observational constraints on global organic aerosol

24
Observational Constraints on Global Organic Aerosol Telluride Science Research Center Workshop on Organic Aerosol July 30, 2014 Colette L. Heald Xuan Wang, Qi Chen *analogous to “peak oil”?

Upload: ingrid

Post on 22-Jan-2016

25 views

Category:

Documents


0 download

DESCRIPTION

Observational Constraints on Global Organic Aerosol. Colette L. Heald Xuan Wang, Qi Chen. *analogous to “peak oil”?. Telluride Science Research Center Workshop on Organic Aerosol July 30, 2014. My Talk Today. Part 1: Brown Carbon. H:C. Part 2a: Van Krevelen Diagram re-visited. O:C. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Observational Constraints on  Global Organic Aerosol

Observational Constraints on Global Organic Aerosol

Telluride Science Research Center Workshop on Organic AerosolJuly 30, 2014

Colette L. HealdXuan Wang, Qi Chen

*analogous to “peak oil”?

Page 2: Observational Constraints on  Global Organic Aerosol

My Talk Today

Part 1: Brown Carbon

Part 2a: Van Krevelen Diagram re-visited

Part 2b: Simulating the Global Elemental Composition of OA

H:C

O:C

Page 3: Observational Constraints on  Global Organic Aerosol

IPCC AR5 Estimates that Black Carbon is the 2nd Largest Warming Agent in the Atmosphere.

(but that’s not what models say)

How can these be

reconciled?

Top-down constraints from Bond et al. come from absorption measurements.How important are organics to this?

Page 4: Observational Constraints on  Global Organic Aerosol

Adding Brown Carbon to GEOS-Chem

Absorption of BrC is highly uncertain - we choose upper-range estimates

Brown Carbon

Aromatic SOA

50% of biofuel POA25% of fire POA

Absorption Coefficient

Get RI from field measurements

Mie calculation

MAE=1 m2/g MAE=0.3 m2/g

Page 5: Observational Constraints on  Global Organic Aerosol

Including Brown Carbon is Critical to Capturing the Spectral Dependence of AERONET AAOD*AAOD product here using lev2 SSA with lev1.5 AOD

Page 6: Observational Constraints on  Global Organic Aerosol

Including Brown Carbon is Critical to Capturing the Spectral Dependence of AAOD

*AAOD product here using lev2 SSA with lev1.5 AOD

Page 7: Observational Constraints on  Global Organic Aerosol

Our Work Suggests Brown Carbon is an Important Component of Absorption Radiative Forcing

Brown Carbon contributes 35% of the DRF warming from carbonaceous aerosols.(Also: BC DRF=0.21 Wm-2, is less than methane and tropospheric ozone.)

[Wang, Heald, et al., ACPD, 2014]

Page 8: Observational Constraints on  Global Organic Aerosol

The State of Dis-Union

[Heald, et al., 2011]

Page 9: Observational Constraints on  Global Organic Aerosol

The State of Dis-Union: From a Mass Perspective

we Need More (Anthropogenic)

Sources and More Sinks

[Heald, et al., 2011]

*Now adding ~100 Tg/yr source of ASOA

Page 10: Observational Constraints on  Global Organic Aerosol

Van Krevelen Diagram: Insight Into OA Aging

[Heald et al., 2010]

Need to re-visit: (1) more data (2) corrected AMS elemental ratios (Canagaratna et al., 2014)

Total OA (AMS data) fell on -1 slope, suggesting that aging (mixing,

chemistry, volatilization) follow consistent path.

We noted levelled off at higher O:C (alcohol addition, fragmentation?)

Page 11: Observational Constraints on  Global Organic Aerosol

Updated Van Krevelen of Ambient Measurements

See clear progression in OSc.Fitted slope shallower (-0.6 slope) than Heald et al., 2014 (-1 slope),

largely because AMS correction affects O:C more than H:C.

