ocw chapter 10

Upload: daniel-aida

Post on 07-Jul-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Ocw Chapter 10

    1/64

    Chemical Engineering Thermodynamics

    !"#$%&'()*(+ -)*(.(/%(*01 234%$+*56$3 "3+ 7##.(5"6$3

    Mohammad Fadil Abdul Wahab

  • 8/18/2019 Ocw Chapter 10

    2/64

    8$% 9"#$% 0(:4*%;

    ˆ f i

    l = !  

    i x

    i f 

    i

     f̂ i 

    v = !̂ 

    iy 

    i P  

    For liquid solution 

    VLE criteria (to be shown/derived in chapter 11),

    ˆ f i

    l =

    ˆ f i

    v  

    so !̂ i y

    i P   = " 

    i x

    i f 

    i

    where,

    Consider a multicomponent system in a VLE 

    condition, the fugacity (to be defined in Chapter 11)

    of species i  for each phase is given by, 

    !̂ i  fugacity coefficient species i in gas mixture

     f i  fugacity of pure species i

    " i  activity  coefficient of species i in liquid solution

  • 8/18/2019 Ocw Chapter 10

    3/64

    9"#$% 0(:4*%; (3

    ;)*(.(/%(*0 ?(4A (+;". .()*(+ >$.*6$3

    and also for pure species in equlibrium and ideal gas vapor,

       f i  =  f 

    i

    l =  f 

    i

    v=  P   =  P 

    i

     sat 

     !̂ 

    i  = 1

    !  i  = 1

     we get,  y

    i P   = x

    i P 

    i

     sat   Raoult's Law (10.1)

     equation becomes  y

    i P   = x

    i f 

    i

  • 8/18/2019 Ocw Chapter 10

    4/64

    B$+(C;+ 0(:4*%; (3 ;)*(.(/%(*0 ?(4A

    3$3D(+;". .()*(+ >$.*6$3

    !̂ i y

    i P   = " 

    i x

    i f 

    i

     yi P   = " 

    i x

    i P 

    i

    sat   Modified Raoult's Law (10.5)

    where " i  is a function of T and x

    i.

     !̂ i   = 1

  • 8/18/2019 Ocw Chapter 10

    5/64

    ED9".*; F! " G

     K i   = y

    i

     xi

      (10.10)

    If Raoult’s Law is valid,  yi P   = x

    i P 

    i

     sat 

     K i = P i

     sat 

     P   (10.11)

    If Modified Raoult’s Law is valid, y

    i

     P   = xi

     !  i

     P i

     sat 

     K i =

    !  i P 

    i

     sat 

     P   (10.12)

  • 8/18/2019 Ocw Chapter 10

    6/64

    ED9".*; H>(3@

    I;J%(;>4;% KA"%4

    For light hydrocarbon mixture (commonly found in industry),

    K i  is essentially function of T and P only.

    K i  are tabulated in a chart called the DePriester chart.

  • 8/18/2019 Ocw Chapter 10

    7/64

  • 8/18/2019 Ocw Chapter 10

    8/64

    N$ 5".5*."4; 4A; J ?A;3 4A; O>4 /*//.;"##;"% "> " %;>*.4 $P +;5%;">; (3 J "4

    5$3>4"34 NQ 7.>$ 5".5*."4; 4A; /*//.;=> 5$0#$>(6$3

    RS(TQ

    $%

    !"!# %& '()*+)(,- ./01 (23 %4 506-2 .701 (23 8

    89 *()*+)(,- ,:- % ;:-2 ,:- )(-(? (< ( ?-

  • 8/18/2019 Ocw Chapter 10

    9/64

    I-U J1 K".5*."4; R:(T "3+ JV @(9;3 RS(T "3+ N

    89 *()*+)(,- ,:- % ;:-2 ,:- E 9@ )0G+03H(>>-(? (< ( ?-

  • 8/18/2019 Ocw Chapter 10

    10/64

    LHL' N1 K".5*."4; RS(T "3+ NV @(9;3 R:(T "3+ J

    N$ 5".5*."4; 4A; N ?A;3 4A; O>4 /*//.;

    "##;"% "> " %;>*.4 $P (35%;">; (3 N "4

    5$3>4"34 JQ 7.>$ 5".5*."4; 4A; 5$0#$>(6$3

    RS(T $P 4A(> /*//.;Q

    $%

    N$ 5".5*."4; 4A; N ?A;3 4A; .">4 /*//.;

