • 7/29/2019 Sigma Delta 1.3

    61/144

    y g

    NN

    RN

    1j

    u

    jN

    up

    1j

    ujN

    o V

    C2CC

    V

    RN

    N

    1j

    u

    jN

    jN

    V

    C2b

    up

    N

    1jj

    j-N

    R

    u

    N

    p

    u

    N

    o2

    bV

    C2C

    C2V

    Cp gain error (nonlinearity if Cp is nonlinear) INL and DNL limited by capacitor array

    J. Silva-Martinez 61

    mismatc

    Stray-Insensitive CR DAC

  • 7/29/2019 Sigma Delta 1.3

    62/144

    Stray Insensitive CR DAC

    N

    1j j

    j-N

    R

    uu1Np

    u

    N

    u

    N

    o

    2

    bV

    ACC2CC2

    C2V

    Large gain A

    attenuatesumming-nodecharge sharing

    J. Silva-Martinez 62

    ResistorResistor--String DACString DAC

  • 7/29/2019 Sigma Delta 1.3

    63/144

    gg

    Ri

    0 0 1 1

    o

    o

    Simple, inherently monotonic good DNL performance

    Complexity speed for large N, typically N 8 bits

    J. Silva-Martinez 63

    Has to be connected to a high impedance node

    CodeCode--DependentDependent output impedanceoutput impedance

  • 7/29/2019 Sigma Delta 1.3

    64/144

    VRDi

    Vo

    Co

    RoSignal-dependent

    RoC causes HD.

    Ro of ladder varies with signal (code).

    -

    J. Silva-Martinez 64

    .

    RR--2R DAC2R DAC

  • 7/29/2019 Sigma Delta 1.3

    65/144

    N

    j-NbIRV

    1j

    X

    o

    3 2 1 0

    A binary-weighted current DAC

    Com onent s read reatl reduced 2:1

    J. Silva-Martinez 65

    BinaryBinary--Weighted CurrentWeighted Current SteeringSteering

  • 7/29/2019 Sigma Delta 1.3

    66/144

    BinaryBinary Weighted CurrentWeighted Current SteeringSteering

    DACDAC

    Nj-Nb

    IRV1j

    .

    Vo depends on Rout of current sources without op-amp. INL and DNL depend on matching, not inherently monotonic.

    J. Silva-Martinez 66

    Large component spread (2N-1:1)

    INL and DNL

  • 7/29/2019 Sigma Delta 1.3

    67/144

    INL and DNL

    j1 j1 j1 N

    Vj k

    1

    RkN

    VR

    k1

    NR RkN

    VR

    j 1

    NVR

    - k1

    kj

    N2RVR

    Vj j 1

    N

    VR, Vj2

    j 1 N - j 1

    N3

    R2

    R2

    VR2.

    Vj

    2max 1

    4N

    R2

    R2VR

    2, when j

    N

    21

    N

    2.

    INLj Vj j -1

    NVR

    VR

    N INL 0, INL max N

    2RR

    .

    J. Silva-Martinez 67

    CurrentCurrent Steering DACSteering DAC

  • 7/29/2019 Sigma Delta 1.3

    68/144

    gg

    Io

    I I I

    Binary-to-Thermometer Decoder

    Fast inherentl monotonic ood DNL erformance

    J. Silva-Martinez 68

    Complexity increases for large N, requires B2T decoder.

    Unit Current CellUnit Current Cell

  • 7/29/2019 Sigma Delta 1.3

    69/144

    Unit Current CellUnit Current Cell

    2N current cells typically broken up into a (2N/2 X2N/2) matrix

    Current source cascoded to improve accuracy Coupled inverters improve synchronization of

    J. Silva-Martinez 69

    curren sw c es.

