lezione 7 anno accademico 2010/11

34
LEZIONE 7 Anno Accademico 2010/11 BIOTECNOLOGIE FARMACOLOGICHE CORSO DI LAUREA SPECIALISTICA IN BIOTECNOLOGIE DEL FARMACO

Upload: rudolf

Post on 23-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

BIOTECNOLOGIE FARMACOLOGICHE CORSO DI LAUREA SPECIALISTICA IN BIOTECNOLOGIE DEL FARMACO. LEZIONE 7 Anno Accademico 2010/11. LE BASI BIOLOGICHE DELL’INVECCHIAMENTO. Invecchiamento e ambiente. Invecchiamento e genetica. Regolazione endocrina dell’invecchiamento. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: LEZIONE 7 Anno Accademico 2010/11

LEZIONE 7Anno Accademico 2010/11

BIOTECNOLOGIE FARMACOLOGICHECORSO DI LAUREA SPECIALISTICA IN BIOTECNOLOGIE DEL FARMACO

Page 2: LEZIONE 7 Anno Accademico 2010/11

LE BASI BIOLOGICHE DELL’INVECCHIAMENTO

Invecchiamento e genetica

Regolazione endocrina dell’invecchiamento

Invecchiamento e ambiente

Page 3: LEZIONE 7 Anno Accademico 2010/11

Non-Programmed Passive Aging Theories

•Aging is a passive result of an organism’s inability to better resist fundamental deteriorative processes.

•Aging serves no purpose, is not an adaptation, is not programmed.

•Compatible with traditional evolutionary mechanics theory.

• Mammals needing more time for development needed a longer life span and therefore developed better maintenance and repair mechanisms that consequently delayed onset of age-related symptoms and diseases relative to shorter-lived mammals.

•Poor fit to many other observations of humans, other mammals, and other organisms particularly those that die suddenly from apparent biological suicide following reproduction rather than from gradual deterioration (e.g. Octopus, salmon)

Page 4: LEZIONE 7 Anno Accademico 2010/11

Programmed Active Aging Theories

•Organisms are purposely designed and genetically programmed to age or otherwise limit life span because the deterioration and life span limitation serves an evolutionary purpose.

•Aging is an adaptation, a purposeful design feature resulting from the evolution process.

•Aging is the result of a potentially complex active aging mechanism or “life span management system.” The mechanism could sense external conditions in order to adapt life span to local or temporary conditions and could operate by manipulating the maintenance and repair functions.

•Provides excellent fit to observations in humans, mammals, and other organisms.

•Incompatible with traditional “survival of the fittest” individual benefit requirement; requires an alternative mechanics theory.

•Supported and predicted by several alternative mechanics theories.

Page 5: LEZIONE 7 Anno Accademico 2010/11

Planned Obsolescence Theory

Telomerase Theory of Aging

The Neuroendocrine Theory

The Free Radical Theory

Mitochondrial Theory of Aging

The Membrane Theory of Aging

The Hayflick Limit Theory

Glycosylation Theory of Aging

(The cell waste accumulation)

Aging Theories

Immune system alterations

Page 6: LEZIONE 7 Anno Accademico 2010/11

Aging Theory Status

• “Main line” consensus of current gerontologists favors the passive theories. Earlier simple deterioration theories have little current scientific credibility in the biology community while still popular in the human-oriented (physician) community.

• Some relatively recent discoveries appear to favor aging-by-design theories.

• Efforts to explain aging based on traditional mechanics and efforts to explain other discrepancies with alternative mechanics cannot be simultaneously valid. Eventually there will be a unified theory.

Page 7: LEZIONE 7 Anno Accademico 2010/11

“Non-Aging” Species

•Some species have been identified that apparently do not age or have negligible senescence. Older individuals do not appear to be weaker, less agile, less reproductive, more susceptible to disease, or otherwise less fit than younger animals. (Ages of some wild animals can be determined by annual marks in scales or bones similar to tree rings.)

•Some species with age of oldest recorded specimen:

Rougheye Rockfish 205 Years

Lake Sturgeon152 Years

Aldabra Tortise152 Years

•Common U.S. Eastern Box Turtle is also long-lived (~100 years).

•Non-aging species tend to defeat simple deterioration theories and suggest dramatically longer human life spans are possible.