    +(>"##;"% "> " %;>*.4 $P +;5%;">; (3 N "45$3>4"34 JQ 7.>$ 5".5*."4; 4A; 5$0#$>(6$3

    RS(T $P 4A(> /*//.;Q

  • 8/18/2019 Ocw Chapter 10

    11/64

    I-U N1 K".5*."4; R:(T "3+ NV @(9;3 RS(T "3+

    J

    N$ 5".5*."4; 4A; N ?A;3 4A; O>4 +;? F"

    +%$# $P .()*(+G "##;"% "> " %;>*.4 $P

    +;5%;">; (3 N "4 5$3>4"34 JQ 7.>$ 5".5*."4;

    4A; 5$0#$>(6$3 R:(T $P 4A(> +;?Q

    $%

    N$ 5".5*."4; 4A; N ?A;3 4A; .">4 +;?

    +(>"##;"% "> " %;>*.4 $P (35%;">; (3 N "45$3>4"34 JQ 7.>$ 5".5*."4; 4A; 5$0#$>(6$3

    R:(T $P 4A(> +;?Q

  • 8/18/2019 Ocw Chapter 10

    12/64

     

    Overall mole balance

    T   =  L +V 

    I;%(9"6$3

    V

    L

    Note: z i  is overall composition.

    Let T=1 mol, so V and L are mole fractions,

     z i   =  Lxi  +Vyi   z 

    i  = (1!V ) x

    i +Vy

    i  (A)

     

    Component mole balance,

    Tz i  =  Lx

    i +Vy

    i

  • 8/18/2019 Ocw Chapter 10

    13/64

     

    Substitute  yi  = K 

    i x

    i into (A),

     z i  = (1!V ) x

    i + K 

    i x

    iV   = x

    i(1!V   +VK 

    i)  = x

    i(1+V ( K 

    i !1))

     xi  =

     z i

    1+V ( K i !1)

     

    Substitute  xi  =

     yi

     K i

     into (A),

     z i  = (1!V )

     yi

     K i

    + yiV    z 

    i K 

    i  = (1!V ) y

    i + y

    iVK 

    i

     yi  =

     z i K 

    i

    1+V ( K i !1)

      (10.16)

  • 8/18/2019 Ocw Chapter 10

    14/64

     

    Also,

     xi!   "  yi   = 0!

     

     z i

    1+V ( K i !1)

    !  z 

    i K 

    i

    1+V ( K i !1)

     ""   = 0

     z i ! z 

    i K 

    i

    1+V ( K i !1)

    "   = 0

  • 8/18/2019 Ocw Chapter 10

    15/64

    L*//.;#$(34 K".5*."6$3

     At bubble point (practically all liquid) L=1, V=0 and z i   =  xi

     z i ! z 

    i K 

    i

    1+V ( K i !1)

    "   = 0 becomes,

    Bubblepoint criteria

    ( xi ! x

    i K 

    i)"   = 0

     xi"   =  xi K i  "

     xi K 

    i "   = 1 (10.13)

  • 8/18/2019 Ocw Chapter 10

    16/64

  • 8/18/2019 Ocw Chapter 10

    17/64

    I;?#$(34 K".5*."6$3

    At dewpoint (practically all vapor): L=0, V=1 and z i  =

     yi

     zi ! z

    i K 

    i

    1+V ( K i !1)

    "   = 0 becomes,

    Dewpoint criteria

     yi ! yi K i

     K i

    "   = 0

     yi

     K i

    !"  yi   = 0"

     yi

     K i

     =1 (10.14)"

  • 8/18/2019 Ocw Chapter 10

    18/64

     

    If Raoult's Law valid,

     yi

     K i =!

      yi

     P i

     sat 

     P 

     =1  P   =1

     yi

     P i

     sat !!   (10.3),

    see example 10.1

    If Modified Raoult's Law valid,

     yi

     K i

      =!  y

    i

    "  i P 

    i

     sat 

     P 

     =1  P   =1

     yi

    "  i P 

    i

     sat !