    Randomization and DummiesRandomization and Dummies

  • 7/29/2019 Sigma Delta 1.3

    70/144

    J. Silva-Martinez 70

    Example: 8+2 Segmented Current

  • 7/29/2019 Sigma Delta 1.3

    71/144

    p g

    DAC

    - " - - 2 "

    J. Silva-Martinez 71

    . . . , , . ,Journal of Solid-State Circuits, vol. 33, pp. 1948-1958, issue 12, 1998.

    Measured INL and DNLMeasured INL and DNL

  • 7/29/2019 Sigma Delta 1.3

    72/144

    J. Silva-Martinez 72

    DAC NonDAC Non--idealities in CTidealities in CT ADCsADCs -- 22

  • 7/29/2019 Sigma Delta 1.3

    73/144

    Effects of DAC non-linearity

    Non-linearity caused due to mismatch between different output levels of

    DAC

    ariation in feedback levels yields signal-dependent feedback charge

    error directly fed to the modulator input.

    J. Silva-Martinez 73

    w u u y v

    modulator

    DAC ArchitecturesDAC Architectures

  • 7/29/2019 Sigma Delta 1.3

    74/144

    any ot er opt ons w edescribed later

    Charge redistribution DAC

    Buffer amplifier is required (-)

    Vref+

    Large capacitor area (-)

    Dynamic element match linearization

    for multi-level DACs

    Vref-Vout

    Current steering DACIo- Io+

    No buffer amplifier is required (+) Current calibration for linearization

    J. Silva-Martinez 74

    DAC Current CalibrationDAC Current Calibration

  • 7/29/2019 Sigma Delta 1.3

    75/144

    Current calibration principle

    Io+Iout Shared by 32current

    Iref

    Scal

    Sout

    C

    When one currentsource is beingcalibrated, the spare

    Spare

    currentsource

    Each currentsource has its

    J. Silva-Martinez 75

    one takes its positioncopy

    DAC Current CalibrationDAC Current Calibration

  • 7/29/2019 Sigma Delta 1.3

    76/144

    Comparison of two current calibration schemes

    IrefIout

    IrefIout

    Current couldonly flow in thedirection as Current couldflow in both

    arrowrect ons

    gm

    . ref m Iref

    Vcm

    Ileak

    ??

    CcalX2

    VTleak

    Ileak

    J. Silva-Martinez 76

    (a) Conventional scheme (b) Revised version

    DAC Current Calibration (SDR)DAC Current Calibration (SDR)

  • 7/29/2019 Sigma Delta 1.3

    77/144

    Current calibration schemes Off-line process: for analog implementation it requires

    Reliable low leakage analog memory

    Assume small sensitivity of system parameter to T variations (?)

    Could be used for on-line applications too Do the calibration when circuit is working, then use fast switching networks

    an ex ra ce s o s connec e ce s o e ca ra on ma n oop.

    Glitches at the switching (in-band) speed are generated

    Io- Io+Shared by 32

    Iref

    Scal

    Sout

    J. Silva-Martinez 77

    When one current source isbeing calibrated, the spare onetakes its position

    Spare currentsource

    C

    DAC CalibrationDAC Calibration ((SignalSignal--toto--Distortion RatioDistortion Ratio))

  • 7/29/2019 Sigma Delta 1.3

    78/144

    This is a major (hot) research area in multi-bit sigma-delta modulators.Several alternatives have been reported; main trends are:

    Randomize the errors such that the non-linear errors are converted in

    Dynamic element matching techniques (I. Galton Approach)

    Pseudo Randomizers such as Rotators (Terry Fitz Approach)

    Di ital si nal rocessors Schreirer A roach

    Drawbacks?

    Calibration By design using large overdrive voltages and large dimensions

    Pre-calibration of current cells Other options?

    J. Silva-Martinez 78

    We will revise these techniques in the following section!

