observational and modeling constraints on enrichment and

14
Observational and modeling constraints on enrichment and the implications for the future Helen M. Amos, Jeroen E. Sonke , Daniel Obrist, Nicole Hagan, Hannah M. Horowitz, Robert P. Mason, Melanie Witt, Ian Hedgecock, E. S. Corbitt, Elsie M. Sunderland ICMGP – Jeju, South Korea 15 June 2015

Upload: others

Post on 19-Mar-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Observational and modeling constraints on enrichment and the implications for the future

Helen M. Amos, Jeroen E. Sonke, Daniel Obrist, Nicole Hagan, Hannah M. Horowitz, Robert P. Mason, Melanie Witt, Ian

Hedgecock, E. S. Corbitt, Elsie M. Sunderland

ICMGP – Jeju, South Korea 15 June 2015

LITHOSPHERE  

SOIL   OCEAN  

Humans have perturbed the global Hg cycle – But how much? Implications for the future?

First-order exchange between reservoirs Flux = k x (Mass of Hg)

7-box model of the global Hg cycle (Amos et al., 2013, GBC; 2014 ES&T; 2015 ES&T)

Track the fate of Hg

1 10 100 1,000 10,0000

0.5

1

Frac

tion

Atmospheric pulse

1 10 100 1,000 10,0000

0.5

1

Frac

tion

Fast terrestrial pulse

1 10 100 1,000 10,0000

0.5

1

Frac

tion

Time (years)

Surface ocean pulse

atmospherefast terrestrialslow soilarmored soilsurface oceansubsurface oceandeep oceanocean margin sedimentdeep ocean sediment

Time (years)

atmosphere slow soil armored soil

ocean margin

sediment

deep ocean sediment

Fate of a pulse to the atmosphere

External forcing from anthropogenic releases

Use model to explore impacts of uncertainty in cycling and emissions

Scenarios 1 & 2 Published emissions

Scenario 3 Larger geogenic source

Scenario 4 Greater ocean evasion

Scenario 5 Greater retention in soils

Scenario 6 More sediment burial

OCEAN  

Use multiple lines of evidence to evaluate plausibility of scenarios

Aircraft Surface air

Soil Seawater

Historical documents

Observations from natural archives

Median enrichment factor relative to “pre-industrial”

Peat bog Lake sediment

2.9 (95% CI, 1.6 to 6.3)

4.3 (95% CI, 2.3 to 14)

Tomorrow  9:00-­‐9:15  in  G05-­‐III  Atmospheric  Mercury  Sonke  et  al.,  “Reconciling  Hg  deposi5on  rates  from  lake  sediment  and  peat  bog  archives”  

time

pre-large-scale mining pre-industrial 20C max

3000 BC 1550 1760 1880 1960s

Increasing time scale

months to a year

years to a decade

decades

Peat bog

Watershed & lake

Forced by Horowitz inventory

Forced by Zhang inventory

EF = 4.0

EF = 4.4

EF = 2.9

Pre-industrial Hg accumulate rates 5x higher than pre-colonial

Enrichment factor relative to “pre-colonial”

Peat bog Lake sediment

17 ± 17 (n=7) 27 ± 14 (n=14)

Tomorrow  9:00-­‐9:15  in  G05-­‐III  Atmospheric  Mercury  Sonke  et  al.,  “Reconciling  Hg  deposi5on  rates  from  lake  sediment  and  peat  bog  archives”  

time

pre-large-scale mining pre-industrial 20C max

3000 BC 1550 1760 1880 1960s

Silver refining in Colonial Spanish America Natural archives point to higher emission factor

Kiln by J. M. Wolfe; Cooke et al. (2013)

Pre-colonial model kiln

Atmospheric emission factor for historical large-scale mining

7% to 85%

Robins (2011); Hagan & Robins (2011); Guerrero (2012); Robins & Hagan (2012)

Atmosphere  (Mg)  

Upper    Ocean  (pM)  

Deep    Ocean  (pM)  

Soil  (Mg)  

Ocean  Evasion  

(ng  m-­‐2  hr-­‐1)  

Terrestrial  Re-­‐emission  (ng  m-­‐2  hr-­‐1)  

Pre-­‐industrial  Enrichment  

Factor  (unitless)  

All-­‐Kme  Enrichment  

Factor  (unitless)  

peat  

Amos  et  al.  (2014)  Mining  emissions        3x  Zero  pre-­‐1850  emissions  

Greater  geogenic  emissions  Greater  soil  reten5on  Greater  burial  

Increased  ocean  evasion  

Amos  et  al.  (2015)  

sediment  

Using observations to evaluate plausibility of different scenarios of cycling and emissions

Atmosphere  (Mg)  

Upper    Ocean  (pM)  

Deep    Ocean  (pM)  

Soil  (Mg)  

Ocean  Evasion  

(ng  m-­‐2  hr-­‐1)  

Terrestrial  Re-­‐emission  (ng  m-­‐2  hr-­‐1)  

Pre-­‐industrial  Enrichment  

Factor  (unitless)  

All-­‐Kme  Enrichment  

Factor  (unitless)  

peat  

sediment  

Base  case  Zhang  emissions:  Cut  mining  3x    Engstrom  emissions:  Cut  2x,  zero  pre-­‐1850    Greater  geogenic  emissions   Greater  soil  reten5on   Greater  burial  

 Increased  ocean  evasion  

1. Early mining could contribute significantly 2. Geogenic emissions less than 300 Mg/yr

Impact of biogeochemical processes on future trajectories can be as large as uncertainty in emissions

Atmosphere   Ocean,  0  to  1000  m  

Modeled response to terminating anthropogenic emissions (normalized to 2015)

(%)   (%)  

2015! 2015!2050! 2050!Year! Year!

2015  levels  Emissions  increasing  since  1950s  

Base  case:  Emissions  peak  1970s  

Greater  burial  

Amos et al. (2015), ES&T

Concluding remarks •  Signal of enrichment diminishes with increasing time

scale of accumulation à time scale of decades and longer can completely obscure peaks in emissions.

•  Observational and model evidence for historical mining emissions.

•  Need for aggressive reductions to stabilize ocean

concentrations is robust to uncertainty in emissions and Hg cycling.

 

Model publicly available http://bgc.seas.harvard.edu/models.html

Thanks to our funders

US Environmental Protection Agency

Contract No. EP-11-H-0013646

European Research Council Grant ERC-2010-StG_20091028