2.008 design & manufacturing ii spring 2004 mems i 2.008-spring-2004 s.g. kim

51
2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Upload: theresa-fitzgerald

Post on 17-Dec-2015

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

2008 Design amp ManufacturingII

Spring 2004

MEMS I

2008-spring-2004 SG Kim

March 10th

Ask ldquoDaverdquo and ldquoPatrdquo1048708 Petty money up to $200 Goggles1048708 Plant tour April 21 22 sign up By 421048708 Quiz 1 on March 17th1048708 HW4 due by Mondayrsquos lecture1048708 75 minutes (45 min)1048708 MEMS 1 today

2008-spring-2004 SG Kim

Elephant vs Ant

1048708 Shock and impact1048708 Scale and form factor1048708 Load carrying capability1048708 Spider silk vs steel

2008-spring-2004 SG Kim

Frog Water Strider Gecko

2008-spring-2004 SG Kim

Never try to mimic the nature eg Biomimetic researches

httproboticseecsberkeleyedu~ronfGECKOF 5 iguresHierarchy3jpg2008-spring-2004 SG Kim

Gecko adhesive system

Macro Meso Macro Nanostructures

The Scale of Things -- Nanometers and More

Transition Micro to Nano

1048708 20th Century - Microelectronics and Information Technology1048708 Semiconductors computers and telecommunication

1048708 21st Century - Limits of Microsystems Technology --- Nanotechnology1048708

Moorersquos law1048708 Hard disc drive

John Bardeen Walter Brattain and William Shockleyat Bell Laboratories ldquoFirst Transistorrdquo

2008-spring-2004 SG Kim

Moorersquos LawThe number of transistors per chip doubles every 18 monthsndash Moorersquos Law_ Rockrsquos Law

2008-spring-2004 SG Kim

Microelectronics Technology

To meet the Moorersquos Lawline width(12 pitch) requirement

No solution yet nanolithography

2008-spring-2004 SG Kim

The International Technology Roadmap for Semiconductors 1999

Aerial density hard disk

Superparamagnetic Effect ldquoa point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation effectively erasing the recorded data ldquo

2008-spring-2004 SG Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 2: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

March 10th

Ask ldquoDaverdquo and ldquoPatrdquo1048708 Petty money up to $200 Goggles1048708 Plant tour April 21 22 sign up By 421048708 Quiz 1 on March 17th1048708 HW4 due by Mondayrsquos lecture1048708 75 minutes (45 min)1048708 MEMS 1 today

2008-spring-2004 SG Kim

Elephant vs Ant

1048708 Shock and impact1048708 Scale and form factor1048708 Load carrying capability1048708 Spider silk vs steel

2008-spring-2004 SG Kim

Frog Water Strider Gecko

2008-spring-2004 SG Kim

Never try to mimic the nature eg Biomimetic researches

httproboticseecsberkeleyedu~ronfGECKOF 5 iguresHierarchy3jpg2008-spring-2004 SG Kim

Gecko adhesive system

Macro Meso Macro Nanostructures

The Scale of Things -- Nanometers and More

Transition Micro to Nano

1048708 20th Century - Microelectronics and Information Technology1048708 Semiconductors computers and telecommunication

1048708 21st Century - Limits of Microsystems Technology --- Nanotechnology1048708

Moorersquos law1048708 Hard disc drive

John Bardeen Walter Brattain and William Shockleyat Bell Laboratories ldquoFirst Transistorrdquo

2008-spring-2004 SG Kim

Moorersquos LawThe number of transistors per chip doubles every 18 monthsndash Moorersquos Law_ Rockrsquos Law

2008-spring-2004 SG Kim

Microelectronics Technology

To meet the Moorersquos Lawline width(12 pitch) requirement

No solution yet nanolithography

2008-spring-2004 SG Kim

The International Technology Roadmap for Semiconductors 1999

Aerial density hard disk

Superparamagnetic Effect ldquoa point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation effectively erasing the recorded data ldquo

2008-spring-2004 SG Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 3: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Elephant vs Ant

1048708 Shock and impact1048708 Scale and form factor1048708 Load carrying capability1048708 Spider silk vs steel

2008-spring-2004 SG Kim

Frog Water Strider Gecko

2008-spring-2004 SG Kim

Never try to mimic the nature eg Biomimetic researches

httproboticseecsberkeleyedu~ronfGECKOF 5 iguresHierarchy3jpg2008-spring-2004 SG Kim