    MultiMulti--bit DAC Architecturebit DAC Architecture

  • 7/29/2019 Sigma Delta 1.3

    79/144

    Dynamic Element Matching (DEM), Self-calibration combined to achieve

    hi h linearit

    J. Silva-Martinez 79

    When DACi is under calibration, demultiplex Datai to dummy current cell

    Dynamic Element MatchingDynamic Element Matching

  • 7/29/2019 Sigma Delta 1.3

    80/144

    Representing DAC input vusing a thermometer DAC

    I6

    I7

    I8

    I6

    I7

    I8

    I6

    I7

    I8

    I6

    I7

    I8

    I6

    I7

    I8

    I6

    I7

    I8

    I6

    I7

    I8

    I6

    I7

    I8

    I2

    I3

    I4

    I5

    I2

    I3

    I4

    I5

    I2

    I3

    I4

    I5

    I2

    I3

    I4

    I5

    I2

    I3

    I4

    I5

    I2

    I3

    I4

    I5

    I2

    I3

    I4

    I5

    I2

    I3

    I4

    I5

    1 1 1 1 1 1 1 1

    t

    0 Ts 2Ts 3Ts

    t

    0 Ts 2Ts 3Ts

    v = 1 can be represented by any one of I1-8

    Averaging all possible combinations produces the ideal output

    J. Silva-Martinez 80

    Errors are randomized

    Implementation of DEM SchemeImplementation of DEM Scheme

  • 7/29/2019 Sigma Delta 1.3

    81/144

    Shifter performs a Rotate-right shift on its inputs PN-sequence generator indicates number of shifts

    J. Silva-Martinez 81

    DEM is operated at 2GHz to maximize randomization

    Shifter ImplementationShifter Implementation

  • 7/29/2019 Sigma Delta 1.3

    82/144

    J. Silva-Martinez 82

    - -

    Z0 Z7 = Qout0 Qout7

    Z8 Z14 = Qout0 Qout6

    PNPN--Sequence GeneratorSequence Generator

  • 7/29/2019 Sigma Delta 1.3

    83/144

    Generates maximal length sequence based on 3rd-order primitive polynomial

    J. Silva-Martinez 83

    Analog SelfAnalog Self--Calibration of Current SourcesCalibration of Current Sources

  • 7/29/2019 Sigma Delta 1.3

    84/144

    Current Calibration PrincipleCurrent Calibration Principle

    At the end of a calibration c cle C attains the correct V

    J. Silva-Martinez 84

    required to generate Iref

    MultiMulti--bit Calibrated DACbit Calibrated DAC

  • 7/29/2019 Sigma Delta 1.3

    85/144

    Calibration control signals generated using a N-bit CMOS RingCounter

    J. Silva-Martinez 85

    Extra dummy current cell used to implement continuous

    background calibration

    Current Calibration CircuitCurrent Calibration Circuit

  • 7/29/2019 Sigma Delta 1.3

    86/144

    J. Silva-Martinez 86

    Current Cell Design ConsiderationsCurrent Cell Design Considerations

  • 7/29/2019 Sigma Delta 1.3

    87/144

    Matching considerations

    Sizin of current source transistors

    Trade-off

    Hi her overdrive volta e rovides

    better area efficiency at the

    expense of reduced output swing

    Larger area results in greater

    parasitic capacitances which limit

    the speed of operation

    Output impedance

    Greater than 700k over 100MHz

    DACi Unit

    current

    (W/L),

    m=4

    Total

    area, m2

    DAC1-coarse 610uA 203/3.84 7795

    signal bandwidth

    Sufficient for 12-bits static

    (INL) and dynamic linearity

    DAC1-fine 35uA 48/16 7680

    DAC2 1.55mA 323/2.4 6976

    DAC3 960uA 255/3 6885

    J. Silva-Martinez87

    FDR DAC4 790uA 231/3.36 6985

    Simulation ResultsSimulation Results

    0

    Output Spectrum

  • 7/29/2019 Sigma Delta 1.3

    88/144

    -20

    0

    Ideal

    1% mismatch

    -40

    1% mismatch +DEM + Calibration

    -

    -60

    ower(dB)

    -100Mismatch DEM

    Self-

    calibration

    SNR

    (dB)

    -

    -120

    .

