ocw 1 introduction

32
Electronic Instrumentation Introduction  Chapter 1 Introduction 1 Pablo Acedo / Jose A. García Souto

Upload: -

Post on 09-Apr-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 1/32

Electronic Instrumentation Introduction 

 

Chapter 1

Introduction

1Pablo Acedo / Jose A. García Souto

Page 2: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 2/32

Electronic Instrumentation Introduction 

Chapter 1. Introduction• Basic Architecture for an Electronic/Optoelectronic

Instrumentation Measurement System. Definitions.• Sensors and Categories of Sensor by Input Mechanisms

• Characterization of Sensors and Measurement Systems

• Calibration Curve/Transfer Function• Static Characteristics

• Dynamic Characteristics

• Errors in Measurements

• Summary

2Pablo Acedo / Jose A. García Souto

Page 3: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 3/32

Electronic Instrumentation Introduction 

Basic Architecture for an ElectronicInstrumentation Measurement System

Sensor/  Analo Si nal

mq

q: Sensor/transducer output(electrical magnitude)

ADCVo

Vo: Output voltage of theSignal conditioning circuit

Transducer

m: Magnitude to be measured

p1, p2,… : Influence magnitudes/variables

 

Conditioningp1 p2p3

Digital Signal

Conditioning:FPGA, µC,µP, DSPDisplay

Transmission

Storage

3Pablo Acedo / Jose A. García Souto

Page 4: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 4/32

Electronic Instrumentation Introduction 

Basic Architecture for an Opto-ElectronicInstrumentation Measurement System

mLight InputLightOutput

 q Vo

p1 p2p3

Detection

• Light Input from a Semiconductor laser diode or LED (sometimes not necessary).

• “Optical Signal conditioning” sometimes present (eg. Interferometer).

• Output from detector can be either a current (photodiode) an impedance change (photoconductor) or avoltage (photovoltaic sensor).

• The information from the interest magnitude can be either in the amplitude, phase, polarization orwavelength of the light.

 

Conditioning

4Pablo Acedo / Jose A. García Souto

Page 5: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 5/32

Electronic Instrumentation Introduction 

Sensors

• There is always a form of energy conversion associated to the transduction

A sensor is a device that receives a stimulus and 

responds with an electrical signal 

process.

• A sensor can be a simple sensor or can be a complex system.

• Sensors can be classified in many ways depending on the criteria chosen:

• Field of applications

• Conversion Phenomena• Specification

• Other

5Pablo Acedo / Jose A. García Souto

Page 6: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 6/32

Electronic Instrumentation Introduction 

Categories of Sensor Input Mechanisms

• Resistive Sensors

• Variable Inductance/Magnetic Coupling

Sensors

 

Passive Sensors

•apac t ve ensors

• Voltage Generating Sensors

• Current Generating Sensors/optical Sensors

• Other Sensors

Active Sensors

6Pablo Acedo / Jose A. García Souto

Page 7: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 7/32

Electronic Instrumentation Introduction 

Characterization of Sensors andMeasurement Systems

• Transfer Function:

• Calibration Curve (static):

7Pablo Acedo / Jose A. García Souto

Page 8: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 8/32

Electronic Instrumentation Introduction 

Calibration Curve

6

7

8

9

O

utput( q

)

  g  e

• Input Range

• Out ut Ran e

0 2 4 6 8 10

Magnitude (m)

0

1

2

3

4

5

Input Range

   O  u   t  p  u   t   R  a

  n 

• Span

• Full Scale Input

• Full-Scale Output

8Pablo Acedo / Jose A. García Souto

Page 9: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 9/32

Electronic Instrumentation Introduction 

Calibration Curve: Example

3

3,5

4

RT/R

0

Pt100

Cu100

Ni120

9Pablo Acedo / Jose A. García Souto

0 100 200 300 400-100-200

0,5

1

1,5

2

,

T, ºC

Page 10: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 10/32

Electronic Instrumentation Introduction 

Sensitivity

6

7

8

9

Output(q)

• Definition:

0 2 4 6 8 10

Magnitude (m)

0

1

2

3

4

5

• Local Value

• UNITS!!

• Slope of the transferfunction (local)

10Pablo Acedo / Jose A. García Souto

Page 11: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 11/32

Electronic Instrumentation Introduction 

Non-Linearity

6

7

8

9

Outp

ut(q) •Associated to a linear

approximation of thetransfer function.