Gecko adhesive system

Macro Meso Macro Nanostructures

The Scale of Things -- Nanometers and More

Transition Micro to Nano

1048708 20th Century - Microelectronics and Information Technology1048708 Semiconductors computers and telecommunication

1048708 21st Century - Limits of Microsystems Technology --- Nanotechnology1048708

Moorersquos law1048708 Hard disc drive

John Bardeen Walter Brattain and William Shockleyat Bell Laboratories ldquoFirst Transistorrdquo

2008-spring-2004 SG Kim

Moorersquos LawThe number of transistors per chip doubles every 18 monthsndash Moorersquos Law_ Rockrsquos Law

2008-spring-2004 SG Kim

Microelectronics Technology

To meet the Moorersquos Lawline width(12 pitch) requirement

No solution yet nanolithography

2008-spring-2004 SG Kim

The International Technology Roadmap for Semiconductors 1999

Aerial density hard disk

Superparamagnetic Effect ldquoa point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation effectively erasing the recorded data ldquo

2008-spring-2004 SG Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 4: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Frog Water Strider Gecko

2008-spring-2004 SG Kim

Never try to mimic the nature eg Biomimetic researches

httproboticseecsberkeleyedu~ronfGECKOF 5 iguresHierarchy3jpg2008-spring-2004 SG Kim

Gecko adhesive system

Macro Meso Macro Nanostructures

The Scale of Things -- Nanometers and More

Transition Micro to Nano

1048708 20th Century - Microelectronics and Information Technology1048708 Semiconductors computers and telecommunication

1048708 21st Century - Limits of Microsystems Technology --- Nanotechnology1048708

Moorersquos law1048708 Hard disc drive

John Bardeen Walter Brattain and William Shockleyat Bell Laboratories ldquoFirst Transistorrdquo

2008-spring-2004 SG Kim

Moorersquos LawThe number of transistors per chip doubles every 18 monthsndash Moorersquos Law_ Rockrsquos Law

2008-spring-2004 SG Kim

Microelectronics Technology

To meet the Moorersquos Lawline width(12 pitch) requirement

No solution yet nanolithography

2008-spring-2004 SG Kim

The International Technology Roadmap for Semiconductors 1999

Aerial density hard disk

Superparamagnetic Effect ldquoa point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation effectively erasing the recorded data ldquo

2008-spring-2004 SG Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 5: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Never try to mimic the nature eg Biomimetic researches

httproboticseecsberkeleyedu~ronfGECKOF 5 iguresHierarchy3jpg2008-spring-2004 SG Kim

Gecko adhesive system

Macro Meso Macro Nanostructures

The Scale of Things -- Nanometers and More

Transition Micro to Nano

1048708 20th Century - Microelectronics and Information Technology1048708 Semiconductors computers and telecommunication

1048708 21st Century - Limits of Microsystems Technology --- Nanotechnology1048708

Moorersquos law1048708 Hard disc drive

John Bardeen Walter Brattain and William Shockleyat Bell Laboratories ldquoFirst Transistorrdquo

2008-spring-2004 SG Kim

Moorersquos LawThe number of transistors per chip doubles every 18 monthsndash Moorersquos Law_ Rockrsquos Law

2008-spring-2004 SG Kim

Microelectronics Technology

To meet the Moorersquos Lawline width(12 pitch) requirement

No solution yet nanolithography

2008-spring-2004 SG Kim

The International Technology Roadmap for Semiconductors 1999

Aerial density hard disk

Superparamagnetic Effect ldquoa point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation effectively erasing the recorded data ldquo

2008-spring-2004 SG Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 6: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

The Scale of Things -- Nanometers and More

Transition Micro to Nano

1048708 20th Century - Microelectronics and Information Technology1048708 Semiconductors computers and telecommunication

1048708 21st Century - Limits of Microsystems Technology --- Nanotechnology1048708

Moorersquos law1048708 Hard disc drive

John Bardeen Walter Brattain and William Shockleyat Bell Laboratories ldquoFirst Transistorrdquo

2008-spring-2004 SG Kim

Moorersquos LawThe number of transistors per chip doubles every 18 monthsndash Moorersquos Law_ Rockrsquos Law

2008-spring-2004 SG Kim

Microelectronics Technology

To meet the Moorersquos Lawline width(12 pitch) requirement

No solution yet nanolithography

2008-spring-2004 SG Kim

The International Technology Roadmap for Semiconductors 1999

Aerial density hard disk

Superparamagnetic Effect ldquoa point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation effectively erasing the recorded data ldquo

