network dynamics and cell physiology

34
Network Dynamics and Network Dynamics and Cell Physiology Cell Physiology John J. Tyson John J. Tyson Dept. Biological Sciences Dept. Biological Sciences Virginia Tech Virginia Tech

Upload: thalia

Post on 19-Jan-2016

15 views

Category:

Documents


0 download

DESCRIPTION

Network Dynamics and Cell Physiology. John J. Tyson Dept. Biological Sciences Virginia Tech. Collaborators. Budapest Univ. Techn. & Econ. Bela Novak Attila Csikasz-Nagy Andrea Ciliberto Virginia Tech Kathy Chen Dorjsuren Battogtokh. Funding James S. McDonnell Foundation DARPA. DNA. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Network Dynamics and Cell Physiology

Network Dynamics andNetwork Dynamics andCell PhysiologyCell Physiology

John J. Tyson John J. Tyson

Dept. Biological Sciences Dept. Biological Sciences

Virginia TechVirginia Tech

Page 2: Network Dynamics and Cell Physiology

Budapest Univ. Techn. & Econ.Budapest Univ. Techn. & Econ.

Bela NovakBela Novak

Attila Csikasz-NagyAttila Csikasz-Nagy

Andrea CilibertoAndrea Ciliberto

Virginia TechVirginia Tech

Kathy ChenKathy Chen

Dorjsuren BattogtokhDorjsuren Battogtokh

CollaboratorsCollaborators

FundingFunding

James S. McDonnell FoundationJames S. McDonnell Foundation

DARPADARPA

Page 3: Network Dynamics and Cell Physiology

Computational Molecular BiologyComputational Molecular Biology

DNA

mRNA

Protein

Enzyme

Reaction Network

Cell Physiology

…TACCCGATGGCGAAATGC...

…AUGGGCUACCGCUUUACG...

…Met -Gly -Tyr -Arg -Phe -Thr...

ATP ADP

-P

X Y ZE1

E2

E3E4

Last Step

Page 4: Network Dynamics and Cell Physiology

S

G1

DNAreplication

G2Mmitosis

cell division

The cell cycle is thesequence of events wherebya growing cell replicates allits components and dividesthem more-or-less evenly

between two daughter cells...

Page 5: Network Dynamics and Cell Physiology

Cdk1

S

G1

DNAreplication

G2Mmitosis

cell division

CycB

P P

Cyclin-dependentkinase

Cyclin B

Page 6: Network Dynamics and Cell Physiology

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

Coupled Intra-cellular Networks !

Page 7: Network Dynamics and Cell Physiology

R

S

0

0.5

0 1 2 3

res

po

ns

e (

R)

signal (S)

linear

0

5

0 0.5 1

S=1

R

rate

(d

R/d

t)

rate of degradation

rate of synthesis

S=2

S=3

Gene Expression

Signal-ResponseCurve

1 2

d,

d

Rk S k R

t 1

ss2

k SR

k

Page 8: Network Dynamics and Cell Physiology

R

Kinase

RP

ATP ADP

H2OPi

Protein Phosphorylation

0

1

2

0 0.5 1

RP

rate

(d

RP

/dt)

0.25

0.5

1

1.5

2

Phosphatase 0

0.5

1

0 1 2 3

res

po

ns

e (

RP

)

Signal (Kinase)

“Buzzer”

Goldbeter & Koshland, 1981

1 R 0

Page 9: Network Dynamics and Cell Physiology

R

S

EP E0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5R

rate

(d

R/d

t) S=0

S=8

S=16

0

0.5

0 10

res

po

ns

e (

R)

signal (S)

Protein Synthesis:Positive Feedback

“Fuse”Bistability

Closed

Open

Griffith, 1968

Page 10: Network Dynamics and Cell Physiology

Example: Fuse

0

0.5

0 10

resp

on

se (

R)

signal (S)

dying

Apoptosis(Programmed Cell Death)

living

Page 11: Network Dynamics and Cell Physiology

R

S

EP E0

0.05

0.1

0 0.5 1 1.5

0

0.5

1

0 1 2R

rate

(d

R/d

t)

res

po

ns

e (

R)

signal (S)

S=0.6

S=1.2

S=1.8

SN

SN

Protein Degradation:Mutual Inhibition

“Toggle”Bistability

Page 12: Network Dynamics and Cell Physiology

R

S

EP E

X

0 50

1

X

R

Positive Feedback & Substrate Depletion

positive

substrate

0.0 0.5

0

1

signal (S)

Hopf Hopf

res

po

ns

e (

R)

“Blinker”

Glycolytic Oscillations

Oscillation

sss

sssuss

Higgins, 1965; Selkov, 1968

Page 13: Network Dynamics and Cell Physiology

S

X

Y YP

R RP

0

5

0 25 50

0

0.5

1

0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

time

XYP

RP

res

po

ns

e (

RP

)

signal (S)

HopfHopf

Negative Feedback Loop

Goodwin, 1965

Page 14: Network Dynamics and Cell Physiology

Example: Bacterial Chemotaxis

Barkai & Leibler, 1997 Goldbeter & Segel, 1986

Bray, Bourret & Simon, 1993

Page 15: Network Dynamics and Cell Physiology

R

S X

0

5

0 1 2R

rate

(d

R/d

t)

S=1

S=3

S=2

0.9

1.4

1.9

0 10 20

-1

0

1

2

3

4

5

S

X

R

time

Sniffer

Response isindependent

of Signal

1 2

3 4

d

dd

d

Rk S k XR

tX

k S k Xt

(Levchenko & Iglesias, 2002)

Page 16: Network Dynamics and Cell Physiology

primed RC

fired RC primed MEN

fired MEN

Cdk1

CycB

high MPF

low MPF

high SPF

low SPF

Cdk2

CycA

Example 2: Cell Cycle

(Csikasz-Nagy& Novak, 2005)

Page 17: Network Dynamics and Cell Physiology

LA

Response = F

L

Signal = CDK

Cock-and-Fire

LAL

+

Cdk2

CycA

F+

Page 18: Network Dynamics and Cell Physiology

Signal = MPF

Response = BA

TA T

TABAB

+

+

Cdk1

CycB

Cock-and-Fire-2

Page 19: Network Dynamics and Cell Physiology

P Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

bistable switch

bistable switch

bistable switch

oscillator

oscillator

Cdc25

Page 20: Network Dynamics and Cell Physiology

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

mass/ DNA

0.0 0.5 1.0 1.5

Cdc2

/Cdc1

3

10-5

10-4

10-3

10-2

10-1

100

G1

Mmass/ DNA

0 1 2

Cdc2

/Cdc1

3

10-3

10-2

10-1

100

S/G2

M

mass/nucleus

mass/ DNA

0.0 0.5 1.0 1.5 2.0

Cdc2

/Cdc1

3

0.1

1

M

Fission Yeast

Page 21: Network Dynamics and Cell Physiology

0 1 2 3 4 5

0

0.4

0.8

3.0

mass/nucleus

Cd

k1:C

ycB

G1S/G2

MWild type

SNIPER

Page 22: Network Dynamics and Cell Physiology

Genetic control of cell size at cell division in yeastPaul NurseDepartment of Zoology, West Mains Road, Edinburgh EH9 3JT, UK

Nature, Vol, 256, No. 5518, pp. 547-551, August 14, 1975

wild-type wee1

Page 23: Network Dynamics and Cell Physiology

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

Page 24: Network Dynamics and Cell Physiology

wee1

mass/nucleus

Cd

k1:C

ycB

0 1 2 3 4 5

0

0.4

0.8

1.2

G1

S/G2

M

wee1wee1 cells are about one-half the size of wild type cells are about one-half the size of wild type

Page 25: Network Dynamics and Cell Physiology

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

cell mass (au.)

