performance of microcalorimeters and...

28
Performance of Resistive Microcalorimeters and Bolometers Massimiliano Galeazzi LTD-10, Genova, Italy, 9 July 2003

Upload: others

Post on 11-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Performance of ResistiveMicrocalorimeters and Bolometers

Massimiliano Galeazzi

LTD-10, Genova, Italy, 9 July 2003

Page 2: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Summary

What we understandIdeal model

Non-ideal effects

What we don’t understand yetExcess noise

Page 3: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

The ideal model

• J. C. Mather, Appl. Opt. 21, 1125 (1982).(several hundred citations?)

• S. H. Moseley, J. C. Mather, and D. McCammon, J. Appl. Phys. 56, 1257 (1984).(177 of citations)

Page 4: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

The ideal model

Small signal theory(∆T <<T)

! First order approximation! Linear detector

Paper H01 - McCammon

Page 5: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

The ideal model

W " ( ) WPTGdt

TdC +∆=∆+∆

Power storedIn heat capacity

Power flowingthrough the

thermal conductivity

Electro-thermalfeedback

∆P= – GETF ∆TMeasured

Power/Energy

Theoretical description

1 pole low-pass system with ττττ=C/(G+GETF)

Page 6: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

The ideal modelR=R(T)

W "

Sensitivity

dTdR

RT

TT

RR ∆α⋅

=∆⇒

Resistance Change

Page 7: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

NoiseJohnson noise

Thermal fluctuations

2FWHM kCT35.2E ξ⋅=∆⇒

W "

Page 8: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Non ideal effects

M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003).

• Thermal decoupling between electrons and phonon in the thermometer

• Thermal decoupling between absorber and thermometer

Page 9: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Consequences

( )eETFllleeele

eel TGT)T(GT)T(G

dtTdC ∆−∆=∆+

∆−−

( )laaallleeelel

ll TGTGT)T(GT)T(GTG

dtTdC ∆−∆+∆−∆=∆+

∆−−

( )laaa

ael TGWTG

dtTdC ∆+=∆+

!!!! ∆∆∆∆Te < ∆∆∆∆Ta

• Reduction in the detector responsivity (smaller pulses)

Page 10: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Consequences

• Reduction in the detector responsivity (smaller pulses)

• Additional noise sources

Johnson noise

Thermalfluctuations

Thermalfluctuations

Thermalfluctuations

Page 11: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Thermometer non-ohmic behaviorIdeal thermometer:

R=R(T)

dTT

RdR α⋅= dT

dRRT

Non-ohmic thermometer:R=R(T,I)

dII

RdTT

RdR II β⋅+

α⋅=

II T

RRT∂∂

TI I

RRI∂∂

Page 12: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Thermometer non-ohmic behavior

Tan et al. – LTD9Cabrera et al.

Page 13: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Non-linear model

331 TCTCC ⋅+⋅=

β⋅= TGG 0

( )Tα=α

!Linear approximation cannot be used to predict pulse shape

!Non linear models

Page 14: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Design OptimizationOptimization of the XRS detector on Astro-E2

4.5 eV359 x 359825 x 8256 ms3.9 eV316 x 316725 x 7256 ms3.4 eV293 x 293625 x 625 6 ms5.3 eV439 x 439825 x 8253 ms4.6 eV387 x 387725 x 7253 ms4.0 eV316 x 316625 x 625 3 ms

Theoretical Resolution

Thermistor Area (mm)

Absorber Area (mm)

Fall TimeInputs:Pulse recovery timeAbsorber sizeThermistor characteristicsProperties of components

Outputs:Thermal conductance Thermistor volumeEnergy resolution

Paper Y21 - Galeazzi

Energy resolution

Page 15: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Is that all?