2008-spring-2004 SG Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 7: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Transition Micro to Nano

1048708 20th Century - Microelectronics and Information Technology1048708 Semiconductors computers and telecommunication

1048708 21st Century - Limits of Microsystems Technology --- Nanotechnology1048708

Moorersquos law1048708 Hard disc drive

John Bardeen Walter Brattain and William Shockleyat Bell Laboratories ldquoFirst Transistorrdquo

2008-spring-2004 SG Kim

Moorersquos LawThe number of transistors per chip doubles every 18 monthsndash Moorersquos Law_ Rockrsquos Law

2008-spring-2004 SG Kim

Microelectronics Technology

To meet the Moorersquos Lawline width(12 pitch) requirement

No solution yet nanolithography

2008-spring-2004 SG Kim

The International Technology Roadmap for Semiconductors 1999

Aerial density hard disk

Superparamagnetic Effect ldquoa point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation effectively erasing the recorded data ldquo

2008-spring-2004 SG Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 8: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Moorersquos LawThe number of transistors per chip doubles every 18 monthsndash Moorersquos Law_ Rockrsquos Law

2008-spring-2004 SG Kim

Microelectronics Technology

To meet the Moorersquos Lawline width(12 pitch) requirement

No solution yet nanolithography

2008-spring-2004 SG Kim

The International Technology Roadmap for Semiconductors 1999

Aerial density hard disk

Superparamagnetic Effect ldquoa point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation effectively erasing the recorded data ldquo

2008-spring-2004 SG Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 9: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Microelectronics Technology

To meet the Moorersquos Lawline width(12 pitch) requirement

No solution yet nanolithography

2008-spring-2004 SG Kim

The International Technology Roadmap for Semiconductors 1999

Aerial density hard disk

Superparamagnetic Effect ldquoa point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation effectively erasing the recorded data ldquo

2008-spring-2004 SG Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 10: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Aerial density hard disk

Superparamagnetic Effect ldquoa point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation effectively erasing the recorded data ldquo

2008-spring-2004 SG Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 11: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

What is Nanotechnology

A DNA molecule is 25 nm wide

Nanomanufacturing

2008-spring-2004 SG Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 12: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Nano in ME

1048708 Fluidics heat transfer and energy conversion at the micro- and nanoscale1048708 Bio-micro-electromechanical systems (bio-MEMS)1048708 Optical-micro-electromechanical systems (optical- MEMS)1048708 Engineered nanomaterials1048708 Nano manufacturing

1048708 Course 2A (Nanotrack)

2008-spring-2004 SG Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 13: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

httpwwwmemsnetorgmemswhat-ishtml

MEMS

Optical MEMS RF MEMS Data Storage Bio MEMS Power MEMS MEMS for Consumer Electronics MEMS In Space

MEMS for Nano

1048708 Materials1048708 Processes1048708 Systems

2008-spring-2004 SG Kim

Courtesy Sandia national laboratory

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 14: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

MEMS (Microelectromechanical Systems)

1048708 Intergrated systems of sensing actuation communication controlpower and computing1048708 Tiny1048708 Cheaper1048708 Less power1048708 New functions (chemical bio μ- fluidic optical hellip)

2008-spring-2004 SG Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 15: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Tiny Products

1048708 DLP (Digital Micromirror Array)

106 micromirrors each 16μm2 plusmn10deg tilt(Hornbeck Texas Instruments DMD 1990)

2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 16: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS

Analog Devices2008-spring-2004 SG Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 17: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Tiny Products

1048708 Airbag sensors Mechanical vs MEMS1048708 DLP (Digital Micromirror Array)1048708 DNA chip1048708 Optical MEMS

Tiny Tech venture funding 2002

2008-spring-2004 SG Kim

Smalltimes Vol2 no 6 2002

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 18: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

(Courtesy of Segway (r) Human Transporter (HT)Used with permission)

Segway

-Tilt-Rotation

D Kamen2008-spring-2004 SG Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 19: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Vibrating Gyroscope

CoriolisAcceleration

By Charles Stark Draper Laboratory

2008-spring-2004 SG Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 20: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Electrostatic Comb Drivesensing

1048708 Paralle Plate Capacitor1048708 Capacitance=QV=ε Ad ε Dielectric permittivity of air1048708 Electrostatic Force = frac12 ε (Ad2)V2