    !   (10.7),

    see example 10.3

  • 8/18/2019 Ocw Chapter 10

    19/64

    Relative Volatility 

    ! ik   =

     yi

     xi

     yk 

     xk 

    =

     K i

     K k 

      at azeotrope ! ik   =1

    1= 1

    !ik>1 Species i is relatively more volatile

    !ik1

    If Raoult's Law valid,

    ! 12

      =

     P 1

     sat 

     P 

     P 2

     sat 

     P 

    = P 

    1

     sat 

     P 2

     sat  

    If Modified Raoult's Law valid,

    ! 12

      =

    "  1 P 

    1

     sat 

     P 

    "  2 P 

    2

     sat 

     P 

    ="  

    1 P 

    1

     sat 

    "  2 P 

    2

     sat 

  • 8/18/2019 Ocw Chapter 10

    20/64

    -:"0#.; OWQO

  • 8/18/2019 Ocw Chapter 10

    21/64

    J.$4 J:OSO "4 NXYZ$K

    ln P 1

     sat / kPa  = 14.2724!

    2945.47

    T /  o

    C  + 224.00

    ln P 2

     sat / kPa  = 14.2043!

    2972.64

    T /  oC  + 209.00

    calculate at 75oC,

     P 1

     sat = 83.21kPa   P 

    2

     sat = 41.98kPa

    Mixture: Acetonitrile(1)/Nitromethane(2)

     Antoine Eqn,

    Note: Acetonitrile(1) is more volatile.

  • 8/18/2019 Ocw Chapter 10

    22/64

    Calculate P and y1, given a set of x1 and T=75oC.

    This is BUBL P calculation.

     xi K i  !   = 1 (10.13) .

    Let us assume Raoult's Law is valid ,  P  = P b =   x

    i P 

    i

     sat   (10.2)!

     P  = x1 P 

    1

     sat + x

    2 P 

    2

     sat = x

    1 P 

    1

     sat + (1" x

    1) P 

    2

     sat 

     P  = ( P 1

     sat " P 

    2

     sat ) x1 + P 

    2

     sat   Eqn A note: a linear line (y=mx+c)

    So,

    Calculate P for a set of x1 (Eqn A) and then calculate y1 (Eqn B)

    also, y1

      =

     x1 P 

    1

     sat 

     P 

      Eqn B

  • 8/18/2019 Ocw Chapter 10

    23/64

    T (oC)  x1  P=Pb(kPa)  y1 

    75  0  41.98  0 

    75  0.2  50.23  0.3313 

    75  0.4  58.47  0.5692 

    75  0.6  66.72  0.7483 

    75  0.8  74.96  0.8880 75  1  83.21  1  P 1

     sat 

      P 

    2

     sat  

     P  =  P b

      = ( P 1

     sat ! P 

    2

     sat ) x1

     + P 2

     sat  y1  =

     x1 P 

    1

     sat 

     P 

    So now plot Px1 and Py1 on Pxy diagram!!

    Point b

    Given or SetCalculate

  • 8/18/2019 Ocw Chapter 10

    24/64

    Ex: Calculate Pd and x1, given y1=0.6 and T=75oC

    (i.e. what is the dew P for gas mixture at 75oC and 60% acetonitrile)

    This is point c in previous Px1y1 diagram.Dew P calculation (Note: z1=y1).

    Then calculate x1 using,

     x1  =

     y1 P 

     P 1

     sat   =

    0.6(59.74)

    83.21= 0.43

     

     yi

     K i

     =1 (10.14),! If Raoult's Law valid,  P d   =1

     yi

     P i

     sat !

      (10.3)

      P d   =

    1

    0.6

    83.21

    +0.4

    41.98

    = 59.74kPaCompare with values

    from Pxy diagram.

  • 8/18/2019 Ocw Chapter 10

    25/64

    •  U; 5$*.+ ".>$ #.$4 J:S +("@%"0 *>(3@ I-U

    #%;>>*%; 5".5*."6$3Q

    •  [;4 S(V 5".5*."4; J+ "3+ :(Q

    •  J.$4 J:S *>(3@ J+:(S(

    •  I2\]QQ

  • 8/18/2019 Ocw Chapter 10

    26/64

    J.$4 N:OSO "4 JXYW^J"

    T 1

     sat /  oC   =

    2945.47

    14.2724 ! ln P / kPa! 224.00

    T 2

     sat /  oC   =

    2972.64

    14.2043! ln P / kPa! 209.00

    so at 70kPa,

    T 1

     sat = 69.84

    oC   T

    2

     sat = 89.58

    oC 

    Mixture: Acetonitrile(1)/Nitromethane(2)