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C-1.0 -0.5 0.0 0.5 1.0

OSc

Ground Urban Downwind Remote/Rural

(closed: HR-AMS)(open: Q-AMS, overlapped with closed)Aircraft

DC-3 (2012) MILAGRO (2006)

(smaller sizes for higher altitude)

Fit to Ambient Means (R2 = 0.67)

RMA Slope = -0.58 ± 0.04 (1)RMA Intercept = 1.96 ± 0.03

(a)

Mexico City

Whistler Mountain

Mace Head

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

1.61.20.80.40.0

O:C

n nn nn

n

nnn

ppp

ooooxxx

x

aaaaaaaa aa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaa

aaaaaaaaa aaaaaaaaa

aaaaaaaaa aaaaaX X

X

X

X

TTT

ZZZ

RRR

R

R

EE

EEEPC

b

bbb

b

b

b

bb

bI

III IIIIIIII

InInInInSSSSSSSS

S

SMMMMMM

MLLLLLLL

dg

d

d

d

ttcc

c cccGGG

E

E

E

EE

R

(c)Laboratory-generated OABiomass burning OADiesel exhaust, cooking POABiogenic SOA(I - isoprene; L - limonene; M - monoterpene; S - sesquiterpene; all at low-NOx)

(In - isoprene at high-NOx)

Aromatic SOA(X - xylene; T - toluene; B - benze)(Xn, Tn, Bn represent high NOx)

SVOC/IVOC SOAGlyoxal SOA

Other OAR - Marine EmissionsE - SOA products of IEPOX reactive uptake

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

-1.0 -0.5 0.0 0.5 1.0OSc

(a)

Mexico City

Whistler Mountain

Mace Head

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

1.61.20.80.40

O:C

n nn nn

n

nnn

ppp

ooooxxx

x

aaaaaaaa aa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaa

aaaaaaaaa aaaaaaaaa

aaaaaaaaa aaaaaX X

X

X

X

TTT

ZZZ

rrr

r

r

rr

rrrrr

b

bbb

b

b

b

bb

bI

III IIIIIIII

InInInInSSSSSSSS

S

SMMMMMM

MLLLLLLL

dg

d

d

d

ttcc

c cccGGG

E

E

E

EE

R

(c)

Ground Urban Downwind Remote/Rural

Aircraft MILAGRO (2006) DC-3 (2012)

— Fitted to Ambient Means (R2 = 0.67)

Slope = -0.58 ± 0.04 (1); Intercept = 1.96 ± 0.03 Fitted to invididual datasets(shown for the data range) — Urban — Downwind — Remote/Rural — Aircraft Laboratory-generatedBiomass burning OA (b)Anthropogenic POA(d/g - diesel/gasoline exhaust; c - cooking; t - trash burning)Biogenic SOA (I - isoprene; L - limonene; M - monoterpene; S - sesquiterpene)Aromatic SOA (X - xylene; T - toluene; Z - benze; r - others)Fresh IVOC SOA(n - naphthalene; p - phenol; o - o-cresol; x - dimethylphenol; a - C8 to C19 alkane)Glyoxal uptake (G)(all at low-NOx except *n which represents high NOx) Other types of OAMarine Emissions (R)SOA products of IEPOX reactive uptake (E) Laboratory photochemical aging

2.01.61.20.80.40

O:C

Anthropogenic (POA+SVOC/IVOC)

(d)

SOA (gas + particle)

1086420

Biomass burning (POA+SVOC/IVOC) (day)

-1.0-0.5

Heterogeneous

(b)

Riverside

Mexico City (T0)

Fresno

Borneo

DC-3

AmazonSGP

BEACHON

IfT

Cool

Davis

SPC

UptonMILAGRO

Page 12: Observational Constraints on  Global Organic Aerosol

But There is Diversity Among Campaigns

All individual slopes steeper (-0.7 to -1.1) than bulk …overall fitting compensating for various intercepts

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

Lines fitted to invididual datasets by RMA Urban Downwind Remote/Rural Aircraft

(lines are shown for the data range)

(b)

Riverside

Mexico City (T0)

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

Lines fitted to invididual datasets by RMA

Urban Downwind Remote/Rural Aircraft Fit to All Ambient Means

(lines are shown for the data range)

(b)

Riverside

Mexico City (T0)

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C-1.0 -0.5 0.0 0.5 1.0

OSc

Ground Urban Downwind Remote/Rural

(closed: HR-AMS)(open: Q-AMS, overlapped with closed)Aircraft

DC-3 (2012) MILAGRO (2006)

(smaller sizes for higher altitude)

Fit to Ambient Means (R2 = 0.67)

RMA Slope = -0.58 ± 0.04 (1)RMA Intercept = 1.96 ± 0.03

(a)

