ocw chapter 4

Upload: alexis-maside

Post on 04-Jun-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Ocw Chapter 4

    1/48

    !"#$$%&' )*+,-)./ +01-0++2-01 3*+2,4560.,-)!

    *+.3 +##+)3!

    ,789::9; #9;;?= @989>

  • 8/13/2019 Ocw Chapter 4

    2/48

    .=:7AB 9== C8D:

  • 8/13/2019 Ocw Chapter 4

    3/48

    !DGA=D *D9B +SDCB

    -GI7F:9K7G 7G EF7CDAAP V?FD A?>AB9GCD )=7AD; AMABD: )7GAB9GB EFDAA?FD -G

  • 8/13/2019 Ocw Chapter 4

    4/48

    +GDFLM >9=9GCD I7F C=7AD; AMABD:J!Q +!W = dU+ dE

    K + dE

    P !Q +!W = dU !Q "PdV = dU

    H =U +PV

    dH = dU +PdV +VdP

    dH = dU +PdV

    dU = dH! PdV

    Q = !H

    Also,

    For constant P

    Substitute and integrate So how do we determine !H?

  • 8/13/2019 Ocw Chapter 4

    5/48

    # W $X%Y% W $ !"# % & %'()*+ dH= !H

    !T

    "#$

    %&'p

    dT +!H

    !P

    "#$

    %&'T

    dP

    dH=CpdT+!H

    !P

    "

    #$

    %

    &'TdP

    dH =CpdT

    !H = H2" H

    1 = C

    pdT

    T1

    T2

    #

    For isobaric process

    So this equation for !His only valid for isobaricprocess and no change of phase.

    If the process is not isobaric,the equation is also valid for ideal gas

    Also applicable for liquid and solid as Hisnot highly dependent on pressure

  • 8/13/2019 Ocw Chapter 4

    6/48

    !

  • 8/13/2019 Ocw Chapter 4

    7/48

    +T9:E=D

    *7B 7

  • 8/13/2019 Ocw Chapter 4

    8/48

    !mo C

    po

    l dTTo

    T

    ! + !ma CpaigdT

    To

    T

    ! = 0

    !moC

    po

    l (To2! T

    o1) + !m

    aC

    pa

    ig(Ta2! T

    a1) = 0

    !moC

    po

    l (To2! T

    o1) =! !m

    aC

    pa

    ig(Ta2! T

    a1)

    Solve for Ta2

    Assume air is an ideal gas:

    Assume constant CP:

    !Q + !W = mH( )! 2

    " mH( )! 1

    + #EK + #E

    P

    0 + 0 = mH( )! 2 " mH( )! 1 + 0 + 00 = !m

    oH

    o2+ !m

    aH

    a2" !m

    oH

    o1" !m

    aH

    a1

    !mo(H

    o2"H

    o1) + !m

    a(H

    a2"H

    a1) =0

    Steady state energy balance for open system:

  • 8/13/2019 Ocw Chapter 4

    9/48

    *D9B )9E9C

  • 8/13/2019 Ocw Chapter 4

    10/48

    ,D9G *D9B )9E9C

  • 8/13/2019 Ocw Chapter 4

    11/48

    Cp H=

    CpdT

    To

    T

    !

    T " To

    !H = C

    pH

    T" T0

    ( )

    Hence,

    Since

  • 8/13/2019 Ocw Chapter 4

    12/48

  • 8/13/2019 Ocw Chapter 4

    13/48

    +T9:E=D [J$!7=?K7G I7F 2

  • 8/13/2019 Ocw Chapter 4

    14/48

    +T9:E=D [J&!7=?K7G I7F (1M

  • 8/13/2019 Ocw Chapter 4

    15/48

    /9BDGB *D9B 7I ]9E7FAB9GCD -G

  • 8/13/2019 Ocw Chapter 4

    16/48

    +GDFLM `9=9GCD )=7AD; !MABD:!Q +!W = dU+ dE

    K + dE

    P

    !Q +!W = dU

    !Q "PdV = dU

    !Q = dU+ PdV = dH

    Q = #H, this is delta H of vaporization at temperature T1

    note,Q = #H

    n, this is delta H of vaporization at normal boiling point

    Degree of freedom, F=2-2+1=1 Once we specified one thermodynamic properties,

    other properties will depends on this.