Page 8: LEZIONE 7 Anno Accademico 2010/11

Hutchinson-Guilford Progeria and Werner syndrome

•Hutchinson-Guilford Progeria, a very rare human genetic disease, accelerates many symptoms of aging including atherosclerotic heart disease. Victims usually die by age 13.

•Werner syndrome, another genetic disease, involves acceleration of most symptoms of aging including baldness, hair and skin conditions, heart disease, calcification of blood vessels, some cancers, cataracts, arthritis, diabetes, etc. Victims usually die by age 50.

•These conditions suggest aging is centrally controlled such that a single genetic defect could result in proportionally accelerating all of the expressed symptoms. Central control suggests aging-by-design

Page 9: LEZIONE 7 Anno Accademico 2010/11

Una malattia autosomica dominante e sporadica e rara che determina invecchiamento precoce: in genere il paziente muore a 13 anni circa per patologie cardiache

La base genetica per molti casi di questa patologia consiste

nella mutazione della tripletta GGC in GGT nel codone 608 della laminina A (LMNA) .

Questo determina l’insorgenza di un sito di splicing criptico porta alla sintesi di una proteina con una delezione di 50 aa. La regione deleta ha in se la sequenza riconosciuta da enzimi proteolitici che fanno maturare la Laminina. In mancanza di questa parte della proteina, questa viene carbossifarnesilata e si accumula a livello endocellulare e soprattutto a causa della farnesilazione, nella membrana nucleare.

Hutchinson-Gilford progeria syndrome

Page 10: LEZIONE 7 Anno Accademico 2010/11

Figure 1. Processing of lamin A in normal and HGPS cells

Meshorer E., Gruenbaum Y. J. Cell Biol. 2008:181:9-13

Invecchiamento e genetica

Page 11: LEZIONE 7 Anno Accademico 2010/11

La presenza di laminina mutata (progerin)altera le funzione della membrana nucleare, la sua permeabilità e la trascrizione genica.

Page 12: LEZIONE 7 Anno Accademico 2010/11
Page 13: LEZIONE 7 Anno Accademico 2010/11

La laminina A è una proteina della membrana nucleare che si posizione nella porzione intranucleare e partecipa alla organizzazione dei processi che presiedono la biosintesi di RNA e DNA.

La Prelaminina A contiene un CAAX box nella sua porzione carbossiterminale che ne permette la farnesilazione ed il suo legame con la membrana nucleare; l’intervento di una metalloproteasi specifica taglia il frammento farnesilato producendo la Laminina A che ha una legame meno forte con la membrana nucleare e puo’ svolgere la propria attività intranucleare.

Page 14: LEZIONE 7 Anno Accademico 2010/11
Page 15: LEZIONE 7 Anno Accademico 2010/11

The is a mouse model of progeria where the prelamin A is not mutated. Instead, the metallopeptidase ZMPSTE24, the specific protease that is required to remove the C-terminus of prelamin A, is missing.

Page 16: LEZIONE 7 Anno Accademico 2010/11
Page 17: LEZIONE 7 Anno Accademico 2010/11
Page 18: LEZIONE 7 Anno Accademico 2010/11

Sindrome di WernerUna patologia autosomica recessiva

La mutazione genica è a carico della DNA elicasi (cromosoma 8

braccio corto) che accorcia la lunghezza dei telomeri.

La malattia si manifesta alla pubertà e i portatori della

mutazione vivono fino circa 40 anni di età.

Page 19: LEZIONE 7 Anno Accademico 2010/11

A yeast protein similar to the human WRN protein, called SGS1, has been found.

Mutations in SGS1 cause yeast to have a shorter lifespan than yeast cells without the mutation, and shown other signs typical of aging in yeast, such as an enlarged and fragmented nucleolus. Using yeast as a model for human aging in general, may give insight into the mechanisms of Werner syndrome and related diseases

Page 20: LEZIONE 7 Anno Accademico 2010/11

When replication forks stall, the stable maintenance of replisome components requires the ATR kinase Mec1/Ddc2 and the RecQ

helicase Sgs1.