•IMPORTANT: Differentlinear aproximations

Least-Squaresaproximation

0 2 4 6 8 10

Magnitude (m)

0

1

2

3

4

5 may be used, leading todifferent non-linearityerror values

•Maximum deviationfrom the nonlinear

transfer function(usually in percent ofFS value)

Terminal pointsaproximation

11Pablo Acedo / Jose A. García Souto

Page 12: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 12/32

Electronic Instrumentation Introduction 

Hysteresis

•Deviation of the sensor’soutput at specified pointwhen it is approachedfrom the oppositedirections usuall in

6

7

8

9

O

utput(q)

 

percent of FS value)

• Typical causes ofHysteresis are frictionand structural changes in

the materials

0 2 4 6 8 10

Magnitude (m)

0

1

2

3

4

5

12Pablo Acedo / Jose A. García Souto

Page 13: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 13/32

Electronic Instrumentation Introduction 

Resolution• Resolution: The smallest increment of the input that can be sensed.

0.4

0.6

0.8

0.4

0.6

0.8

• Important: For sensors with a continuous response some texts talk about

infinitesimal resolution. That does not mean “infinite Resolution”.

0 200 400 600 800 1000-0.8

-0.6

-0.4

-0.2

0

0.2

time (ms)

   A  m  p   l   i   t  u   d  e   (  m   V   )

0 200 400 600 800 1000-0.8

-0.6

-0.4

-0.2

0

0.2

time (ms)

   A  m  p   l   i   t  u   d  e   (  m   V   )

Limited by the Signal-to-Noise ratio (S/N=0dB)

13Pablo Acedo / Jose A. García Souto

Page 14: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 14/32

Electronic Instrumentation Introduction 

Resolution

0110

1000

Output

(q)

• In sensors with discrete

response (after ADCconversion for exampled),the minimum resolutionachievable is usually

0 2 4 6 8

Input (m)

00

10

0100

 

error (step size).

• NOTE: that only will betrue if the resolutionasociated to the SN ratio at

the ADC input is lower thanthe ADC’s resolution.

14Pablo Acedo / Jose A. García Souto

Page 15: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 15/32

Electronic Instrumentation Introduction 

Precision/Accuracy

• Precision: consistency ofthe measurement. It isassociated to the capacity ofthe sensor to give the same

6

7

8

9

Output(q)

 

the same input (Stimulus).

• In modern sensorsuncertainty is preferredasociated to the Limiting error

of the measurement (to bediscussed later)

0 2 4 6 8 10

Magnitude (m)

0

1

2

3

4

5

15Pablo Acedo / Jose A. García Souto

Page 16: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 16/32

Electronic Instrumentation Introduction 

Precision

50

60

70

80

Samp

leCount

• Precision of the nth measurement

0.25 0.5 0.75 1 1.25 1.5 1.75

Measured Value (q)

0

10

20

30

40• Where:

16Pablo Acedo / Jose A. García Souto

Page 17: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 17/32

Electronic Instrumentation Introduction 

NOTE• Precision: Quality of the system to give always the same output underthe same stimulus (input)

• Accuracy: Error between the measurement and the true value (Y): i.e.conformance between the measurement and the standard.

 Accurate Measurements require the use of a Accurate Measurements require the use of a

 precision measurement system which is precision measurement system which iscalibrated against a certified, accurate standard calibrated against a certified, accurate standard 

17Pablo Acedo / Jose A. García Souto

Page 18: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 18/32

Electronic Instrumentation Introduction 

Other Parameters• Stability: Quality of the system to maintain its characteristics underchanges of the measurement conditions (e.g. Temperature) or aging.

Usually characterized through drifts in the calibration curve (offset &sensitivity drifts).

• Dead Band: Insensitivit of a sensor in a s ecific ran e of in ut si nals.

• Those related to the physical/electronic characteristics of thesensor/transducer:

• Output Impedance• Excitation (Power supply)• Weigh• ……

18Pablo Acedo / Jose A. García Souto

Example of Datasheet

Page 19: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 19/32

Electronic Instrumentation Introduction 

Dynamic Characteristics

• Transient Response:• Previous characteristics assume a steady state. The time response shows

the behavior of the sensor or the instrumentation system to the changes inthe magnitude of interest by observing the signal output with time. The

• Dynamic Transfer Function: [ ]),...()( t m f t V  =

 

step response is used as a basic test and for characterizing the system.• Basic parameters are: overshoot in the under-damped response, peak 

time, settling time that is the time to reach and thereafter remain within aprescribed percentage of the steady-state value (5%), rise time and delay.

• Frequency Response:

• Range of work frequencies, bandwidth and types of pass-band.

• Some cases don´t respond to a constant. Even more, narrow-band ones.

• Dynamic sensitivity for the amplitude. Don´t forget the phase.