    Y N N 55Y Y N 63.6

    J. Silva-Martinez88

    100

    101

    102

    103

    Frequency (MHz)

    Y Y Y 72.7

    Clock Jitter Sensitivity (SJNR)Clock Jitter Sensitivity (SJNR)

    i i i d l d l h ff

  • 7/29/2019 Sigma Delta 1.3

    89/144

    For a continuous-time sigma-delta modulator, the effectof clock jitter is noise-shaped at the input of the

    .

    But for the DAC, the pulse width will be affected by theclock jitter, which is a serious problem for continuous-

    me s gma- e a mo u a or.

    Out utLoo Filter uantizer(digital)

    1/sInput

    Y(n)uc(t)

    DAC

    xc(t)

    Clock jitter introduceuncertainty at the DAC

    J. Silva-Martinez89

    ou pu

  • 7/29/2019 Sigma Delta 1.3

    90/144

    J. Silva-Martinez90

  • 7/29/2019 Sigma Delta 1.3

    91/144

    J. Silva-Martinez91

  • 7/29/2019 Sigma Delta 1.3

    92/144

    J. Silva-Martinez92

    Clock Jitter Sensitivity (SJNR)Clock Jitter Sensitivity (SJNR)

    Relationship between jitter and Phase noise: Lets consider a jittered signal

  • 7/29/2019 Sigma Delta 1.3

    93/144

    Relationship between jitter and Phase noise: Lets consider a jittered signal

    no tcos

    The phase of the noisy signal is then computed as

    nn *T

    Therefore, timing error can now be estimated as follows:

    2o

    o

    o

    2

    n

    T

    T

    We can find the clock jitter varianceemploying the eye diagram, and making

    J. Silva-Martinez93

    Clock Jitter Sensitivity (SJNR)Clock Jitter Sensitivity (SJNR)

    Relationship between jitter and Phase noise:

  • 7/29/2019 Sigma Delta 1.3

    94/144

    Relationship between jitter and Phase noise:

    no tcos

    2

    n

    o

    o

    n

    o

    *T

    tt

    Therefore, timing error can now be estimated as follows:

    T

    Notice that the fre uenc S ectrum of boththe fre uenc S ectrum of both T and VCO hase noiseT and VCO hase noise2T

    are correlatedare correlated, hence it make sense to analyze the phase noise.

    In general, frequency synthesizer noise profile will determine the

    J. Silva-Martinez 94

    er per ormance

    Lets consider the LC tank based VCOLets consider the LC tank based VCO

  • 7/29/2019 Sigma Delta 1.3

    95/144

    Assume only the R (thermal noise) contributes to

    222

    ;2

    4

    Q

    KTRZff

    nn

    i2 Noiseless

    ftank

    J. Silva-Martinez 95

    Tank ImpedanceTank Impedance

    Around the resonant frequency we

  • 7/29/2019 Sigma Delta 1.3

    96/144

    L

    Around the resonant frequency wehave:

    0

    00

    2

    Unloaded tank Q, we have

    RL0

    ;20

    0

    GZ

    J. Silva-Martinez 96

    Output SpectrumOutput Spectrum

  • 7/29/2019 Sigma Delta 1.3

    97/144

    impulse

    c c -

    The spectrum exhibits skirts around the carrier frequency,

    respect to c, calculate the noise power in this bandwidth and dividethe result by the carrier (average) power

    J. Silva-Martinez 97

    DefinitionDefinition: This what the phase noise: This what the phase noise

    meters measuremeters measure

  • 7/29/2019 Sigma Delta 1.3

    98/144

    meters measuremeters measurePhase noise inPhase noise in dBcdBc SNR with res ect to carrierSNR with res ect to carrier

    carrier

    sideband

    P

    HzP 1,log10 0

    Psideband(0+,1Hz) represents the single sidebandpower at a frequency offset of from the carrier with