Mexico City

Whistler Mountain

Mace Head

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

1.61.20.80.40.0

O:C

n nn nn

n

nnn

ppp

ooooxxx

x

aaaaaaaa aa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaa

aaaaaaaaa aaaaaaaaa

aaaaaaaaa aaaaaX X

X

X

X

TTT

ZZZ

RRR

R

R

EE

EEEPC

b

bbb

b

b

b

bb

bI

III IIIIIIII

InInInInSSSSSSSS

S

SMMMMMM

MLLLLLLL

dg

d

d

d

ttcc

c cccGGG

E

E

E

EE

R

(c)Laboratory-generated OABiomass burning OADiesel exhaust, cooking POABiogenic SOA(I - isoprene; L - limonene; M - monoterpene; S - sesquiterpene; all at low-NOx)

(In - isoprene at high-NOx)

Aromatic SOA(X - xylene; T - toluene; B - benze)(Xn, Tn, Bn represent high NOx)

SVOC/IVOC SOAGlyoxal SOA

Other OAR - Marine EmissionsE - SOA products of IEPOX reactive uptake

Page 13: Observational Constraints on  Global Organic Aerosol

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

1.61.20.80.40.0

O:C

n nn nn

n

nnn

ppp

ooooxxx

x

aaaaaaaa aa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaa

aaaaaaaaa aaaaaaaaa

aaaaaaaaa aaaaaX X

X

X

X

TTT

ZZZ

RRR

R

R

EE

EEEPC

b

bbb

b

b

b

bb

bI

III IIIIIIII

InInInInSSSSSSSS

S

SMMMMMM

MLLLLLLL

dg

d

d

d

ttcc

c cccGGG

E

E

E

EE

R

(c)Laboratory-generated OABiomass burning OADiesel exhaust, cooking POABiogenic SOA(I - isoprene; L - limonene; M - monoterpene; S - sesquiterpene; all at low-NOx)

(In - isoprene at high-NOx)

Aromatic SOA(X - xylene; T - toluene; B - benze)(Xn, Tn, Bn represent high NOx)

SVOC/IVOC SOAGlyoxal SOA

Other OAR - Marine EmissionsE - SOA products of IEPOX reactive uptake

A Disconnect Between Laboratory and Ambient Elemental Composition?

Most of the laboratory data lies below the ambient line…Except isoprene-derived OA.

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

-1.0 -0.5 0.0 0.5 1.0OSc

(a)

Mexico City

Whistler Mountain

Mace Head

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

2.01.61.20.80.40

O:C

n nn nn

n

nnn

ppp

ooooxxx

x

aaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaa

aaaaaaaaa aaaaaaaaa

aaaaaaaaa aaaaaX X

X

X

X

TTT

ZZZ

rrr

r

r

rrrrr

rr

b

bbb

b

b

b

bb

bI

III IIIIIIII

InInInInSSSSSSSS

S

SMMM

MMMM

LLLLLLL

dg

d

d

d

ttcc

ccccGGG

E

E

E

EE

R

(c)

Ground Urban Downwind Remote/Rural

Aircraft MILAGRO (2006) DC-3 (2012)

— Fitted to Ambient Means (R2 = 0.67)

Slope = -0.58 ± 0.04 (1); Intercept = 1.96 ± 0.03 Fitted to invididual datasets(shown for the data range) — Urban — Downwind — Remote/Rural — Aircraft Laboratory-generatedBiomass burning OA (b)Anthropogenic POA(d/g - diesel/gasoline exhaust; c - cooking; t - trash burning)Biogenic SOA (I - isoprene; L - limonene; M - monoterpene; S - sesquiterpene)Aromatic SOA(X - xylene; T - toluene; Z - benze; r - others)Fresh IVOC SOA(n - naphthalene; p - phenol; o - o-cresol; x - dimethylphenol; a - C8 to C19 alkane)Glyoxal uptake (G)(all at low-NOx except that *n represents high NOx) Other types of OAMarine Emissions (R)SOA products of IEPOX reactive uptake (E) Laboratory photochemical aging

2.01.61.20.80.40

O:C

Anthropogenic (POA+SVOC/IVOC)

(d)

SOA (gas + particle)

1086420

Biomass burning (POA+SVOC/IVOC) (day)

-1.0-0.5

( heterogeneous oxidation)

(b)

Riverside

Mexico City (T0)

Fresno

Borneo

DC-3

AmazonSGP

BEACHON

IfT

Cool

Davis

SPC

UptonMILAGRO

Page 14: Observational Constraints on  Global Organic Aerosol

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

1.61.20.80.40.0

O:C

1086420Photochemical Age (day)

(d)

>10

A Disconnect Between Laboratory and Ambient Elemental Composition?

Most of the laboratory data lies below the ambient line…Few aging experiments get to high O:C within a week of aging.

Page 15: Observational Constraints on  Global Organic Aerosol

Statistical Mixtures Demonstrate the Consistencies and Inconsistencies of Lab and Field Measurements

1.61.20.80.40.0

(h) Aircraft and all means

w/. Glyoxal SOA and Aging

ALL

1.20.80.40.0

O:C

(f) Rural BSOABBOA(g/p) Aging

BSOA/ASOA(g/p) Aging

SGPIfT(s)

1.20.80.40.0

(g) Rainforest BSOA, ISOP, IEPOXBSOA/ISOP(g/p) Aging

Amazon

Borneo

w/. APOA, BBOA(g/p) Aging

Marine OA

2.4

2.0

1.6

1.2

0.8

H:C

1.20.80.40.0

(e) Manitou forest BSOABSOA(g/p) Aging

(d) downwind BSOA, ASOABBOA, APOA

BBOA/APOA(g/p) AgingBSOA/ASOA(g/p) Aging

APOA(p) Aging

(c) Mexico City BSOA, ASOABBOA, APOA

BBOA/APOA(g/p) Aging

(b) Fresno BSOA, ASOABBOA, APOA

2.4

2.0

1.6

1.2

0.8

H:C

(a) Riverside BSOAASOA

-1.0

-0.5

1.61.20.80.40.0

(h) Aircraft and all means

w/. Glyoxal SOA and Aging

ALL

1.20.80.40.0

O:C

(f) Rural BSOABBOA(g/p) Aging

BSOA/ASOA(g/p) Aging

SGPIfT(s)

1.20.80.40.0

(g) Rainforest BSOA, ISOP, IEPOXBSOA/ISOP(g/p) Aging

Amazon

Borneo

w/. APOA, BBOA(g/p) Aging

Marine OA

2.4

2.0

1.6

1.2

0.8

H:C

1.20.80.40.0

(e) Manitou forest BSOABSOA(g/p) Aging

(d) downwind BSOA, ASOABBOA, APOA

BBOA/APOA(g/p) AgingBSOA/ASOA(g/p) Aging

APOA(p) Aging

(c) Mexico City BSOA, ASOABBOA, APOA

BBOA/APOA(g/p) Aging

(b) Fresno BSOA, ASOABBOA, APOA

2.4

2.0

1.6

1.2

0.8

H:C

(a) Riverside BSOAASOA

-1.0

-0.5

1.61.20.80.40.0

(h) Aircraft and all means

w/. Glyoxal SOA and Aging

ALL

1.20.80.40.0

O:C

(f) Rural BSOABBOA(g/p) Aging

BSOA/ASOA(g/p) Aging

SGPIfT(s)

1.20.80.40.0

(g) Rainforest BSOA, ISOP, IEPOXBSOA/ISOP(g/p) Aging

Amazon

Borneo

w/. APOA, BBOA(g/p) Aging

Marine OA

2.4

2.0

1.6

1.2

0.8

H:C

1.20.80.40.0

(e) Manitou forest BSOABSOA(g/p) Aging

(d) downwind BSOA, ASOABBOA, APOA

BBOA/APOA(g/p) AgingBSOA/ASOA(g/p) Aging

APOA(p) Aging

(c) Mexico City BSOA, ASOABBOA, APOA

BBOA/APOA(g/p) Aging

(b) Fresno BSOA, ASOABBOA, APOA

2.4

2.0

1.6

1.2

0.8

H:C

(a) Riverside BSOAASOA

-1.0

-0.5

1.61.20.80.40.0

(h) Aircraft and all means

w/. Glyoxal SOA and Aging

ALL

1.20.80.40.0

O:C

(f) Rural BSOABBOA(g/p) Aging

BSOA/ASOA(g/p) Aging

SGPIfT(s)

1.20.80.40.0

(g) Rainforest BSOA, ISOP, IEPOXBSOA/ISOP(g/p) Aging

Amazon

Borneo

w/. APOA, BBOA(g/p) Aging

Marine OA

2.4

2.0

1.6

1.2

0.8

H:C

1.20.80.40.0

(e) Manitou forest BSOABSOA(g/p) Aging

(d) downwind BSOA, ASOABBOA, APOA

BBOA/APOA(g/p) AgingBSOA/ASOA(g/p) Aging

APOA(p) Aging

(c) Mexico City BSOA, ASOABBOA, APOA

BBOA/APOA(g/p) Aging

(b) Fresno BSOA, ASOABBOA, APOA

2.4

2.0

1.6

1.2

0.8

H:C

(a) Riverside BSOAASOA

-1.0

-0.5

1.61.20.80.40.0

(h) Aircraft and all means

w/. Glyoxal SOA and Aging

ALL

1.20.80.40.0

O:C

(f) Rural BSOABBOA(g/p) Aging

BSOA/ASOA(g/p) Aging

SGPIfT(s)

1.20.80.40.0

(g) Rainforest BSOA, ISOP, IEPOXBSOA/ISOP(g/p) Aging

Amazon

Borneo

w/. APOA, BBOA(g/p) Aging

Marine OA

2.4

2.0

1.6

1.2

0.8

H:C

1.20.80.40.0

(e) Manitou forest BSOABSOA(g/p) Aging

(d) downwind BSOA, ASOABBOA, APOA

BBOA/APOA(g/p) AgingBSOA/ASOA(g/p) Aging

APOA(p) Aging

(c) Mexico City BSOA, ASOABBOA, APOA

BBOA/APOA(g/p) Aging

(b) Fresno BSOA, ASOABBOA, APOA

2.4

2.0

1.6

1.2

0.8

H:C

(a) Riverside BSOAASOA

-1.0

-0.5

Anthropogenic Biogenic ALL

Page 16: Observational Constraints on  Global Organic Aerosol

A Disconnect Between Lab and Ambient Elemental Composition?

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

1.61.20.80.40.0

O:C

n nn nn

n

nnn

ppp

ooooxxx

x

aaaaaaaa aa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaa

aaaaaaaaa aaaaaaaaa

aaaaaaaaa aaaaaX X

X

X

X

TTT

ZZZ

RRR

R

R

EE

EEEPC

b

bbb

b

b

b

bb

bI

III IIIIIIII

InInInInSSSSSSSS

S

SMMMMMM

MLLLLLLL

dg

d

d

d

ttcc

c cccGGG

E

E

E

EE

R

(c)Laboratory-generated OABiomass burning OADiesel exhaust, cooking POABiogenic SOA(I - isoprene; L - limonene; M - monoterpene; S - sesquiterpene; all at low-NOx)

(In - isoprene at high-NOx)

Aromatic SOA(X - xylene; T - toluene; B - benze)(Xn, Tn, Bn represent high NOx)

SVOC/IVOC SOAGlyoxal SOA

Other OAR - Marine EmissionsE - SOA products of IEPOX reactive uptake

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

1.61.20.80.40.0

O:C

1086420Photochemical Age (day)

(d)

>10Aging Experiments

Mis-match suggests that either/both (1)Have not identified important OA source types

(2)Laboratory studies are not representative of ambient composition (mixtures?)[Chen et al., 2014a, in prep]

Page 17: Observational Constraints on  Global Organic Aerosol

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

H:C

1.61.20.80.40.0

O:C

n nn nn

n

nnn

ppp

ooooxxx

x

aaaaaaaa aa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaa

aaaaaaaaa aaaaaaaaa

aaaaaaaaa aaaaaX X

X

X

X

TTT

ZZZ

RRR

R

R

EE

EEEPC

b

bbb

b

b

b

bb

bI

III IIIIIIII

InInInInSSSSSSSS

S

SMMMMMM

MLLLLLLL

dg

d

d

d

ttcc

c cccGGG

E

E

E

EE

R

(c)Laboratory-generated OABiomass burning OADiesel exhaust, cooking POABiogenic SOA(I - isoprene; L - limonene; M - monoterpene;

S - sesquiterpene; all at low-NOx)

(In - isoprene at high-NOx)

Aromatic SOA(X - xylene; T - toluene; B - benze)(Xn, Tn, Bn represent high NOx)

SVOC/IVOC SOAGlyoxal SOA

Other OAR - Marine EmissionsE - SOA products of IEPOX reactive uptake

Goal: Develop an Observationally-Based Model Simulation of OA Elemental Composition (and Aging)

Step 1: Re-fit 2 product SOA yields (I’ll spare you this)Step 2: Assign elemental ratios to POA/SOA types simulated in model based on lab data

Simulated surface composition occupies a narrow range (O:C = 0.3 to 0.5), compared to wider range seen in ambient.

