reading: kalpakjian pp. 239-316 2.008 metal casting

42
Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Upload: annice-dana-griffith

Post on 11-Jan-2016

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Reading: Kalpakjian pp. 239-316

2.008

Metal Casting

Page 2: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Outline

Introduction Process Constraints Green Sand Casting Other Processes

Page 3: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Some Facts

First casting: 5000-3000 BC Bronze, iron age, light metal age? Versatility

• Many types of metals• Rapid production• Wide range of shapes and sizes• Complex parts as an integral unit

Page 4: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Example – Sand Casting

Page 5: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Example – Die Casting

Page 6: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Example – Investment Casting

Page 7: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Casting Process Physics and Constraints

Phase Change• Density• Solubility• Diffusion rates

High melting temperature• Chemical activity• High latent heat• Handling

Page 8: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Analysis of Casting Processes

Fluid mechanics for mold filling Heat transfer for solidification Thermodynamics, mass transfer and heat

transfer for nucleation and growth Materials behavior for structure-property

relationships

Page 9: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Mold Filling

.2

2

constg

v

g

Ph =++

ρ

4105Re ×≈=μρvD

m/s5.12 ≈≅ ghv

Bernoulli’s equation

Reynold’s number

• Turbulence• Injection Molding : Re ~ 10-4

h

Page 10: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Cooling for Sand Mold

T

TMETAL - MOLD INTERFACE

MOLD - AIR INTERFACE

DISTANCE

T0

Tw

TE

MP

ER

AT

UR

EMOLDAIR SOLID LIQUID

Page 11: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Conductivity / Diffusivity

Sand Castingsand < metal

Die Casting

tool metal > polymer

Injection Molding

tool metal ~ metal

Conductivity (W/mK)Cu ~ 400, Al ~ 200

Sand ~ 0.5, PMMA ~ 0.2

Page 12: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Solidification Time : Sand Casting

Transient 1-D heat transfer

2

2

x

T

t

Ts ∂∂

=∂∂

t

xerf

TT

TT

sMo

M

2−

=−−

Solution

2

⎟⎠

⎞⎜⎝

⎛=AV

Cts

Solidification time

Chvorinov’s rule

Page 13: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Solidification Time : Die Casting

Transient 1-D heat transfer

)( op TTAht

TmC −−=

∂∂

⎟⎟⎠

⎞⎜⎜⎝

−−+

=moldeject

moldspinjectp

TT

TTT

Ah

mCt ln

Solution

1

⎟⎠

⎞⎜⎝

⎛=AV

Cts

Solidification time

Page 14: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Comparison:Sand Mold vs Metal Mold

Sand MoldSand casting

ts ~ (V/A)2

Metal MoldDie casting

ts ~ (V/A)1

Page 15: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Microstructure Formation

Schematic illustration of three basic types of cast structures(a) Columnar dendritic (b) equiaxed dendritic (c) equiaxed nondendritic

Page 16: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Formation of Dendrites

Tem

per

atur

e

Alloying element

Solid

Liquid

T

S

TL

Solid

Solid

Liquid

Liquid

L+S

S+L

Mushy zone

Dendrites

Moldwall

Solidus

Liquidus

Page 17: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Constitutional Supercooling

SOLID

LIQUIDCS*CL*T*

(a) (b)

SOLUTE ENRICHED LAYER IN FRONT OF LIQUID-SOLID INTERFACE

C

CL*

LIQ

UID

CO

MP

OS

ITIO

N

DISTANCE, x*

T*

TE

MP

ER

AT

UR

E

DISTANCE, x*

T AC

TUA

L

TLIQUIDS

(c)

T*

TE

MP

ER

AT

UR

E

DISTANCE, x*

T ACTUAL

T LIQUID

S

(d)

CONSTITUTIONALLY SUPERCOOLED REGION

Page 18: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Green Sand Casting

Mechanical drawing of part

Core boxes Core halves

pasted together Cope pattern plate Drag pattern plate

Cope ready for sand

Cope after ramming with sand and removing pattern,

sprue, and risers

Drag ready for sand

Drag after removing pattern

Drag with core set in place

Cope and drag assembled ready for pouring

Casting as removed from

mold; heat treated

Casting ready for shippement

Page 19: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Green Sand Mold

Dimensional, Thermal and Chemical stability at high T Size and shape Wettability by molten metal Compatibility with binder system Availability and consistency

Page 20: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Pattern Design Considerations (DFM)

Shrinkage allowance Machining allowance Distortion allowance Parting line Draft angle

Page 21: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Typical Shrinkage AllowanceMetal or alloy Shrinkage allowances mm / m

Aluminum alloy ………………………………...... 13Aluminum bronze ……………………………...… 21Yellow brass (thick sections) ………...…....…… 13Yellow brass (thin sections) …..……...….…...… 13Gray cast iron (a) …………………………….... 8 - 13White cast iron ………………………………..….. 21Tin bronze …………………………………..……. 16Gun metal …………………………………...… 11 - 16Lead …………………………………………..…... 26Magnesium …………………………………..…… 21Magnesium alloys (25%) ………………………... 16Manganese bronze …………………………….… 21Copper-nickel …………………………………….. 21Nickel …………………………………………….... 21Phosphor bronze ……………………………… 11 - 16Carbon steel …………………………………… 16 - 21Chromium steel ……………………………….….. 21Manganese steel ……………………………….… 26Tin …………………………………………….……. 21Zinc …………………………………………….…... 26