1048708 Pull-in point 23 d

2008-spring-2004 SG Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 21: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Comb Drive

1048708 C= ε Ad = 2n ε l hd1048708 ΔC = 2n ε Δl hd1048708 Electrostatic force Fel = frac12 dCdx V2 = n ε hd V2

2008-spring-2004 SG Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 22: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Suspension mode failures

2008-spring-2004 SG Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 23: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Comb Drive Designs

linear rotational

2008-spring-2004 SG Kim

Grating beamsFlexuresElectrostatic comb-drives

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 24: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Capacitive Accelerometer

capacitivesensor

platemass

meanderspring

2008-spring-2004 SG Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 25: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Microfabrication process flow

1048708 Single-mask process

1048708 IC compatible

1048708 Negligible residual stress

1048708 Thermal budget

1048708 Not yet packagedDevice silicon layer

Buried oxide layer

Metal layer

Bulk silicon layer

2008-spring-2004 SG Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 26: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

SOI (Silicon on insulator)

1) Begin with a bonded SOI wafer Growand etch a thin thermal oxide layer to actas a mask for the silicon etch

2) Etch the silicon device layer to exposethe buried oxide layer

3) Etch the buried oxide layer in bufferedHF to release free-standing structures

2008-spring-2004 SG Kim

oxide mask layer

Si device layer 20 μm thick

buried oxide layer

Si handle wafer

silicon

Thermal oxide

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 27: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Problems of fabrication

2008-spring-2004 SG Kim

Surface micromachinedStructure 2 μm

Vertical stiction

DRIE micromachinedStructure 10 μm

Lateral stiction

DRIE micromachinedStructure 10 μm

No stiction

G Barbastathis amp S Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 28: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

ADXL 50 accelerometer

Capacitive sensing

Comb drive

2008-spring-2004 SG Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 29: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Process Flow

Wafers

Deposition Lithography

Devices

OxidationSputteringEvaporationCVDSol-gelEpitaxy

Wet isotropicWet anisotropicPlasmaRIEDRIE

Etch

2008-spring-2004 SG Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 30: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Micromachining processes

bull Bulk micromachiningbull Surface micromachiningbull Bondingbull LIGA bull x-ray lithography electrodeposition and molding

2008-spring-2004 SG Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 31: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

LIGA process

2008-spring-2004 SG Kim

X-rays from a synchrotron are incident on a mask patterned with high Z absorbers X-rays are used to expose a pattern in PMMA normally supported on a metallized substrate

The PMMA is chemically developed to create a high aspect ratio parallel wall mold

The PMMA is dissolved leaving a three dimensional metal micropart Individual microparts can be separted from the base plate if desired

Ametal or alloy is electroplated in the PMMA mold to create a metal micropart

Photograph of chrome mask

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 32: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Bulk Surface DRIE

1048708 Bulk micromachining involves removal of the silicon wafer itself1048708 Typically wet etched1048708 Inexpensive equipments1048708 IC compatibility is not good1048708 Surface micromachining leaves the wafer untouched but addsremoves additional thin film layers above the wafer surface1048708 Typically dry etched1048708 Expensive equipments1048708 IC compatibility conditionally

2008-spring-2004 SG Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 33: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Materials

1048708 Metals1048708 Al Au ITO W Ni Ti TiNihellip1048708 Insulators1048708 SiO2 - thermally grown above 800oC or vapor deposited (CVD) sputtered Large intrinsic stress1048708 SixNy ndash insulator barrier for ion diffusion high E stress controllable1048708 Polymers PR SU-8 PDMS1048708 Glass quartz1048708 Silicon1048708 stronger than steel lighter than aluminum1048708 single crystal polycrystalline or amorphous

2008-spring-2004 SG Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 34: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Silicon

1048708 Atomic mass average 2808551048708 Boiling point 2628K1048708 Coefficient of linear thermal expansion 42 10-6degC1048708 Density 233gcc1048708 Youngrsquos modulus 47 GPa1048708 Hardness scale Mohsrsquo 651048708 Melting point 1683K1048708 Specific heat 071 JgK

Electronic grade silicon 9999999999 purity

2008-spring-2004 SG Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 35: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Materials

1048708 Single crystal silicon1048708 Anisotropic crystal 1048708 Semiconductor great heat conductor1048708 Polycrystalline silicon ndash polysilicon1048708 Mostly isotropic material1048708 Semiconductor1048708 Semiconductor1048708 Electrical conductivity varies over ~8 orders of magnitude depending on impurity concentration (from ppb to ~1)1048708 N-type and P-type dopants both give linear conduction1048708 Two different types of doping1048708 Electrons (negative N-type) --phosphorus1048708 Holes (positive P-type) --boron

2008-spring-2004 SG Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 36: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Silicon Ingot

Czochralski (CZ) method

Float Zone (FZ) method

1rdquo to 12rdquo diameter

httpwwwmsilabpsiwebcomenglishmsilhist4-ehtml

2008-spring-2004 SG Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 37: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Silicon Crystal Structure

2008-spring-2004 SG Kim

Miller indices identify crystal planes from the unit cell

Tetrahedral bonding of silicon atoms

Cubic unit cell of silicon

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 38: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Miller indices plane

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 39: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Crystallographic planes

2008-spring-2004 SG Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 40: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Miller indices

bull [abc] in a cubic crystal is just a directional vectorbull (abc) is any plane perpendicular to the [abc] vectorbull (hellip)[hellip] indicate a specific planedirectionbull helliplthellipgt indicate equivalent set of planesdirections

2008-spring-2004 SG Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 41: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Wafers of different cuts

2008-spring-2004 SG Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 42: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Crystallographic planes

2008-spring-2004 SG Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 43: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Etching

Wet

Dry

1048708 Isotropic silicon etchants1048708 HNA (ldquopoly-etchrdquo) -wet1048708 Mix of HF nitric acid (HNO3) and acetic acids (CH3COOH)1048708 Difficult to control etch depth and surface uiformity1048708 XeF2 -dry1048708 gas phase etches silicon polysilicon1048708 Does not attack SiO2 SiNxmetals PR

2008-spring-2004 SG Kim

Slow etching crystal plane

Etch mask

Anisotropic Isotropic

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 44: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Anisotropic wet etching

Many liquid etchants demonstrate dramatic etch ratedifferences in different crystal directions1048708 lt111gt etch rate is slowest lt100gt fastest1048708 Fastest slowest can be more than 10011048708 KOH EDP TMAH most common anisotropic silicon etchants1048708 Potasium Hydroxide (KOH) Tetramethyl Ammonium Hydroxide (TMAH) and Ethylene Diamine Pyrochatecol (EDP)

2008-spring-2004 SG Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 45: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

KOH Etching

1048708 Etches PR and Aluminum instantly1048708 (100) to (111)rarr100 to 1 etch rate1048708 V-grooves trenches1048708 Concave stop convex undercut1048708 CMOS incompatible1048708 Masks1048708 SiO2 for short period1048708 SixNy Excellent1048708 heavily doped P++ silicon etch stop

2008-spring-2004 SG Kim

Silicon Substrate

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 46: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Anisotropic wet etching

2008-spring-2004 SG Kim

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 47: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Anisotropic wet etching

When a (100) wafer with mask featuresOriented to lt110gt direction is placed inan anisotropic etchant

A square lt110gt oriented mask featureresults in a pyramidal pit

2008-spring-2004 SG Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 48: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Dry etching

1048708 RIE (reactive ion etching)1048708 Chemical amp physical etching by RF excited reactive ions1048708 Bombardment of accelerated ions anisotropic1048708 SF6 rarr Si CHF3 rarr oxide and polymers1048708 Anisotropy selectivity etch rate surface roughness by gas concentration pressure RF power temperature control1048708 Plasma etching1048708 Purely chemical etching by reactive ions isotropic1048708 Vapor phase etching1048708 Use of reactive gases XeF21048708 No drying needed

2008-spring-2004 SG Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 49: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

DRIE (Deep RIE)

1048708 Alternating RIE and polymer deposition process for side wall protection and removal1048708 Etching phase SF6 Ar1048708 Polymerization process CHF3Ar forms Teflon-like layer1048708 Invented by Bosch process patent 1994

-15 to 4 μmmin-selectivity to PR 100 to 1

2008-spring-2004 SG Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 50: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Scalloping and Footing issues of DRIE

2008-spring-2004 SG Kim

Footing at the bottom ofdevice layerMilanovic et al IEEE TED Jan 2001

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 51: 2.008 Design & Manufacturing II Spring 2004 MEMS I 2.008-spring-2004 S.G. Kim

Deep Reactive Ion Etch

STS Alcatel Trion Oxford Instruments hellip

Most wanted by many MEMS students

High aspect ratio 130

Easily masked (PR SiO2)

2008-spring-2004 SG Kim

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51