YES

NO

• Responsivity• Noise in semiconductor thermistors

•Absorber thermalization•Excess noise in TES

Paper H03 – ChapellierPaper C03 – Vaillancourt

Page 16: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

TES Excess noise

LTD-9• Most groups (except Wisconsin)

reported the presence of a significant level of noise of unknown origin in their TES devices

• The characteristics of the excess noise for devices fabricated by different groups didn’t seem to agree

3 4 5 6 7 80

100

200

300

400

500

600

700

800

900

1000

600 micron TES 500 micron TES 300 micron TES

Johnson noise

Noise vs. TES Resistance

nois

e (fV

/Hz1/

2 )

resistance of TES (mΩ)

Lindeman et al. – LTD9

Page 17: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

What has been done since LTD-9?

• Understanding of fundamental noise sources in superconductors (can they explain the excess noise?)

• Fabrication of devices with excess noise of known origin

• Empirical attenuation of the excess noise

3 main directions

Page 18: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Fundamental noise sources in superconductors

• Fluctuations in the order parameterPaper R02 – Seidel (next talk)Paper R08 – Galeazzi

• Fluctuations due to magnetic flux penetrationPaper R08 – Galeazzi

Page 19: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Magnetic Flux penetration in TES

Paper R08 – Galeazzi

Type I superconductor

Page 20: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Device with fully characterized excess noise

Devices with higher resistance and central absorber (SRON)Internal thermal fluctuations

Paper R03 – Bergmann Tiest

Page 21: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Device with fully characterized excess noise

Corbino Geometry (U. Jyväskylä + SRON)

Paper R06 – Luukanen

Critical fluctuations as a source of excess noise

Page 22: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

“Empirical” removal of excess noise• Device Engineering

• Magnetic field modulation

Courtesy of NIST

SRON – Paper R03NIST – Paper R04NASA/GSFC – Paper R09

Paper T02

Page 23: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Empirical removal of excess noise

NASA/GSFCSRON

“Zebra” Geometry

Page 24: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Empirical removal of excess noise

3 4 5 6 7 80

100

200

300

400

500

600

700

800

900

1000

600 micron TES 500 micron TES 300 micron TES

Johnson noise

Noise vs. TES Resistance

nois

e (fV

/Hz1/

2 )

resistance of TES (mΩ)

Paper R09 – Lindeman

Page 25: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Empirical removal of excess noise

Why is noise reduced with “zebra” design?

• SRON: reduced internal thermal fluctuations – Paper R03

• It should reduce the fluctuations in the order parameter – Paper R02

• It should also reduce fluctuations in magnetic flux penetration

(perpendicular vs. parallel stripes) Paper R08 – Galeazzi

Page 26: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Empirical removal of excess noiseReduction in the excess noise by applying a small

external magnetic field

Paper R04 – Ullom

10-11

2

3

4

5678

10-10

101

102

103

104

Frequency (Hz)

0 G 130 mG 210 mG

Page 27: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Considerations• Type I or Type II? (the physics is quite different)

• Better characterization of the excess noise (noise vs. power, voltage, T, TC, etc.)

• Is there agreement between theoretical models and data?(Magnetic flux penetration vs. changes in order parameter)

• Why noise is reduced in “zebra” geometry?SRON results vs. NIST & NASA/GSFC results(Internal thermal noise vs.order parameter fluctuations vs. magnetic flux penetration)bars all across vs. interrupted bars

LTD-11?

Page 28: Performance of Microcalorimeters and Bolometersltd-10.ge.infn.it/trasparencies/R/R01_Galeazzi.pdf · M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856 (2003). • Thermal decoupling

Conclusions• In the past few years our understanding

of the behavior of microcalorimeters and bolometers has drastically improved

• This resulted in a significant improvement in device performance due to a better detector optimization

• Semiconductor thermistors are now a mature, reliable technology, with very high performance that can be predicted by models

• We still need to improve our understanding of TES behavior and absorber thermalization

• This could potentially lead to another drastic improvement in detector performance

Is that all we need?

• Responsivity• Noise in semiconductor thermistors

• Absorber thermalization• Excess noise in TES

YES

NO