  • 8/13/2019 Ocw Chapter 4

    17/48

    #7F DT9:E=DP A9B?F9BD; *$4 9B 9 AEDC

  • 8/13/2019 Ocw Chapter 4

    18/48

    .B G7F:9= >7

  • 8/13/2019 Ocw Chapter 4

    19/48

    .=A7 3F7?B7GA 2?=D 9G; )8DGA +_?9K7G NADD#D=;DFA 3DTB>77\R

  • 8/13/2019 Ocw Chapter 4

    20/48

    -I OD \G7O3%708/9B (/P OD C7?=; DAK:9BD3%70819B (1?A

  • 8/13/2019 Ocw Chapter 4

    21/48

    *D9B 7I 2D9CK7G

    -GI7F:9K7G 7G EF7CDAA #DD;A NDJLJ .%P .$R 9FD FD9CB9GBA 4?B=DBA 9FD EF7;?CBA NDJLJ .&P .[R 7I B8D FD9CK7G *D9B A7F>D; ;?F

  • 8/13/2019 Ocw Chapter 4

    22/48

    !1A

    1+ !

    2A

    2" !

    3A

    3+ !

    4A

    4

    Where |vi| is stoichiometric coefficient

    e.g. CH4 + 2O2 ! CO2 + 2H2O

    Stoichiometric reaction,

    Where the value of viis positive for productsand negative for reactants.

    !1 CH4 + !2 O

    2" 1CO

    2+ 2 H

    2O

  • 8/13/2019 Ocw Chapter 4

    23/48

    Energy balance for steady-state open system

    with stoichiometric reaction,

    Q =!H

    = "3 H3 + "4 H4 # "2 H2 # "1 H1

    = "i$ Hi

    |v1|, |v2| |v3|, |v4|

  • 8/13/2019 Ocw Chapter 4

    24/48

    !B9G;9F; *D9B 7I 2D9CK7G3%.(

    5DZGD; 9A B8D DGB89=EM C89GLD IF7: 9AB7

  • 8/13/2019 Ocw Chapter 4

    25/48

    There are many references for tabulated data for"Ho298 for commonly found reactions.

    |v1|, |v2| |v3|, |v4|

    T=25o

    C, P=1bar T=25o

    C, P=1bar

  • 8/13/2019 Ocw Chapter 4

    26/48

    +TJ 7I !B9G;9F; *D9B 7I 2D9CK7G 9B 3W$abJ%c"P d*7$ab

    1

    2N

    2(g) + 3

    2H

    2(g)! NH

    3(g)

    "H298o

    = #46110

    J

    mol NH3produced

    !H298

    o= "46110

    J

    3

    2 mol H2 reacted

    !H298

    o= "46110

    J

    1

    2mol N

    2reacted

    N2(g) + 3H

    2(g)! 2NH

    3(g)

    "H298o = #92220 J

    2mol NH3produced

    !H298o

    =

    "92220

    J

    3mol H2reacted

    !H298

    o= "92220

    J

    mol N2reacted

    Note: The value of standard heat of reactiondepends on stoichiometric coefficients as written

  • 8/13/2019 Ocw Chapter 4

    27/48

    *7ODHDFP B9>?=9K7G 7I 9== E7AA=D FD9CK7GA 9FDG7B EF9CKC9=J

    #?FB8DF:7FDP G7B 9== FD9CK7GA C9G B9\D E=9CD 9B$ab"