    J. Silva-Martinez 98

    LeesonsLeesons phase noise modelphase noise model

    If normalizing the mean-square noise voltage density to the

  • 7/29/2019 Sigma Delta 1.3

    99/144

    If normalizing the mean-square noise voltage density to the

    -

    power, then the single-sideband noise spectral density can be

    written as

    2 instead of 4

    02

    lo10

    FKT

    L

    sig

    J. Silva-Martinez 99

    Adding 1/f noiseAdding 1/f noise

  • 7/29/2019 Sigma Delta 1.3

    100/144

    results, then the model is approximated by adding a

    parameter

    31

    2

    0

    10 112

    log10fFKT

    Lsig

    1 f

    J. Silva-Martinez 100

    Main issues in Leesons model

  • 7/29/2019 Sigma Delta 1.3

    101/144

    he noise factor F is not known for differenttechnologies and topologies, and this parameter

    should be defined by numerous runs ofmeasurement for a specific technology

    he is also a fitting parameter

    depending on technology. 3

    J. Silva-Martinez 101

    A 3.5GHz LC tank VCO Phase NoiseA 3.5GHz LC tank VCO Phase Noise

  • 7/29/2019 Sigma Delta 1.3

    102/144

    -30dB/dec

    -20dB/dec

    -105dBc

    J. Silva-Martinez 102

    PhasePhase Noise measured in the labNoise measured in the lab

    For a periodic sinusoidal signal with noise addedto the VCO cont ol oltage then

  • 7/29/2019 Sigma Delta 1.3

    103/144

    to the VCO control voltage, then

    X(t)=Acos(0t+n(t)) t is small random excess hase re resentin

    variations in the period.

    For |n(t)|

  • 7/29/2019 Sigma Delta 1.3

    104/144

    Assume n(t) = mcos(t+)

    X(t)=Acos(0t)-(A m/2)sin[(0 - )t+ ]+0

    00 a you measure n e spec rum ana yzer s

    nC (t)=A m/2; therefore m=2nC (t)/AJ. Silva-Martinez 104

    Clock Jitter Sensitivity (SJNR)Clock Jitter Sensitivity (SJNR)o ng ac o e er ssue,

    tcos no

  • 7/29/2019 Sigma Delta 1.3

    105/144

    dBcL

    2

    2

    2

    2

    2

    2

    2 A

    n

    A

    n

    T

    T ccn

    L n Bc 1010fL

    Then

    A

    nTT

    c

    2

    22

    2 2

    2

    Timing spectrum is correlated with phase fnTfT c2

    2

    22 2

    no se measure n e spec rum ana yzer

    RMS value of total jitter L (usually in dBc) T 22 T

    J. Silva-Martinez 105

    A

    cper

    2

    02

    per

    Jitter Issues: High Clock FrequencyJitter Issues: High Clock Frequency

    D(n-1)Vi

    Loop Filter

    Dout

    ttere

    Clock

  • 7/29/2019 Sigma Delta 1.3

    106/144

    D(n-1)Vin

    D(n)

    T(t)

    QuantizerVDAC

    Re-timed

    DataMulti-Bit

    Flip-Flops

    Error FunctionError FunctionJitteredClock

    DAC

    T

    tTnDnDnJ outouterror

    1

    In the frequency domain: Differential of Dout convolves with Jn()

    noutSnouterror JDT

    si nJDZJ

    2

    21 1

    J. Silva-Martinez 106

    In-band signal is shaped by , then it is not very criticalOut-of-Band quantization noise and blockers convolve with the clock jitter

    11

    Effect of clock jitter on SNREffect of clock jitter on SNR

    NTF*Vq

    then

    T

    nVnV)n(e outoutj 1 uan za on

    noise

  • 7/29/2019 Sigma Delta 1.3

    107/144

    ZJZVZ)Z(E outj 11

    ZJZVZNTFZV*ZSTFZ)Z(E

    Or

    qinj

    11

    Jn

    f

    Jn

    ZJZV*NTFZ

    ZJZV*STFZ)Z(E

    ere ore

    q

    inj

    1

    1

    1

    1

    Clock

    Noise

    21 1 sT

    sinZ

    f

    fs-fs dZEP jOSR/

    S,j

    221

    02 SJNR is function of

    J. Silva-Martinez 107

    dZJZVZNTFZP qOSR/

    Q,j

    2121

    012

    NTF and J(Z)

    ContinuousContinuous--Time BPTime BP-- ADC: Jitter effectsADC: Jitter effects

    sTsi nc

  • 7/29/2019 Sigma Delta 1.3

    108/144

    2

    si nc

    si n

    NRZ

    TPOSR

    dBSJNR

    6

    2

    10*

    60

    sj

    j

    T3104

    2

    2

    si nc**

    l o10l o10

    so

    i n

    i n

    TPOSRP

    SJNR

    , ,noise has been usually approximated as:

    J. Silva-Martinez 108

    124

    1

    s

    jBW

    onQuanti zatin

    T

    dfPZJ

    ContinuousContinuous--TimeTime ADC: Jitter & BlockersADC: Jitter & Blockers

    RF clock filtering is anCLK Qn

    ffck

    0 ff0 ff

    0 fckf0

  • 7/29/2019 Sigma Delta 1.3

    109/144

    RF clock filtering is aneffective method to +

    0 fckf00 fckf0

    partially overcomethis issue!

    J Silva et.al., SRC

    Data

    out2-bit

    Quantizer

    Multi-bitZ

    -1

    - Quantizationand Jitter

    0 fckf0 0 f0 fck

    repor ec

    JnXfck

    1-Z-1

    Jitter induced noise

    f00 fck

    f0

    inP

    logSJNR 1010

    High frequency blockers convolve with Jn and are folded back in band.

    Considering

    n

    BWkerBlocnonQuantizatin

    dfPZJ

    dfPZJPZJ

    212 1

    11Pblocker and

    PPquantization

    J. Silva-Martinez 109

    BW

    onQuantizatin

    BWkerBlocno

    dfPZJ

    logSJNR212

    101

    110

    STF*Blockers

    + NTF*Vq

    STF*Blockers

    + NTF*Vq

    Effect of clock jitter on SNR:Effect of clock jitter on SNR:++

    nt

    nVnV)n(e 1

  • 7/29/2019 Sigma Delta 1.3

    110/144

    nVnV)n(e outoutj 1

    ZJZVZ)Z(E outj 1

    1

    Jn

    f

    Jn

    f

    ZJZV*NTFZ

    ZJZV*STFZ)Z(E inj

    1

    1

    1

    1

    OSR/ 221 Clock Phase Noise

    ffs

    ffs

    ,

    J. Silva-Martinez 110

    sqskerBlocOSR/

    inbandj TdJVNTFVSTFZP 2

    121

    012

  • 7/29/2019 Sigma Delta 1.3

    111/144

    No Blockers

    J. Silva-Martinez 111

    JitterInsensitivityofSwitchedJitterInsensitivityofSwitched

  • 7/29/2019 Sigma Delta 1.3

    112/144

    Jittererror

    Sofar,SCDACisthemostjittertolerantapproach

    Quitepreciseandmaynotrequirefurthercalibrationprocedures

    Drawbacks

    of

    the

    SC

    DACDrawbacks

    of

    the

    SC

    DACPeakcurrentintheSCDACcanbeashighas10timeIDACusedinthecurrentmodeDAC!