19Pablo Acedo / Jose A. García Souto

Page 20: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 20/32

Electronic Instrumentation Introduction 

Parameters of the time responseStep response

• Os: overshoot 

• ts: settling time 

Output response

Value 2100%

Error band (±ε)

Os tp 

tr  

• tr: rise time t10-90

• td: delay 

• tp: peak time 

Magnitude of interest: analog step or discrete change

Value 10%

td ts 

20Pablo Acedo / Jose A. García Souto

Page 21: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 21/32

Electronic Instrumentation Introduction 

Frequency response[ ] jF  Dynamic sensitivity: sensitivity for each frequency input

2121Pablo Acedo / Jose A. García Souto

Page 22: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 22/32

Electronic Instrumentation Introduction 

Dynamic Characteristics• Step Response: • Frequency Response: [ ] jF 

2222Pablo Acedo / Jose A. García Souto

Page 23: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 23/32

Electronic Instrumentation Introduction 

Errors in Measurements

All measuring instruments should be regarded as guilty until proven innocent (P.K. Stein) 

• Systematic Errors

• Random Errors (Noise/Interference)

• Gross Errors (Northrop)/Human Errors (Stein)

Sources/Classification of Errors

23Pablo Acedo / Jose A. García Souto

Page 24: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 24/32

Electronic Instrumentation Introduction 

Limiting Error (LE)

Limiting Error (guarantee error) describes theLimiting Error (guarantee error) describes the

outer boundsouter bounds of the expected of the expected worst caseworst case error error 

• It includes all source of errors (gross/human errors

apart

• Value given by designer/manufacturers to specify

the precision (accuracy) of the instrument/sensor

•Related to uncertainty

24Pablo Acedo / Jose A. García Souto

Page 25: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 25/32

Electronic Instrumentation Introduction 

Systematic Errors (I)• The output of a sensor or a complete measurement

system (Vo) will be function of the mesurand (q)

and other, indirect factors, along with thecharacteristics of signal conditioning.

• The influence of this factors in the final output is

deterministic. Sources:

• Signal conditioning and its imperfections.

• Influence Variables.

25Pablo Acedo / Jose A. García Souto

Page 26: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 26/32

Electronic Instrumentation Introduction 

Propagation of Systematic Errors• As the influence of the different parameters is

deterministic, the combined effect of errors (∆xi)

using the linear error-propagation law using Taylorseries and removing all second and higher-order

terms.

•Usually is expressed in relative error.

26Pablo Acedo / Jose A. García Souto

Page 27: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 27/32

Electronic Instrumentation Introduction 

Example• Let’s calculate the LE in the calculation of the DC

power in a resistor from the measurement of the

current and its value:

• If we use a 2% precision multimeter and the value

of the resistor is known to the 1%, the LE in the DC

power calculation is 5%

27Pablo Acedo / Jose A. García Souto

Page 28: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 28/32

Electronic Instrumentation Introduction 

Influence Variables• The output of the sensor is related not only to the

measurand value and the signal conditioning

(former example), but to other environmentalvariables:

• Temperature

• Pressure• Vibration

• ….

• The influence is also studied using the deterministiclinear error propagation law that allows also for

cancelation of effects (next chapter).

28Pablo Acedo / Jose A. García Souto

Page 29: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 29/32

Electronic Instrumentation Introduction 

Random Errors (I)• Associated to any measurement or electronic

signal we find random, non-deterministic variations

as the result of different sources:

• Electronic noise (Johnson, shot,..)

• It is important to note that whilst some sourcesmay well be truly random (noise), some can be

rendered as systematic (interference) if enough

effort is devoted to discover and model the

sources. However, usually is easier to model them

directly as noise.

29Pablo Acedo / Jose A. García Souto

Page 30: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 30/32

Electronic Instrumentation Introduction 

Propagation of Random Errors• In this case all the sources are independent and

their influence are added to the variance of the

final result.

• This quantity is usually expressed in terms of signal-

to-noise ratio as will be discussed further .

30Pablo Acedo / Jose A. García Souto

Page 31: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 31/32

Electronic Instrumentation Introduction 

Gross/Human Errors

• Humans are always part of an instrument chain as

designers, manufacturers or observers.

•  

use of measurment units (SI vs Standard/Imperial)

• Instrumentation misuse, calculation errors and

other human mistakes are the main source of wrong measurements!!!!

31Pablo Acedo / Jose A. García Souto

Page 32: OCW 1 Introduction

8/8/2019 OCW 1 Introduction

http://slidepdf.com/reader/full/ocw-1-introduction 32/32

Electronic Instrumentation Introduction 

Summary

• The typical Architecture for an Electronic/Optoelectronic

Instrumentation Measurement System has beenpresented, along with different sensor input mechanisms

• The Characterization of Sensors and Measurement

Systems has been presented through the description of the Static and Dynamic Characteristics from theCalibration Curve/Transfer Function

• Errors in Measurements have been also described and

classified as something inherent to every measurement.

32Pablo Acedo / Jose A. García Souto