Page 18: Observational Constraints on  Global Organic Aerosol

Updated (Very Simple) Aging SchemeStep 3: Account for semi-volatile POA emissionsStep 4: Age gas-phase organics

End point:O:C=1.1H:C=1.4(defined by field obs)

Page 19: Observational Constraints on  Global Organic Aerosol

Laboratory-Based Parameterization of Aging Rates

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.00.80.60.40.20 1.21.00.80.60.40.20

OH Exposure (1012

molecule cm-3 s)

2.2

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.21.00.80.60.40.20

OH Exposure (1012

molecule cm-3 s)

1.0

0.8

0.6

0.4

0.2

0

Nor

mal

ized

Mas

s C

once

ntra

tion

toluenexylene

pineneisoprene

(a) fossil fuel (b) biomass burning, biofuel (e) biogenic SOG

(f) aromatic SOG

grassoakpinesage

H:CO:C

(c) (d)

POASVOC-SOA

× 5 kcarbon

× 0.2 kcarbon

× 10 kage

× 0.1kage

Step 5: Estimate all rates from lab photochemical aging experiments

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.00.80.60.40.20 1.21.00.80.60.40.20

OH Exposure (1012

molecule cm-3 s)

2.2

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.21.00.80.60.40.20

OH Exposure (1012

molecule cm-3 s)

1.0

0.8

0.6

0.4

0.2

0

Nor

mal

ized

Mas

s C

once

ntra

tion

toluenexylene

pineneisoprene

(a) fossil fuel (b) biomass burning, biofuel (e) biogenic SOG

(f) aromatic SOG

grassoakpinesage

H:CO:C

(c) (d)

POASVOC-SOA

× 5 kcarbon

× 0.2 kcarbon

× 10 kage

× 0.1kage1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.00.80.60.40.20 1.21.00.80.60.40.20

OH Exposure (1012

molecule cm-3 s)

2.2

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.21.00.80.60.40.20

OH Exposure (1012

molecule cm-3 s)

1.0

0.8

0.6

0.4

0.2

0

Nor

mal

ized

Mas

s C

once

ntra

tion

toluenexylene

pineneisoprene

(a) fossil fuel (b) biomass burning, biofuel (e) biogenic SOG

(f) aromatic SOG

grassoakpinesage

H:CO:C

(c) (d)

POASVOC-SOA

× 5 kcarbon

× 0.2 kcarbon

× 10 kage

× 0.1kage

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.00.80.60.40.20 1.21.00.80.60.40.20

OH Exposure (1012

molecule cm-3 s)

2.2

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.8

1.4

1.0

0.6

0.2

Elem

enta

l Rat

ios

1.21.00.80.60.40.20

OH Exposure (1012

molecule cm-3 s)

1.0

0.8

0.6

0.4

0.2

0N

orm

aliz

ed M

ass

Con

cent

ratio

n

toluenexylene

pineneisoprene

(a) fossil fuel (b) biomass burning, biofuel (e) biogenic SOG

(f) aromatic SOG

grassoakpinesage

H:CO:C

(c) (d)

POASVOC-SOA

× 5 kcarbon

× 0.2 kcarbon

× 10 kage

× 0.1kage

kcarbon FF = 1.5 × 10−11 cm3 molecule−1 s−1

BB = 6 × 10−12 cm3 molecule−1 s−1 SOG = 3 × 10−13 cm3 molecule−1 s−1

kage FF = 2.5 × 10−12 cm3 molecule−1 s−1 BB = 1 × 10−11 cm3 molecule−1 s−1 SOG = 1 × 10−10 cm3 molecule−1 s−1

Page 20: Observational Constraints on  Global Organic Aerosol

New Scheme Increases Overall OA Burden by 40%

µg/m3

Page 21: Observational Constraints on  Global Organic Aerosol

New Scheme Dramatically Alters Simulation of Elemental Composition

Now simulate a wider range of oxygen content, and also more pronounced seasonality in continental regions.