    J. Silva-Martinez 112

    ClassABOPAMPmayhelpwhiledealingwiththisissue

    MultiMulti--bit Hybrid DACbit Hybrid DAC

    Effects of DAC pulse shape on clock jitter error, Ejit

  • 7/29/2019 Sigma Delta 1.3

    113/144

    Relaxed slew rate, GBW requirements

    More sensitive to DAC clock jitter

    Requires higher slew rate, faster op-

    amps

    Less sensitive to DAC clock itter

    Ejit varies negligibly with S

    Moderate slew rate, GBW requirements IHYB 1.6 INRZ

    J. Silva-Martinez 113

    ess sens t ve to c oc tter

    Multi-bit Hybrid DAC Implementation

  • 7/29/2019 Sigma Delta 1.3

    114/144

    - ,

    C2, C3 implement 7 output levels

    Unit-weighted C4 implements 2

    additional levels

    , s mp ement

    Fully-differential DAC currents

    Complete clock cycle used for

    capacitor discharge

    Multiple capacitor banksused

    Inherent dynamic element

    DAC controller selects one of the

    capacitor banks during a clockcycle

    J. Silva-Martinez 114

    apac ors are pre-c arge o refwhen not selected by controller

    Hybrid DAC Switch Operation

  • 7/29/2019 Sigma Delta 1.3

    115/144

    When 2N = 1, switch operates as a current source for VC1 > (VGSN Vt)

    C1 discharges linearly, peak currents are limited

    J. Silva-Martinez 115

    C1 GSN t

    C1 discharges exponentially, clock jitter error is reduced

    Simulation Results

    Comparison of DAC full-scale currents SNR vs. % Jitter for NRZ and Hybrid DACs

  • 7/29/2019 Sigma Delta 1.3

    116/144

    p y

    2

    Non-Return-to-Zero DAC

    Switched-Capacitor-Resistor DAC

    Hybrid DAC70

    75

    SNR vs Clock Jitter: -6 dBFS Input Signal @ 5MHz

    NRZ DAC

    Hybrid DAC

    1

    1.5

    ut,

    FS(mA)

    55

    60

    65

    SNR

    (dB)

    0.5

    Io

    45

    50

    0 0.5 1 1.5 2 2.5

    0

    Ts (ns)

    10-3

    10-2

    10-1

    40

    Clock Jitter (% Ts)

    J. Silva-Martinez 116

    ConnectionoftheSCDACs

    This is the traditional switched-capacitor DAC

  • 7/29/2019 Sigma Delta 1.3

    117/144

    p

    Several blocks are connected inparallel and selected by the

    randomizer

    1 block is used every singleperiod. Capacitors are chargedwhen not selected by the

    C1 till C4 are binary weightedCapacitors and are routed to the

    -terminals to emulate the multi-

    bit operation

    -

    J. Silva-Martinez 117

    overlapping clocks

    Suggestedarchitecture:UseofSCDACs

    Encoder converts the

  • 7/29/2019 Sigma Delta 1.3

    118/144

    t ermometer co e nto

    code

    are generated

    have to be synchronized

    Instead of using a large number of comparators:Use S/H

    J. Silva-Martinez 118

    Minimize power

    ConnectionoftheSCDACs

    If properly designed, thisarchitecture have the following

  • 7/29/2019 Sigma Delta 1.3

    119/144

    a c tectu e a e t e o o gproper es:

    i) low-sensitive to clock jitter

    ii) Peak current is no more than2 times larger than theconventional current-node

    iii) Loop gain may not suffervariations when operated asmulti-bit DAC

    iv)iv) Key element: Switch inKey element: Switch in

    J. Silva-Martinez 119

    oo

    ProposedSolution

  • 7/29/2019 Sigma Delta 1.3

    120/144

    eyconcep s:Let us maintain the transistor in saturation region as much time as possible (at

    least T/2 seconds). The circuit operates as a currentmode circuit!