    !7P 87O B7 C9=C?=9BD AB9G;9F; 8D9B 7I FD9CK7Ge

  • 8/13/2019 Ocw Chapter 4

    28/48

  • 8/13/2019 Ocw Chapter 4

    29/48

    !H298

    o

    ="

    i

    # !

    Hf298,io

    So we can calculate standardheat of reaction from standard heat offormation of the reactants and products

    !H298

    o= "

    i# Hio

  • 8/13/2019 Ocw Chapter 4

    30/48

    +T9:E=D 7I I7F:9K7G FD9CK7GPC s( ) + 1

    2O

    2 g( ) + 2H2 g( )! CH3OH l( )

    where

    C,O2,H

    2are elements

    Heat of formations are usually tabulatedat 298.15K, such as in Table C4. !Hf298

    o

  • 8/13/2019 Ocw Chapter 4

    31/48

    CO2(g) + H

    2(g)! CO(g)+ H

    2O(g)

    Example:

    Calculation of std heat of rxn using std heat of formation,

    !H298

    o= "co2!Hf298,co2

    o+ "H2!Hf298,H2

    o+ "co!Hf298,co

    o+ "H2O!Hf298,H2O

    o

    = #1( ) #393509( )+ #1( ) 0( )+ 1( ) #110525( )+ 1( ) #241818( )

    !H298

    o= 41166

    J

    mol CO2 reacted

    !H298o

    = "i# !Hf298,i

    o

    !H298

    o= "

    i# Hio

  • 8/13/2019 Ocw Chapter 4

    32/48

    07BD'*$4 ;7DA G7B 9CB?9==M DT9FJ

    38

  • 8/13/2019 Ocw Chapter 4

    33/48

    !B9G;9F; *D9B 7I )7:>?AK7G

    3MED 7I 8D9B 7I FD9CK7G B89B DBODDG I?D= 9G; 7TMLDG B7 EF7;?CD O9BDF 9G;

    C9F>7G ;

  • 8/13/2019 Ocw Chapter 4

    34/48

    @D C7?=; C9=C?=9BD AB9G;9F; 8D9B 7I FD9CK7G IF7:AB9G;9F; 8D9B 7I C7:>?AK7G 9A I7==7OAP

    !H298o

    = " #i$ !H298,io

    For example, for the following reaction,4C(s) + 5H

    2(g) ! C

    4H

    10(g)

    "H298

    o=# 1( ) #2877.4( )+ #5( ) #285.83( ) + #4( ) #393.51( )$% &'

    "H298

    o=#125.79 kJ

    mol C4H

    10 produced

    Heat of

    combustion

    Note, coincidentally this is also standard heat offormation of n-Butane.

  • 8/13/2019 Ocw Chapter 4

    35/48

    ,D9A?FD:DGB 7I *D9B 7I )7:>?AK7G

    `7:> )9=7F

  • 8/13/2019 Ocw Chapter 4

    36/48

    3D:EDF9B?FD 5DEDG;DGCD 7I?%.(

    ,7AB FD9CK7GA

  • 8/13/2019 Ocw Chapter 4

    37/48

    )7GHDG

  • 8/13/2019 Ocw Chapter 4

    38/48

    dH473

    o= n

    i

    rxts473!298

    " CpdT +dH298o

    + ni

    prd298!473

    " CpdT

    dH473

    o= # n

    irxt298!473

    " CpdT +dH298o

    + ni

    prd298!473

    " CpdT

    dH473

    o=dH

    298

    o+ n

    iprd298!473

    " CpdT # nirxt298!473

    " CpdT

  • 8/13/2019 Ocw Chapter 4

    39/48

    dH473

    o=dH

    298

    o+ v

    iprd298!473

    " CpdT + virxt298!473

    " CpdT

    dH473

    o=dH

    298K

    o+ #

    i" CpdT

    dH473

    o=dH

    298K

    o+ $C

    p

    odT

    For stoichiometric reaction, ni=|vi|

    Where,< !C

    p

    o>H

    " Mean Heat Capacity for Reaction

    and

    H=R !A+ !B

    2T

    0(" +1) + !C

    3T

    0

    2("2 + "+1) + !D"T

    0

    2#$% &

    '( (4.20)

    and !M = )iM

    i* , andA,B,C, Dare constants for heat capacity.