O:C Base O:C Updated Aging OSc Updated Aging

Page 22: Observational Constraints on  Global Organic Aerosol

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ba

se

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ag

ing

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ag

ing

O:C

foss

il fu

el o

f 0.

03

inst

ead

of

0.1

1.21.00.80.60.40.20.0

Observed O:C

2.2

2.0

1.8

1.6

1.4

1.22.2

2.0

1.8

1.6

1.4

1.22.2

2.0

1.8

1.6

1.4

1.2

2.22.01.81.61.41.2

Observed H:C

0.1

1

10

0.1

1

10

0.1

1

10

0.1 1 10

Observed OA [µg m-3

]

UrbanDownwindRemote/Rural

Urban (JJA)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ba

se

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ag

ing

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ag

ing

O:C

foss

il fu

el o

f 0.

03

inst

ead

of

0.1

1.21.00.80.60.40.20.0

Observed O:C

2.2

2.0

1.8

1.6

1.4

1.22.2

2.0

1.8

1.6

1.4

1.22.2

2.0

1.8

1.6

1.4

1.2

2.22.01.81.61.41.2

Observed H:C

0.1

1

10

0.1

1

10

0.1

1

10

0.1 1 10

Observed OA [µg m-3

]

UrbanDownwindRemote/Rural

Urban (JJA)

Comparison With Surface AMS Observations

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ba

se

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ag

ing

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ag

ing

O:C

foss

il fu

el o

f 0.

03

inst

ead

of

0.1

1.21.00.80.60.40.20.0

Observed O:C

2.2

2.0

1.8

1.6

1.4

1.22.2

2.0

1.8

1.6

1.4

1.22.2

2.0

1.8

1.6

1.4

1.2

2.22.01.81.61.41.2

Observed H:C

0.1

1

10

0.1

1

10

0.1

1

10

0.1 1 10

Observed OA [µg m-3

]

UrbanDownwindRemote/Rural

Urban (JJA)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ba

se

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ag

ing

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ag

ing

O:C

foss

il fu

el o

f 0.

03

inst

ead

of

0.1

1.21.00.80.60.40.20.0

Observed O:C

2.2

2.0

1.8

1.6

1.4

1.22.2

2.0

1.8

1.6

1.4

1.22.2

2.0

1.8

1.6

1.4

1.2

2.22.01.81.61.41.2

Observed H:C

0.1

1

10

0.1

1

10

0.1

1

10

0.1 1 10

Observed OA [µg m-3

]

UrbanDownwindRemote/Rural

Urban (JJA)

Aging drastically improves ability to capture high O:C in remote regions - but at the cost of mis-representing urban (low O:C, high H:C)?

Missing source (i.e. lab vs. ambient disconnect?) or inherent scale limitation?New scheme also demonstrates better match to observed mass.

Page 23: Observational Constraints on  Global Organic Aerosol

Vertical Comparison From Airborne Campaigns

10

8

6

4

2

0

Alti

tude

(km

)

1.21.00.80.60.4

O:C

Observation Base Aging Aging w/. SOA heterogeneous aging Aging w/. 5xSOG -> SOA Aging w/. 25 KJ/mol enthalpy Aging w/. 2xEpoa

Similarly, aging is critical to reproducing observed O:C. Cannot simulate O:C>1, or variability in observed H:C. But for airborne measurements, including heterogeneous

oxidation helps to reproduce the vertical gradient.

[Chen et al., 2014b, in prep]

10

8

6

4

2

0

Alti

tude

(km

)

1.21.00.80.60.4

O:C

Observation Base Aging Aging w/. SOA heterogeneous aging Aging w/. 5xSOG -> SOA Aging w/. 25 KJ/mol enthalpy Aging w/. 2xEpoa

1086420

OA

(b) DC-3

1.701.601.501.401.30

H:C

4.03.02.01.00.0

OA

10

8

6

4

2

0

Alti

tude

(km

)

1.21.00.80.60.4

O:C

(a) IMPEX

Page 24: Observational Constraints on  Global Organic Aerosol

Conclusions

Brown Carbon likely contributes important source of UV absorption; ignoring this may artificially inflate BC

DRF estimates.

There is a disconnect between laboratory and ambient OA elemental composition.

Simple, measurement-based aging scheme dramatically improves simulation of elemental

composition in remote conditions. Including heterogeneous oxidation important for remote/aloft.