     Antoine Eqn,

     As expected Acetonitrile(1) is more volatile

  • 8/18/2019 Ocw Chapter 10

    27/64

  • 8/18/2019 Ocw Chapter 10

    28/64

    J.$4 N:OSO "4 JXYW ^J"

    P (kPa)  T=Tb(oC)  x1  y1 

    70  69.84  1 (x2=0)  1 (y2=0) 

    70  74  0.7378  0.8484 

    70  78  0.5156  0.6759 

    70  82  0.3184  0.4742 

    70  86  0.1424  0.2401 70  89.58  0 (x2=1)  0 (y2=1) T 2

     sat 

     T 

    1

     sat  

    y1

      =

     x1 P 

    1

     sat 

     P 

    So now plot Tx1and Ty1 on a Txy diagram!!

     x1  =

     P ! P 2

     sat 

     P 1 sat 

    ! P 2

     sat 

    Given or Set

  • 8/18/2019 Ocw Chapter 10

    29/64

    Ex: Calculate Tb and y1, given x1=0.6 and P=70kPa. 

    (i.e. calculate the bubble temperature at 70kPa and 60%

    acetonitrile)

    This is point b in previous Tx1y1 diagram. Note: z1=x1 

    Bubble temperature calculation!!

     xi K 

    i !   = 1 (10.13),

    The solution is not straightforward as T is unknown. Let’s

    see how to solve mathematically, 

    For Raoult's Law,  P b  =   x

    i P 

    i

     sat   (10.2)!

     P b  =  P 

     sat 

     P k 

     sat   x

    i P 

    i

     sat = P 

     sat 

    !   xi  P i

     sat 

     P k 

     sat ! = P k  sat 

     xi" 

    ik !  

    where k is a component that arbitrarily chosen.

  • 8/18/2019 Ocw Chapter 10

    30/64

     

     P b  = P 

     sat  x

    i! 

    ik "  

    where ! ik   =

     P i

     sat 

     P k 

     sat   is relative volatility of i wrt k .

     P k  sat  =

     P b

     xi! 

    ik "  (A)

     Also,

    ln! ik   = ln

     P i

     sat 

     P k 

     sat  =ln P 

    i

     sat -ln P k 

     sat  =  Ai #

      Bi

    T  +C i

     $ 

    % &' 

    ( ) -  A

    k  +

     Bk 

    T  + C k 

    % &' 

    ( )  

  • 8/18/2019 Ocw Chapter 10

    31/64

    Solution is through iteration,

    1. Start with an initial guess of T as follows,

    T   =  xi! T i

     sat 

    2. Arbitrarily pick a component, e.g. Nitromethane so, k=2

    3. Calculate !ik,(note: Number of !ik is equal to total number of component) 

    ln! ik   =    A

    i "  Bi

    T   +C i

     # $ %

    & ' ( -  A

    k   +  B

    T  +C k 

    # $ %

    & ' (  

    T   = 0.6(69.84) + 0.4(89.58)  = 77.74oC 

     

    we get, ! 

    12  = 1.9611

     ! 22

      = 1

  • 8/18/2019 Ocw Chapter 10

    32/64

    5. Calculate a new value of T using the Antoine eqn,

    6. Stop if this T is equal or close to earlier value of T,

    else use this value as a new guess. Repeat steps

    3, 4 & 5 until converge.

    T   = B

     Ak  ! ln P 

     sat  !C 

     

    T   =2972.64

    14.2043! ln44.3977! 209  = 76.53

    oC 

    4. Calculate Pksat using eqn A,  P 

     sat =

     P 

     xi! 

    ik " 

     P 2

     sat =

     P 

     x1! 

    12 + x

    2! 

    22

     =70

    0.6(1.9611)+0.4(1)=44.3977kPa

  • 8/18/2019 Ocw Chapter 10

    33/64

    7. Finally, calculate yi using Raoult’s law (Use the Antoine Eqn

    for Pisat)

    y1=0.7472

    T #12  P2sat

      T 

    77.74  1.9611  44.39  76.53 

    76.53  1.9703  44.24  76.43 

    76.43  1.9717  44.22  76.42   Answer

    (point b)

  • 8/18/2019 Ocw Chapter 10

    34/64

    I-U N 5".5*."6$3

    Calculate Td and x1, given y1 and P.

    Example: Calculate Td and x1 for z1= y1 =0.6 and P=70kPa.

    See page 356 for the solution (also by iteration) of DEW T

    calculation.

     Answer: Td

     =79.58oCx1=0.4351

  • 8/18/2019 Ocw Chapter 10

    35/64

    -:"0#.; OWQ_

    K".5*."6$3 $P +;? #%;>>*%; "3+

    /*//.; #%;>>*%; *>(3@ ED9".*; P%$0

    I;J%(;>4;% 5A"%4Q

    `$4;1 UAS 4A; >$.*6$3 (> /S 4%(". "3+ ;%%$%a

  • 8/18/2019 Ocw Chapter 10

    36/64

    Flash Calculation 

  • 8/18/2019 Ocw Chapter 10

    37/64

    8.">A K".5*."6$3

    73 (0#$%4"34 "##.(5"6$3 $P !'-bLiquid at pressure equal or higher than Pb 

    “flashes” or partially evaporates when the P is 

    reduced, thus producing a vapor and liquid. 

     {xi}, L  {y

    i},V 

    PTFlash calculation is to determine

    V , L, {xi}, and {yi} at

    T and P by assuming VLE. 

    Note: {xi} composition of liquid and {yi} composition of vapor

  • 8/18/2019 Ocw Chapter 10

    38/64

    7> +;%(9;+ P$% !'- >S>4;0V

     yi  =

     z i K 

    i

    1+V ( K i  !1)

      (10.16)

     yi"   = 1, so:

     z i K 

    i

    1+V ( K i !1)

    = 1 (10.17)"

    Solution is by trial and error. 

    Guess V until the summation term equal to 1. 

    But……… 

  • 8/18/2019 Ocw Chapter 10

    39/64

    ]]]C%>4 ?; 3;;+ 4$ ^3$? ?A;4A;%

    4A; >S>4;0 (> "54*"..S 4?$D#A">;Q

    23 @;3;%". ]]

    2P J+ c J c J/V 4?$ #A">;

    $%

    2P N/ c N c

     N

    +V 4?$ #A">;

  • 8/18/2019 Ocw Chapter 10

    40/64

    -:"0#.;> $P

    8.">A K".5*."6$3

    -:"0#.; OWQZ1

    8.">A 5".5*."6$3 P$% >S>4;0 ?A;%;

  • 8/18/2019 Ocw Chapter 10

    41/64

    I;?#$(34 N $P B(:4*%; $P U"4;% !"#$% "3+

    `$3D5$3+;3>"/.; d">;>

    NA(> (> " >#;5(". 5">; $P +;? N 5".5*."6$3Q

    so  P 2

     sat =  y

    2 P 

    Solution is straightforward by the application of

    Raoult’s Law to the condensable component H2O 

    (here identified as component 2). 

    The system contains a dew (liquid water) in VLE with 

    mixture of water vapor and non-condensable gases

    (such as N2, CO2, O2 etc.).

     y2 P   = x

    2 P 

    2

     sat  

    The dew is 100% H2O, so x2=1 

  • 8/18/2019 Ocw Chapter 10

    42/64

    -:"0#.;

    I;?#$(34 N $P K$0/*>6$3 J%$+*54> 8$% >4$(5A($0;4%(5 5$0/*>6$3 $P 0;4A"3;V 5".5*."4;

    +;? #$(34 N $P 4A; 5$0/*>6$3 #%$+*54>Q

    Ke_ f ghg f gFYi&gOG`g DDDDDDj Khg fgegh f gFYi&gOG`g

    B$.; P%"56$3 $P egh (> g&FOfgfgFYi&gOGG X WQOi

     P 2

     sat = y2 P    P 

    2

     sat =0.19(101.325kPa)=19.25kPa

    From steam table*, Td =T2sat= 59.5oC 

    *You could also use Antoine Eqn. 

  • 8/18/2019 Ocw Chapter 10

    43/64

    Henry’s Law 

  • 8/18/2019 Ocw Chapter 10

    44/64

    e;3%S=> '"? (> !'- %;."6$3 4A"4 (> 9".(+ P$%

    (+;".D@"> 0(:4*%; (3 ;)*(.(/%(*0 ?(4A " +(.*4; >$.*6$3V

    ?A;%; ?; ?"34 4$ ^3$? 4A; 5$0#$>(6$3 $P +(>>$.9; @"> "  (3

    4A; +(.*4; >$.*6$3Q8$% ;:"0#.;V

    !̂ i y

    i P   = "  

    i x

    i  f 

    i

      yi P   = x

    i "  

    i f 

    i  = x

    i "  

    i P  sat 

    i

    let H i  = "  

    i f 

    i  = "  

    i P 

    i

     sat 

    1no value for dissolved (supercritical)gas at VLE conditions

    "G Khg "3+ egh >S>4;0Q

    /G 7(% "3+ egh >S>4;0Q

    ! i is Henry’s constant (in bar) for dissolved gas (i ). 

    so  y i P = x i ! i   Henry’s Law 

  • 8/18/2019 Ocw Chapter 10

    45/64

    y i P = x i ! i

    So at dilute solution,y i  = ( ! i/P) x i  

    For constant system pressure P,

    y i  = (Constant)x i  

    If we plot y i  vs x i  , we get a straight linethrough the origin.

    So Henry’s constant for dissolved gas (i ) canbe easily determined from experiment. 

  • 8/18/2019 Ocw Chapter 10

    46/64

    23 #%;9($*> ;:"0#.; $P +;?#$(34 P$% 5$0/*>6$3

    #%$+*54V ?; ">>*0; 4A; .()*(+ (> ".. egh F:gXOGQ

    What if we want to know the mole fraction of

    dissolved CO2 (component 1) in the dew (liquid)? 

    U; 5$*.+ >$.9; 4A(> *>(3@ e;3%S=> '"? P$%

    +(>>$.9;+ @">;> FKhgGQ

  • 8/18/2019 Ocw Chapter 10

    47/64

    7##.S e;3%S=> ."? P$% 5$0#$3;34 OQ

    H>; #O +"4" P%$0 N"/.; OWQO F3$4;1 4A(> "54*"..S 9".(+

    "4 gZ$

    KGQ

     x1  =

     y1 P 

    ! 1

    =(1 / (1+ 2 + 7.52))(1.013bar )

    1670bar 

    =3.4622x10-5   " 0

    As expected, only small amount of CO2 present

    in liquid water. 

    See also example 10.2 

  • 8/18/2019 Ocw Chapter 10

    48/64

    2P 4A; P*@"5(4S $P "  (3 .()*(+ #A">; (> @(9;3 /S e;3%S=> '"?V

    ˆ f i  =  !  

    i x

    i f 

    i  =  x

    i" 

    i

     

    ˆ

     f iid =

     ! i yi P  

    ! i y

    i P   =  x

    i" 