Page 21: LEZIONE 7 Anno Accademico 2010/11

A. Topo I usually found in eukaryotes binds the 3’ end of the broken DNA strand, and removes (+) or (-) supercoils. As replicating DNA moves through the structure, the two parental strands (black) are separated by the helicase, while positive supercoiling is removed by the 3’ topoisomerase.

B. A machine able to separate the daughtermolecules at the end of replication is formed by a helicase (red) removing the last turns of parental DNA and a type II topoisomerase(green) untangling the daughter duplexes.

Page 22: LEZIONE 7 Anno Accademico 2010/11

C. Nucleosome disruption.

The positive supercoiling produced by the translocating helicase H (red) destabilizes the nucleosome, while a topoisomerase T (5’ or 3’ Topo I,or eukaryotic topo II, green) efficiently relaxes the negative supercoiling, reforming the normal duplex behind the helicase.

Page 23: LEZIONE 7 Anno Accademico 2010/11

STUDIARE VERMI E INSETTI

PER CAPIRE L’UOMO

Drosophila melanogaster

Coenorabditis elegans

Page 24: LEZIONE 7 Anno Accademico 2010/11

adulto

L4 embrioni

L1

L2

L3

Circa 3 giorni a 22°C

CICLO VITALE DI C.ELEGANS

Page 25: LEZIONE 7 Anno Accademico 2010/11

adulto

L4 embrioni

L1

MANCANZA DI ALIMENTI

CICLO VITALE DI C.ELEGANS

STADIO DAUER

Page 26: LEZIONE 7 Anno Accademico 2010/11

LARVA LARVA DAUER

Page 27: LEZIONE 7 Anno Accademico 2010/11
Page 28: LEZIONE 7 Anno Accademico 2010/11

Studio di processi biologici legatia una maggiore morbidità

l’esempio dell’invecchiamento

DAF1 (IGF-R)

AGE 1 (IP3-K)

DAF 16* DAF 12

DAUER

DAF 7 ( TGF ligand)

DAF 4 (Type II TGFR)

DAF 3, DAF 5 (SMAD prot)

DAF9 (cytochrome CCYP27A1)* Proteine della famiglia FOXO coinvolte nel metab del glucosio

SIR2 (deacetilasi attiva di DAF 16)

3-keto-cholestenoic acid metabolite

Page 29: LEZIONE 7 Anno Accademico 2010/11

Insulin/IGF-1 Insulin/IGF-1 IGF-1 Insulin

GH

DAF 2 receptor

DAF 16/FOXO (adip. Tissue)

LONGEVITY

TOR

germline

dFOXOTOR

germline

LONGEVITY

IGF-1R 1R

LONGEVITY

Page 30: LEZIONE 7 Anno Accademico 2010/11

Invecchiamento e ambiente

Page 31: LEZIONE 7 Anno Accademico 2010/11

SEXUAL REPRODUCTION

“REGULATORS”

NUTRIMENT AGE

“EFFECTOR”

EVOLUTION: LAND OF BIOLOGICAL EQUAL OPPORTUNITIES

Page 32: LEZIONE 7 Anno Accademico 2010/11

SEXUAL REPRODUCTION

• FECUNDITY SHOULD BE DIRECTLY PROPORTIONAL

TO NUTRIENT AVAILABILITY,

• HIGH NUTRIENT AVAILABILITY, FAVORING

FECUNDITY, SHOULD SHORTEN THE LIFE SPAN

DEATH: A TOOL INDISPENSABLE TO ENSURE THE CONTINUATION

OF THE SPECIE

but

EVOLUTION: LAND OF BIOLOGICAL

EQUAL OPPORTUNITIES

Page 33: LEZIONE 7 Anno Accademico 2010/11

Intrinsic program for aging aiming at increasing the fraility of the organism:

a biological clock(telomers length, mitochondrial viability; DNA replication errors, loss of immune

control and inflammation…)

sex-dependent (male fecundity cannot be limited as well as in females)

Fertility-driven

Extrinsic factors

nutrition adaptable environment

AGING

AS NECESSITY FOR THE CONTINUATION OF LIFE and

AS A MEAN TO GIVE TO EACH INDIVIDUAL EQUAL POSSIBILITIES TO GIVE HIS GENETIC CONTRIBUTION TO THE NEXT

GENERATION

Page 34: LEZIONE 7 Anno Accademico 2010/11