    When Vds

  • 7/29/2019 Sigma Delta 1.3

    121/144

    SNR>12bits,Power

  • 7/29/2019 Sigma Delta 1.3

    122/144

    Maingoal:ENOB14bits,SQNR>16bits,Totalpower

  • 7/29/2019 Sigma Delta 1.3

    123/144

    -, ,

    Filter realization Noise, Power, linearity

    Quantizer (ADC) Input impedance, Kickback noise, Power consumption, Delay

    DAC Speed, Jitter performance, Linearity, Output impedance

    Jitter, duty cycle and phase errors

    System verification (Cadence) SQNR, SJNR, SNR, SDNR, stability, loop delay

    oc s

    Calibration Cover PVT variations, mismatch, add non-linearities

    Extensive ost-la out Simulations

    J. Silva-Martinez 123

    Metal delays, bondwire inductors, do not use ideal GND and ideal power supplies Isolate as much as possible critical blocks from noisy digital.

    Be careful with your assumptions; in many cases are not totally true!

    Oversampled A/D ConversionOversampled A/D Conversion

    Architecture Specifications and Matlab/Verilog-A simulations Order and quantization levels

  • 7/29/2019 Sigma Delta 1.3

    124/144

    -, ,

    Filter realization Noise, Power, linearity

    Quantizer (ADC) Input impedance, Kickback noise, Power consumption, Delay

    DAC Speed, Jitter performance, Linearity, Output impedance

    Jitter, duty cycle and phase errors

    System verification (Cadence) SQNR, SJNR, SNR, SDNR, stability, loop delay

    oc s

    Calibration Cover PVT variations, mismatch, add non-linearities

    Desi n exam lesDesi n exam les

    J. Silva-Martinez 124

  • 7/29/2019 Sigma Delta 1.3

    125/144

    J. Silva-Martinez 125

  • 7/29/2019 Sigma Delta 1.3

    126/144

    J. Silva-Martinez 126

  • 7/29/2019 Sigma Delta 1.3

    127/144

    J. Silva-Martinez 127

  • 7/29/2019 Sigma Delta 1.3

    128/144

    J. Silva-Martinez 128

  • 7/29/2019 Sigma Delta 1.3

    129/144

    J. Silva-Martinez 129

  • 7/29/2019 Sigma Delta 1.3

    130/144

    J. Silva-Martinez 130

  • 7/29/2019 Sigma Delta 1.3

    131/144

    J. Silva-Martinez 131

  • 7/29/2019 Sigma Delta 1.3

    132/144

    The DEM is usuallyslow and may lead tosi nificant loo dela !

    May require loopcompensation

    J. Silva-Martinez 132

    132

    against blockers!

  • 7/29/2019 Sigma Delta 1.3

    133/144

    J. Silva-Martinez 133

  • 7/29/2019 Sigma Delta 1.3

    134/144

    J. Silva-Martinez 134

  • 7/29/2019 Sigma Delta 1.3

    135/144

    J. Silva-Martinez 135

  • 7/29/2019 Sigma Delta 1.3

    136/144

    J. Silva-Martinez 136

  • 7/29/2019 Sigma Delta 1.3

    137/144

    J. Silva-Martinez 137

  • 7/29/2019 Sigma Delta 1.3

    138/144

    J. Silva-Martinez 138

  • 7/29/2019 Sigma Delta 1.3

    139/144

    J. Silva-Martinez 139

  • 7/29/2019 Sigma Delta 1.3

    140/144

    J. Silva-Martinez 140

  • 7/29/2019 Sigma Delta 1.3

    141/144

    J. Silva-Martinez 141

  • 7/29/2019 Sigma Delta 1.3

    142/144

    J. Silva-Martinez 142

  • 7/29/2019 Sigma Delta 1.3

    143/144

    The DEM is usuallyslow and may lead tosi nificant loo dela !

    May require loopcompensation

    J. Silva-Martinez 143

    143

    against blockers!

  • 7/29/2019 Sigma Delta 1.3

    144/144

    J. Silva-Martinez 144