Wee

1 ac

tivity

wild-type

wee1-

0 0 50 100 150 200 250 300 350 400 450 500 550

30 60

90

120

150

180

210

240

270 300

period(min)

PHYSIOLOGY

GENETICS

Two-parameter Bifurcation Diagram

SNIPER

Page 26: Network Dynamics and Cell Physiology

P

Cdc25

Wee1

Wee1P

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

Cdc25

Page 27: Network Dynamics and Cell Physiology

mass/nucleus

Cd

k1:C

ycB

G1S/G2

M

0 1 2 3 4 5

0

0.4

0.8

3.0 cki

The Start module is not required during mitotic cyclesThe Start module is not required during mitotic cycles

Page 28: Network Dynamics and Cell Physiology

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

CycB

Page 29: Network Dynamics and Cell Physiology

0

0.4

0.8

2.0

0 1 2 3 4 5

G1

S/G2

M

cki wee1ts1st

2nd

3rd

4th

mass/nucleus

Cd

k1:C

ycB

Cells become progressively smaller without size controlCells become progressively smaller without size control

Page 30: Network Dynamics and Cell Physiology

P

Cdc25

Wee1

Wee1P

Cdc25

CycB

PCdc20

Cdc20

Cdh1

CK

I

CycB

CycBCK

I

CK

I

CycA

CycA

APC-PAPCTFBI

TFBA

CycE

CycD

TFEA

TFEI

Cyc E,A,B

CycE

TFIA

TFII

Cdc20

CK

I

CycE

Cdc14

Cdc14

Cdc14

CycA

CycA

CycB

CycD

Cdh1CycD

Page 31: Network Dynamics and Cell Physiology

endoreplication

0 1 2 3 4

0.0001

0.001

0.01

0.1

1

Act

Cyc

A

cdc13

Fission yeast

0 1 2 3 4 5 6

0.000

0.005

0.010

0.015

0.020

0.025

0.030

2 param bifn diag for Cdc13

mitoticcycles

endoreplication

S

G2G1

M

mitotic cycle

mass

Pro

duc

tion

of

Cdc

13

XNo production of cyclin B (Cdc13)

Wild type

cdc13

cdc13 +/??

Page 32: Network Dynamics and Cell Physiology

The Dynamical PerspectiveThe Dynamical Perspective

Molecular MechanismMolecular Mechanism

??

??

??

Physiological PropertiesPhysiological Properties

Page 33: Network Dynamics and Cell Physiology

The Dynamical PerspectiveThe Dynamical Perspective

Molecular MechanismMolecular Mechanism

Kinetic EquationsKinetic Equations

Vector FieldVector Field

Stable AttractorsStable Attractors

Physiological PropertiesPhysiological Properties

d CycBT

dt = k1 . M - (k2' + k2" . Ste9 +k2'" . Slp1A) . CycBT

dSte9

dt = k3' .

1 - Ste9J3 + 1 - Ste9 - (k4'

. SK + k4 . CycB) .

Ste9J4 + Ste9

d Rum1T

dt = k11 - (k12 + k12' . SK + k12" . CycB) . RUM1T

dSlp1A

dt = k7 . IE .

Slp1T - Slp1A

J7 + Slp1T - Slp1A - k8

. Slp1A

J8 + Slp1A - k6

. Slp1A

dMdt = . M

Page 34: Network Dynamics and Cell Physiology

References

• Tyson, Chen & Novak, “Network dynamics and cell physiology,” Nature Rev. Molec. Cell Biol. 2:908 (2001).

• Tyson, Csikasz-Nagy & Novak, “The dynamics of cell cycle regulation,” BioEssays 24:1095 (2002).

• Tyson, Chen & Novak, “Sniffers, buzzers, toggles and blinkers,” Curr. Opin. Cell Biol. 15:221 (2003).