  • 8/13/2019 Ocw Chapter 4

    40/48

  • 8/13/2019 Ocw Chapter 4

    41/48

    *D9B +SDCBA 7I -G;?ABF

  • 8/13/2019 Ocw Chapter 4

    42/48

    #7F DT9:E=DP

    @89B M B8D C7:>?AK7G 7I % :7= 7I :DB89GD O

  • 8/13/2019 Ocw Chapter 4

    43/48

    `9A

  • 8/13/2019 Ocw Chapter 4

    44/48

    V9B8

    Energy balance becomes,!H =!H

    298

    o+!H

    prd =0

    where

    !H298o

    = "i

    # !H298,f

    o

    !H298

    o= 1( ) $393509( ) + 2( ) $241818( ) + $1( ) $74520( ) + $2( ) 0( )

    !H298

    o=$802625

    J

    Mol

    and

    !Hprd

    = ni# CpT1

    T2

    % dT = H T

    2$ T

    1( )

    Rxt(25oC) ! Prd(25

    oC)

    Prd Tout

    ( )

    !H

    prd

    !H

    298

    o

  • 8/13/2019 Ocw Chapter 4

    45/48

    !Hprd

    = ni" CpT1

    T2

    # dT = H T2$ T1( )

    !Hprd =R !A+ !B

    2T1(% +1) + !

    C

    3T12(%2 + %+1) + !

    D

    %T1

    2

    &

    '()

    *+ T2$ T1( )

    !M = n

    iM

    i" n i is mol of each component in products.

    !A =1(5.457) + 0.4(3.639) + 9.03(3.28) +2(3.47) =43.471

    !B =[1(1.045) + 0.4(0.506) + 9.03(0.593) +2(1.45)]x10"3 =9.502x10"3

    !D =[1("1.157)+ 0.4("0.227)+ 9.03(0.04) +2(0.121)]x105 = "0.645x105

    Outlet

    1 mol CO2

    0.4 mol O2

    9.03 mol N2

    2 mol H2O

    !Hprd

    =R 43.471+9.502x10"3

    2(298)(#+1) "

    0.645x105

    #(298)2

    $

    %&'

    ()T2"298( )

    For T1=298K,

  • 8/13/2019 Ocw Chapter 4

    46/48

    !?>AKB?BD 9=9GCD

    !H ="802625 J

    Mol

    + H T

    2"298( ) =0

    "802625 J

    Mol+ 8.314

    J

    MolK43.471 +

    9.502x10"3

    2(298)(# + 1) "

    0.645x105

    #(298)2

    $

    %&'

    () T

    2"298( ) =0

    T2 = 802625

    8.314 43.471+9.502x10

    "3

    2(298)(# + 1) "

    0.645x105

    #(298)2

    $

    %&'

    ()

    +298

    T2

    =96539

    43.471+ 1.416(# + 1) "0.7263#

    $%& '()

    +298

    !H = !H

    298

    o+ !H

    prd = 0

  • 8/13/2019 Ocw Chapter 4

    47/48

    Solve by iteration (Use Excel or Casio fx-570)Answer: T2= 2066K = 1793oC What will happen to the outlet temperature (T2) if no

    excess air is used?

    T2 =

    96539

    43.471+1.416(!+1) "0.7263

    !

    #

    $%&

    '(

    +298

    T2 =298 +

    96539

    43.471+1.416(T2

    298+1) "

    0.7263

    T2

    298

    #

    $

    %%%

    &

    '

    (((

    T2 =298 +

    96539

    44.887 + 0.00475T2"216.437

    T2

    #

    $%&

    '(

  • 8/13/2019 Ocw Chapter 4

    48/48

    2DIDFDGCD

    !:>7i ,J ,J P

    -GBF7;?CK7G B7 )8D: