[ocw] optimal design of energy systems chap 15

33
Min Soo KIM Department of Mechanical and Aerospace Engineering Seoul National University Optimal Design of Energy Systems Chapter 15 Dynamic Behavior of Thermal Systems

Upload: others

Post on 26-Mar-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Min Soo KIMDepartment of Mechanical and Aerospace Engineering

Seoul National University

Optimal Design of Energy SystemsChapter 15 Dynamic Behavior of Thermal Systems

Chapter 15. Dynamic Behavior of Thermal Systems

focus on thermal systems

automatic control

block diagram

with respect to time

on (start up), off (shutdown), under control, disturbance

off-design

design

Chapter 15. Dynamic Behavior of Thermal Systems

15.3 Dynamic Simulation

compressor ref. capacity

2 ( , )e cP f T T

condenser ,/, ( )(1 )p aUA mc

c p a c ambq mc T T e

evaporator ( )( )e s e eq T T UA

energy balance c eq P q

heat transferto chamber

( )e tr ch amb sq q UA T T

1 ( , )e e cq f T T

steady-state

compressor power

Chapter 15. Dynamic Behavior of Thermal Systems

15.3 Dynamic Simulation

pull-down ( )tr ch amb sq UA T T

eq trq

sT

str e p

dTq q mcdt

, pm cdynamic : during pull-down tr eq q

0

0

0 0

0

0 0

2

{ ( )} ( ) ( )

{ ( )} ( )

( ) ( )( )

(0) ( )

{ ( )} ( )

( ) ( )( )

(0) [ (0) ( )]

(0) (0) ( )

st

st

st st

st

st st

L F t F t e dt f s

L F t F t e dt

e F t F t s e dt

F sf s

L F t F t e dt

e F t F t s e dt

F s F sf s

F sF s f s

Chapter 15. Dynamic Behavior of Thermal Systems

15.4 Laplace transform Powerful tool in predicting dynamic behavior

One way to solve ODE

Chapter 15. Dynamic Behavior of Thermal Systems

15.5 Inversion

<example 15.4> Invert

<solution>

1{ ( )} ( )L f s F t

2

10( 2) ( 1)

ss s

2 2

2

10( 2) ( 1) ( 1) ( 2) 2

: 10 4 2

: 1 4

: 01, 4, 1

s A B Bs s s s s

constants A B B

s A B B

s A BA B B

1 2 22

10 4( 2) ( 1)

t t tsL e te es s

Chapter 15. Dynamic Behavior of Thermal Systems

15.5 Inversion

<another solution for example 15.4>

1{ ( )} ( )L f s F t

( )( )

N s A BD s s a s b

For non-repeated roots

2

( )( ) ( )

N s A B BD s s a s b s b

( )( ) ( )( )( ) ( )s a s b

N s s a N s s bA BD s D s

For repeated roots

2 2( )( ) ( )( )( ) ( )s b s b

N s s b d N s s bB BD s ds D s

22 21

10 10 101 4 1( 2) 1 1s ss

s s d sA B Bs s ds s

Chapter 15. Dynamic Behavior of Thermal Systems

15.7 Block diagram and transfer functions

{ ( )} ( ){ ( )} ( )

L O t O sTFL I t I s

Transfer function :

ratio of the output to the input

- Variable in S domain(not in time domain)

Chapter 15. Dynamic Behavior of Thermal Systems

15.8 Feedback control loop

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) 1 ( ) ( )

C s G s E sE s R s H s C s

C s G sTFR s G s H s

Chapter 15. Dynamic Behavior of Thermal Systems

15.9 Time constant blocks

( )

[ ( ) (0)] ( ) ( )

f

f

dTm c T T hAdt

m c sL T T L T L ThA

m cBhA

1 (0)( )( )

( ) 1f

f

BTT sT sTF

T s Bs

Standard technique for developing transfer function

1. Write differential equation

2. Transform equation

3. Solve for transfer function ( ){ } / { }L O L I

For special case :(0) 0T 1

1TF

Bs

Chapter 15. Dynamic Behavior of Thermal Systems

15.9 Time constant blocks

00 0

0

0

( ) [( ) ( )]

{ } 1{ } 1

f

f

d T Tm c T T T T hAdt

L T TTFL T T Bs

( )fT ss

: unit step increasefT

: time constant

0 01 1{ } { }

( 1) ( 1) 1 1fBL T T L T T

Bs s Bs s Bs s Bs

0, 1,B B

/0 (1 )t BT T e

m cBhA

desiredtemperature

Chapter 15. Dynamic Behavior of Thermal Systems

15.9 Time constant blocks - additional

• Control

• Feedback

• Block diagrams

Referencesensor

Actuator process

output sensor

2-

+controlinput output

disturbance

desired roomtemperature T → V Inverter

Refrigeration system

Thermometer

2-

+ Actual Temp.

Ex)

Chapter 15. Dynamic Behavior of Thermal Systems

15.9 Time constant blocks - additional

• Dynamic model – a set of differential equations to describe the dynamicbehavior of the system

q pm cT

pdTq m cdt

Linear case

State of the system:( , )( , )

f uy h u

u : input

y : output

FX G uy H X Ju

1

2

: [ ], : [ 1]: [1 ], :

F n n G nH n J scalar

xX

x

• Differential equation in state variable form (modern control)

Chapter 15. Dynamic Behavior of Thermal Systems

15.9 Time constant blocks - additional

Ex)

Ex) Heat exchanger

1 2

1

1 1 2

( )

( )

p

p

q h T TdTq m cdt

hT T Tm c

1 2( )q h T T

1pq m c T

1T 2T

( )

( )in s p si s

out w p w w i

q m c T T

q m c T T

,

,

, ,

( ) ( )

( ) ( )

ss p s in steam water

s p s si s s w

ww p w w p w wi w s w

dTm c q qdt

m c T T UA T T

dTm c m c T T UA T Tdt

Steam

Water

siT

sT

wiT

wT

Chapter 15. Dynamic Behavior of Thermal Systems

15.10 Cascade time-constant blocks

Heat balance equation :

1 1 2 2

2 2

1 21 1 2 2

( ) ( )

( )

,

ba b b L

Lb L

dTT T h A m c T T h AdtdTT T h A m cdt

m c m cLeth A h A

1

11s 2

11s

0{ }bL T T 0{ }LL T T0{ }aL T T

Air to bulb Bulb to liquid

Cascade time-constant block

subscript 1 : air to bulb

subscript 2 : bulb to liquid

neglect

Chapter 15. Dynamic Behavior of Thermal Systems

15.10 Cascade time-constant blocks

For unit step input

01 2

1 1{ }1 1LL T T

s s s

Inversion

1 2/ /0 1 2

1 2 2 1

1 t tLT T e e

1

0

0

/2 1 0

//0

2 1

0, 0( ) 0 0

(1 )

1

L

L

tL

ttL

t T Td T T at t

dtif T T e

T T teif e

Chapter 15. Dynamic Behavior of Thermal Systems

15.11 Stability analysis

- Frequency response / Bode plot (diagram)

Response to sinusoidal input

Sinusoidal input : 0( ) sin(2 )fT t T ft

0 2 2 2 2

2 2 2 2 2

2

2 2 2 2 2

0 2 2

1( )1 1

, ,1 / 1 / 1

1 1 / 1( )1

a A Bs CL T Ts s a s s a

a a aA B Ca a a

a a asa a aL T T

s s a

<Example in 15.9>

<From example in 15.9>

2 2sin 2 , 2aL ft a fs a

Chapter 15. Dynamic Behavior of Thermal Systems

15.11 Stability analysis

21

0 2 2 2 2

/2 2

0 2 2

2 22 2 2 2

1

11 1

1cos( ) sin( )1

sin( ) cos( )1

1 sin( ) sin( )1 1

tan ( )

t

a sT T La s s a

a e at ata a

as t

T T at a ata

a at ata a

a

a

1

2 21 a

2

11 (2 )f

Amplification ratio :

Phase lag : 1tan (2 )f

Chapter 15. Dynamic Behavior of Thermal Systems

15.11 Stability analysis

Chapter 15. Dynamic Behavior of Thermal Systems

15.11 Stability analysis

• Stability criterion

At the frequency f where sum of phase lags = 180o Fig.(a)

product of amplitude ratio > 1 Fig.(b)

→ the loop is unstable

Phase lag =180o Amplitude ratio > 1

Fig. Bode diagram

Chapter 15. Dynamic Behavior of Thermal Systems

15.11 Stability analysis - additional

*

1

0

02 2

*0 01

1

1 01 0

0

0

( ) ( )( )

( ) sin

( ) ( )

Im( )( ) 2 sin( ), tanRe( )

, ( ) sin( )

n

n

n

a ta tn

Y s G sU su t U t

UY s G ss

s a s a s j s j

y t e e t

as t y t U A t

magnitude

phase

2 2

1

( ) ( ) {Re[ ( )]} {Im[ ( )]}Im[ ( )]( ) tanRe[ ( )]

A G j G s G j G jG jG jG j

: input

Chapter 15. Dynamic Behavior of Thermal Systems

15.12 Stability analysis using loop transfer function

Roots are the poles of the transfer function 1+KG(s)

→ root locus : graph of all possible roots

KG(s)2-

+Y(s)R(s) ( ) ( )

( ) 1 ( )Y s KG sR s KG s

root < 0

" = 0

" > 0

" = a+ib ( )

1

at

at

a ib t

e

ee

Chapter 15. Dynamic Behavior of Thermal Systems

15.12 Stability analysis using loop transfer function

Root locus form : ( )1 ( ) 1 0 ( ) ( ) 0( )

b sKG s K a s Kb sa s

Ex) 2( ) 1 0( 1) ( 1)

K KKG s Denominator s s Ks s s s

Root locus is a graph of the roots of the quadratic equation

1 21 1 4,2 2

0 1 / 4 1 0

1 / 4

Kr r

K

K complex

11

11

1 2

1 2

( )( )( )( )

( ) ( )( ) ( )( ) ( )( ) ( )

m mm

n nn

m

n

K s b s bKb sKG s n ma s s a s a

b s s z s z s za s s p s p s p

-1 0-1/2

as K increases

Breakaway point

poles

Chapter 15. Dynamic Behavior of Thermal Systems

15.14 Restructuring the block diagramconverting complex block diagram → feedback loop

simplifying

Chapter 15. Dynamic Behavior of Thermal Systems

15.14 Restructuring the block diagram

Chapter 15. Dynamic Behavior of Thermal Systems

15.15 Physical situation → block diagram

aq( )

( )(1 ) ( )

h set s

hAwc

a h i h i

q K T T

q wc T T e W T T

( ) ( ) [ ( ) (0)]

hh a

h a h h

dTq q mcdt

q s q s M sT s T

heater → airwc W

Chapter 15. Dynamic Behavior of Thermal Systems

15.15 Physical situation → block diagram

Chapter 15. Dynamic Behavior of Thermal Systems

15.15 Physical situation → block diagram

Chapter 15. Dynamic Behavior of Thermal Systems

15.16 Proportional control

( )h p set sq K T T

errorK↑ unstable

K↓ offset

Chapter 15. Dynamic Behavior of Thermal Systems

15.17 Proportional – Integral (PI) control

- to eliminate the offset

- PI control

( )IK error dt

s

2IK

s

2//

I IK K sTFs s

Chapter 15. Dynamic Behavior of Thermal Systems

15.18 PID control

IP D

KK K ss

Chapter 15. Dynamic Behavior of Thermal Systems

15.18 PID control

Ziegler-Nichols Tuning of PID controller (1942)

1( ) 1 DI

ID P D

I

D s K T sT s

KKK KT s K K sT s s

Reaction curve

TF may be approximated by

Time delay of td seconds

1

dt sKeTFs

/te

dL t

KKR

: reaction rate

open loop control

Chapter 15. Dynamic Behavior of Thermal Systems

15.19 Feed forward control

(a) No control

(b) Feed forward control

(c) Feedback control