    i

    2P 4A; @"> (> (+;". >$.*6$3 F';?(>& 9".(+GV

    So we get the following version of Henry’s Law if gas

    mixture is ideal solution , 

  • 8/18/2019 Ocw Chapter 10

    49/64

    -:4;3>($3 $P -:"0#.; OWQk

    J.$4 J:OSO "3+ :OSO +("@%"0> "4 NXkOlQOZE

    8%$0 /*//.;#$(34 5".5*."6$3V

    [;4 :O 

    K".5*."4; J/ 

    K".5*."4; SO 

  • 8/18/2019 Ocw Chapter 10

    50/64

    x1 G1 G2 P y1

    0.00 3.03 1.00 65.64 0.00

    0.05 2.72 1.00 68.57 0.09

    0.10 2.45 1.01 70.64 0.15

    0.15 2.23 1.03 72.06 0.21

    0.20 2.03 1.05 72.97 0.25

    0.25 1.86 1.07 73.50 0.28

    0.30 1.72 1.10 73.73 0.31

    0.35 1.60 1.15 73.73 0.34

    0.40 1.49 1.19 73.54 0.36

    0.45 1.40 1.25 73.17 0.38

    0.50 1.32 1.32 72.63 0.40

    0.55 1.25 1.40 71.92 0.43

    0.60 1.19 1.49 70.99 0.45

    0.65 1.15 1.60 69.81 0.47

    0.70 1.10 1.72 68.29 0.50

    0.75 1.07 1.86 66.36 0.54

    0.80 1.05 2.03 63.88 0.58

    0.85 1.03 2.23 60.70 0.64

    0.90 1.01 2.45 56.60 0.72

    0.95 1.00 2.72 51.31 0.83

    1.00 1.00 3.03 44.51 1.00

    G1 is gamma1

  • 8/18/2019 Ocw Chapter 10

    51/64

    '$5"4; "m;$4%$#(5 #%;>>*%; "4 NXkOlQOZE"3+ (4> 5$0#$>(6$3

    T=318.15

    40.00

    45.00

    50.00

    55.00

    60.00

    65.00

    70.00

    75.00

    80.00

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    x1, Y1

          K      P    a

    Series1

    Series2

  • 8/18/2019 Ocw Chapter 10

    52/64

  • 8/18/2019 Ocw Chapter 10

    53/64

    T=318.15

    40.00

    45.00

    50.00

    55.00

    60.00

    65.00

    70.00

    75.00

    80.00

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    x1, Y1

          K      P    a

    Series1

    Series2

    Locate DEW P at T=318.15K, y1=0.6 

  • 8/18/2019 Ocw Chapter 10

    54/64

    !121

    Locate azeotropic composition at 318.15K

  • 8/18/2019 Ocw Chapter 10

    55/64

  • 8/18/2019 Ocw Chapter 10

    56/64

    ';4=> 5A;5^ /*//.; #%;>>*%; "3+ +;? #%;>>*%;Q

    8%$0 ;:"0#.; OWQk/GV I;? J (> ngQli^J"

    `$? 5".5*."4; /*//.; JV

     P b  = x

    1!  

    1 P 

    1

     sat +   x

    2!  

    2 P 

    2

     sat   = 71kPa

    Pd

  • 8/18/2019 Ocw Chapter 10

    57/64

    T=318.15

    40.00

    45.00

    50.00

    55.00

    60.00

    65.00

    70.00

    75.00

    80.00

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    x1, Y1

          K      P

        a

    Series1

    Series2

  • 8/18/2019 Ocw Chapter 10

    58/64

  • 8/18/2019 Ocw Chapter 10

    59/64

     

     K 1 =

     P 1

     sat !  

    1

     P =

     P 1

     sat exp( A( x2)2 )

     P 

     K 2  =

     P 2

     sat exp( A( x1)2 )

     P 

    so (a) becomes,

    66  = x1 P 

    1

     sat exp( A(1" x1)2 ) +  (1- x

    1) P 

    2

     sat exp( A( x1)2 )

  • 8/18/2019 Ocw Chapter 10

    60/64

     

    66 = x

    1(44.51)exp(1.107)(1! x

    1)

    2

    )+

     (1- x

    1)(65.64)exp(1.107( x

    1)

    2

    )

    Guess x1,

     x1  = 0.7 P=68.29

     x1 = 0.8 P=63.88

     x1 = 0.75 P=66.36

     x1 = 0.76 P=65.91......good enough

  • 8/18/2019 Ocw Chapter 10

    61/64

     

     Now we can calculate K 1  and K 2  for flash calculation,

     K 1  =

     P 1

     sat !  

    1

     P =

    44.51exp(1.107(1" 0.76)2 )

    66

    = 0.719

     K 2  =

    65.64exp(1.107(0.76)2 )

    66= 1.885

     

  • 8/18/2019 Ocw Chapter 10

    62/64

     

    Substitute into eqn (10.17),

     z i( K 

    i)

    1+V ( K i !1)

    = 1"

    0.6(0.719)1+V (0.719 !1)

    + (1! 0.6)(1.885)1+V (1.885!1)

    = 1 (10.17)

    0.431

    1! 0.281V +

    0.754

    1+ 0.885V = 1

  • 8/18/2019 Ocw Chapter 10

    63/64

     

    0.431

    1! 0.281V +

    0.754

    1+ 0.885V = 1

     

    Guess, "   = 1

    V=0.50 1.024

    V=0.55 1.017V=0.70 1.002

    V=0.75 0.999

    V=0.73 1.000

    So V=0.73 L=1-V=0.27

  • 8/18/2019 Ocw Chapter 10

    64/64

     

     yi   =

     z i K 

    i

    1+V ( K i !

    1)   (10.16)

     y1 = ..........

     y2  = ..........

     xi  =

     yi

     K i

     x1 = .........

     x2  = .........