modern control sys-lecture ii.pdf

Upload: mtanzania-mtanzania

Post on 05-Jul-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    1/33

    MODERN CONTROL

    SYSTEMS ENGINEERING

    COURSE : CS421

    INSTRUCTOR:

    DR. RICHARD H. MGAYA

    Date: October 25th, 2013

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    2/33

    Linear Difference Equation and Z-Transform 

    Linear difference equations and the z-transform 

    Techniques used in design and analysis of a digital control system.

    • Example of systems that use digital computers:

    Radar antenna positioning system

    Airplane autopilot control

    Chemical process control

    Machine tool control

    Goal : Representing a digital computer as a transfer function

    similar to other subsystems.

     Note: Control system design using analog, i.e., continuous time

    devices, are still used and are valid

    Dr. Richard H. Mgaya

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    3/33

    Linear Difference Equation and Z-Transform 

    Difference Equation

    • Sequence of real values associated with temporal index k ,{k = 0, 1, 2, …} 

    • Digital control concerns in generating a sequence u(k ), i.e., controleffort, given a sequence y(k ), i.e., sampled data measurements

    sequence The k th control effort is defined in terms of k th measurement or sample

    Assumption : u(k ) is a linear combination of measurements and past control

    efforts

    Where: ai and bi are independent of k , i.e., time invariant

    Task : Selection of ai and bi such that the control signal has the dynamic properties

    if the desired controlDr. Richard H. Mgaya

    )](,),2(),1(),(,),1(),([)(   nk uk uk unk  yk  yk  y f  k u    

    )()1()()()1()( 0101   mk  yak  yak  yank ubk ubk u mmn      

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    4/33

    Linear Difference Equation and Z-Transform 

    Z-Transform of a Sequence

    • Long-hand form:

     Example: Sequence of finite series

    Dr. Richard H. Mgaya

        21 )2()1()0()()(   z   f   z   f    f  k   f   Z  z  F 

     

    0

    )()()(k 

    k  z k   f  k   f   Z  z  F 

     

    0

    ** )()()]([)(k 

    kTsekT   f  kT   f   Z t   f   L s F 

    0 )()( k k 

     z kT   f   z  F 

     Let  z = eTs

    k  z kT   f   z T   f   z T   f    f   z  F    )()2()()0()( 21

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    5/33

    Linear Difference Equation and Z-Transform 

    Unit Step Sequence

    • z-transform

    • Geometric series convergence

    Dr. Richard H. Mgaya

    0 1

    0 0)(

    k kT u

    0

    )()]([)(k 

    k  z kT   f  kT u Z  z U 

    12 1

    1

    1

    111

     z  z 

     z 

     z  z 

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    6/33

    Linear Difference Equation and Z-Transform 

    Unit Ramp Sequence

    • z-transform

    Multiply by z  both sides

    Subtract eqn. i and ii

    Dr. Richard H. Mgaya

    kT kT   f     )(

     

    00

    )()]([)(k 

    k  kz T  z kT   f  kT   f   Z  z  F 

    )32(321

     

     z  z  z T 

    )4321()( 321    z  z  z T  z  zF 

    )1()()1()()(321

     

     z  z  z T  z  F  z  z  F  z  zF 

    21

    11

    1

    1 z  z 

     z 

    11

    1)()1(

    1

     z 

    Tz 

     z T  z  F  z 

    2)1()(

     z 

    Tz  z  F 

     But  

    ….ii  

    ….i 

     

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    7/33

    Linear Difference Equation and Z-Transform 

    Exponential Function Sequence

    • z-transform

    • Geometric series convergence

    Dr. Richard H. Mgaya

    0 0)(

    k e

    k kT   f  

    akT 

    0

    1)(][)(k 

    k aT akT   z ee Z  z  F 

    aT e z 

     z 

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    8/33

    Linear Difference Equation and Z-Transform 

    General Exponential function Sequence

    z-transform

    Dr. Richard H. Mgaya

    k r k   f     )(

    0

    1 )(][)(k 

    k k   z r   f  r  Z  z  F 

    r r  z 

     z  z  F   

    zfor)(

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    9/33

    Linear Difference Equation and Z-Transform 

    Discrete Impulse Function Sequence

    • z-transform

    Delayed impulse function sequence

    • Z-transform

    Dr. Richard H. Mgaya

    0 1]1[)]([)( k k 

     z  Z k  Z  z  F     

    0 0

    0 1)(

    k k   f  

    01

     0)(

    nk 

    nk k   f  

    n Z nk  Z  z  F    )]([)(    

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    10/33

    Linear Difference Equation and Z-Transform 

    Solving Linear Difference Equation with Z -Transform

    • Delay and advance theorem

    Theorem 1:

    Theorem 2:

     Note: s is associated with differentiation of a differential equation

     z  is associated with the shifting of the difference equation

     Example: Consider a homogenous first-order differential equation

    • Initial value x(0) = 1

    Dr. Richard H. Mgaya

    )()(   z  F  z nk   f   Z    n

    0)(8.0)1( 

      k  xk  x

    )1()0()()(     n zf    f   z  z  F  z nk   f   Z    nn

    0)(8.0)0()(     z  X  zx z  zX 

    8.0

    )(

     z 

     z  z  X    k k  x )8.0()(  

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    11/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    12/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    13/33

    Linear Difference Equation and Z-Transform 

    Pulse Transfer Function

    • Consider the following block diagram

    • U *( s) –  Sample input to G( s)

    •  X 0( s) –  Continuous output

    •  X 0*( s) –  Sampled output

    • The figure is the pulse transfer function where U *( s) = U ( z )and X 0( z ) = X 0

    *( s)

    Dr. Richard H. Mgaya

    )()(

    )(0  z G z U 

     z  X 

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    14/33

    Linear Difference Equation and Z-Transform 

    Pulse Transfer Function

    • Cascaded blocks

    •  Note: G1G2( z ) ≠ G1( z )G2( z )

    Dr. Richard H. Mgaya

    )()()(

    )(21

    0

     z G z G z U 

     z  X 

    )()()(

    21

    0

     sGG Z  z U 

     z  X 

    )()(

    )(21

    0  z GG z U 

     z  X 

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    15/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    16/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    17/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    18/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    19/33

    Inverse Z-Transform 

    Long Division

    Example: Find inverse sequence of the function:

    • Multiply by z -2 in the numerator and denominator

    Dr. Richard H. Mgaya

    1)0(     f  

    43)(

    2

    2

     z  z 

     z  z  z  F 

    21

    1

    431

    1)(

     z  z 

     z  z  F 

    21

    121

    841

     1431

     z  z 

     z  z  z 21

    431 

      z  z  21 44     z  z 321 16124     z  z  z 32 168

        z  z 432 32248     z  z  z 43

    328    z  z 

    Division   Sequence  

    4)1(     f  8)2(     f  

       

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    20/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    21/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    22/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    23/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    24/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    25/33

    Inverse Z-Transform 

    Partial Fraction Expansion

    • Consider the following function:

    • The limit of  β  implies the poles of the quadratic term arecomplex

    • Partial fraction expansion:

    • The 1st and 2nd terms are the z-transform of

     Rk cosΩT and Rk  sinΩT respectively, Q( z ) is the reminder

    Dr. Richard H. Mgaya

    Tcos 

    )2)((

    )()(

    2

    22

      

      

     T e R

     R z  R z  z  P 

     z  N  z  F 

    )(2

    sin

    2

    )(

    )( 2222

    2

     z Q R z  R z 

    T  BzR

     R z  R z 

     zR z  A

     z  F   

        

      

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    26/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    27/33

    Inverse Z-Transform 

    • Correct form of the partial fraction expansion:

    Dr. Richard H. Mgaya

    787.4376.0

    8.1

    64.013.1

    18.0)(

    8.0

     z  z  z 

     z 

     z 

     z  z  F C 

    8.064.013.1

    )7079.0)(8.0(

    64.013.1

    ))7063.0)(8.0(()(

    22

    2

     z 

    Cz 

     z  z 

     Bz 

     z  z 

     z  z  A z  F 

    8.064.013.1

    )5663.0(

    64.013.1

    )565.0(22

    2

     z 

    Cz 

     z  z 

     z  B

     z  z 

     z  z  A

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    28/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    29/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    30/33

    Pole location on the z -Plane 

    Relationship Between Pole location and the nature of the

    temporal sequence

    • Consider the following function

    • Partial fraction expansion:

    • In polar notation the complex poles are written as follows:

    Dr. Richard H. Mgaya

    rootscomplexhasrdenominato

    )()(

    2 cbz  z 

     z  N  z  F 

    conjugatecomplexdenotes-*

    )(*

    *

     p z 

     A

     p z 

     Az  z  F 

         j  j e pe p   * 

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    31/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    32/33

  • 8/15/2019 MODERN CONTROL SYS-LECTURE II.pdf

    33/33

    Pole location on the z -Plane 

    Relationship Between Pole location and the nature of the

    temporal sequence

    • Pole location: z -plane

    •  Nature of the sequence

    D Ri h d H M