Page 22: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Typical Pattern Machining Allowance

Allowances, mm

Pattern size, mm Bore Surface Cope side

For cast ironsUp to 152.……………………………….. 3.2 2.4 4.8 152 - 305………………………………… 3.2 3.2 6.4305 - 510.………………………………... 4.8 4.0 6.4510 - 915………………………………… 6.4 4.8 6.4915 - 1524……………………………….. 7.9 4.8 7.9

For cast steelsUp to 152.……………………………….. 3.2 3.2 6.4 152 - 305………………………………… 6.4 4.8 6.4305 - 510.………………………………... 6.4 6.4 7.9510 - 915………………………………… 7.1 6.4 9.6915 - 1524……………………………….. 7.9 6.4 12.7

For nonferrous alloysUp to 76...……………………………….. 1.6 1.6 1.6 76 - 152..………………………………… 2.4 1.6 2.4152 - 305………………………………… 2.4 1.6 3.2305 - 510.………………………………... 3.2 2.4 3.2510 - 915………………………………… 3.2 3.2 4.0915 - 1524……………………………….. 4.0 3.2 4.8

Page 23: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Gating System: Sprue, Runner, and Gate

Rapid mold filling Minimizing turbulence Avoiding erosion Removing inclusions Controlled flow and thermal conditions Minimizing scrap and secondary

operations

Page 24: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Riser: Location and Size

Casting shrinkage Directional solidification Scrap and secondary operation

Page 25: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Progressive Solidification in Riser

Temperature gradient rising toward riser

Riser

Slow rate

Fast rate

Intermediate rate

Progressive solidification :

Directional solidification

Page 26: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Draft in Pattern

Patterns

Mold

Page 27: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Investment Casting

Injection wax or plastic patterns Ejecting pattern

Wax pattern

Pattern assembly

(Tree)

Slurry coating Stucco coating Completed mold

Pattern meltout

Autoclaved Heat

Heat

Heat

Heat

Page 28: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Investment Casting (cont.)

Pouring

Shakeout

Casting Pattern

Finished product

Page 29: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Advantages of Investment Casting

Intricate geometry Close dimensional tolerance Superior surface finish High-melting point alloys

Page 30: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Die Casting

Gas/oil accumulator

Piston

Shot sleeve

Die

Toggle clampPlaten

Page 31: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Advantages of Die Casting

High production rates Closer dimensional tolerances Superior surface finish Improved mechanical properties

Page 32: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Lost Foam Casting

Page 33: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Lost Foam Casting

Receive raw polystyrene beads

Expand beads

Mold component pattern,including gating system

Join patters (if multipiece)

Coat pattern assembly

Dry assembly

Vibrate to compact medium

Pour

Shakeout castings

Clean castings assembly

Inspect castings

Ship castings

Invest assembly in flaskwith backlip medium

Page 34: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Advantages of Lost Foam Casting

No parting line No cores One-piece flask Freedom of design Minimum handling of sand Ease of cleaning and secondary

operation

Page 35: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Semi-solid Casting

Punch

DieInductionfurnace

Page 36: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Advantages of Semi-solid Casting

Page 37: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Casting Process Comparison

Page 38: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Cost - Casting

Sand casting Tooling and equipment costs are low Direct labor costs are high Material utilization is low Finishing costs can be high

Investment casting Tooling costs are moderate depending on the complexity Equipment costs are low Direct labor costs are high Material costs are low

Die casting Tooling and equipment costs are high Direct labor costs are low to moderate Material utilization is high

Page 39: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Quality - Casting

Sand casting Tolerance (0.7~2 mm) and defects are affected by shrinkage Material property is inherently poor Generally have a rough grainy surface

Investment casting Tolerance (0.08~0.2 mm) Mechanical property and microstructure depends on the

method

Good to excellent surface detail possible due to fine slurry Die casting

Tolerance (0.02~0.6 mm) Good mechanical property and microstructure due to high

pressure Excellent surface detail

Page 40: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Rate - Casting

Sand casting Development time is 2~10 weeks Production rate is depending on the cooling time : t~(V/A)2

Investment casting Development time is 5~16 weeks depending on the complexity Production rate is depending on the cooling time : t~(V/A)2

Die casting Development time is 12~20 weeks Production rate is depending on the cooling time : t~(V/A)1

Page 41: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

Flexibility - Casting

Sand casting High degree of shape complexity (limited by pattern)

Investment casting Ceramic and wax cores allow complex internal

configuration but costs increase significantly

Die casting Low due to high die modification costs

Page 42: Reading: Kalpakjian pp. 239-316 2.008 Metal Casting

New Developments in Casting

Computer-aided design Rapid (free-form) pattern making