les_16_seismic design of bridges

Upload: saam-be

Post on 07-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Les_16_Seismic Design of Bridges

    1/63

    1/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    BRIDGE DESIGN

    SEISMICSEISMIC

    BEHAVIOUR OFBEHAVIOUR OF

    BRIDGESBRIDGES

    2/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    SEISMIC DESIGN OF BRIDGES

    Theoretical basis

  • 8/18/2019 Les_16_Seismic Design of Bridges

    2/63

    3/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

     Applicative Applicative

    fieldfieldBridge Pier + Deck 

    Continuous

    Isostatic

    Single pier Multiplebent

    Solid body Hollow core

    One cell Multi cell

    Requirements

    T0 = 475 years

    T0 ≅ 150 years

    Important structural damages

    Openness to traffic

    Emergency traffic

    SLU

    Negligible structural damages

    Not urgent restoration

    No traffic limitation

    SLD

    4/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    CriteriaCriteria

     At SLU stable dissipative mechanism (only pier)

    Bending dissipation with exclusion of shear failure

    Elastic behavior of deck / bearings / abutments /

    foundations and ground

    Capacity Design

    Cinematism to avoid hammering and fall from bearings(uncertainty of evaluation)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    3/63

    5/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    ProtectionProtection Importance factor γI

     Applied to design seismic action (SLUand SLD) with variation of T0

    γI = 1 Ordinary bridge

    γI = 1,3 Strategic bridge with high number ofcasualties in case of collapse

    γI

    6/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Ground typesGround types

  • 8/18/2019 Les_16_Seismic Design of Bridges

    4/63

    7/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    8/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

     Average velocity of propagation of

    shear waves within 30 m of depth

    hi = Thickness of layer i

     Vi = Velocity of layer i

  • 8/18/2019 Les_16_Seismic Design of Bridges

    5/63

    9/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Special soilSpecial soil

    (Study ad hoc)(Study ad hoc)

    (S1) – Deposits with at least 10 m of clays/siltsof low consistence with elevated indices of

    plasticity (PI > 40) and contents of waterand VS30 < 100 m/sec or 10 ≤ cu < 20 kPa

    (S2) – liquefiable soils, sensitive clays or other

    not classified

    10/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Seismic zoneSeismic zone aG = P.G.A. on ground (A)

    Zone aG /g

    1… …

    i …

    … …

    n …

    Representation ofRepresentation of

    seismic actionseismic action

    Spectrum of elastic response

    (Horiz. ≠  Vert.)

     Accelerograms

  • 8/18/2019 Les_16_Seismic Design of Bridges

    6/63

    11/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Spectrum of elastic responseSpectrum of elastic response

    Shape of the elastic response spectrum • ag • S

    Horizontal seismic action

    12/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    14.0

    0 0.5 1 1.5 2 2.5 3

          S    e

          [    m      /    s      2      ]

    T [s]

    (Cat. Suolo A)

    (Cat. Suolo B,C,E)

    (Cat. Suolo D)

    η = 1 ag = 0,35 g

    Spectrum of elastic response of horizontal components

    (Ground cat. A)

    (Ground cat. B,C,E)

    (Ground cat. D)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    7/63

    13/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    ξ = viscous damping ratio

    ξ = 5%   η = 1

    Horizontal seismic action

    Groundcategory

    S TB TC TD

     A 1,0 0,15 0,40 2,0

    B,C,E 1,25 0,15 0,50 2,0

    D 1,35 0,20 0,80 2,0

    14/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

     Vertical seismic action

    Groundcategory

    S TB TC TD

     A, B, C,D, E 1,0 0,05 0,15 1,0

  • 8/18/2019 Les_16_Seismic Design of Bridges

    8/63

    15/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Design spectrum for S.L.U.

    Dissipative capacity Structural factor “q” 

    Horizontal components

    NB: in any case Sd(T) ≥ 0,2 ag

    16/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

     Vertical components

    q = 1 No resources for dissipation

  • 8/18/2019 Les_16_Seismic Design of Bridges

    9/63

    17/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Design spectrum for S.L.D.

    Reduction of elastic spectrum with a factor 2.5

    18/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

     Accelerograms Accelerograms

     Artificial Natural

    In general 3 directions

    Design with accelerograms

  • 8/18/2019 Les_16_Seismic Design of Bridges

    10/63

    19/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    - Duration of pseudo-stationary region ≥ 10 sec

    - Minimum number of groups: 3

    - Coherence with elastic spectrum

     Average spectral coordinate (ξ = 5%) > 0.9 ofcorrespondent elastic spectrum in

    0.2 T1   ≤ T ≤ 2 T1

    T1 = fundamental period in elastic field

    20/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Seismic action components and combination

    2 horizontal components 1 vertical components q = 1

    Negligible for L ≤ 60 mand ordinary typology

    Linear analysis Separated calculation for the 3 components

    Combination of effects

    2

    z

    2

    y

    2

    x EEEE   ++=

     Alternatively the more

    severe combinationbetween:EzEyEx

    EzEyEx

    EzEyEx

     A A3.0 A3.0 A3.0 A A3.0

     A3.0 A3.0 A

    +⋅+⋅⋅++⋅

    ⋅+⋅+

  • 8/18/2019 Les_16_Seismic Design of Bridges

    11/63

    21/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Non linearanalysis

    simultaneous application of 3 components

    maximum effects as average value of theworst effects due to each triplet of

    accelerograms

    Seismic combination with other actions

    SLU

    Resistance and ductility kkI PGE   ++γ

    Compatibility displacementsTPGE

    T0kkI

      Δψ+++γ  Δ

    with ψ0ΔT = 0.4

    22/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Behavior factor q

    (Flexible

    connection to deck)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    12/63

    23/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Behavior factor q

     Above q factors are valid for bridges with regular geometry

    24/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Bridges with regular geometry

    i,Rd

    i,Ed

    iM

    Mr  =

     Acting moment on pier bottom

    Resistant moment on pier bottomi = pier index

    Regular if  2

    r r ~

    min,i

    max,i 1 only if justified with non linear dynamic analysis

  • 8/18/2019 Les_16_Seismic Design of Bridges

    13/63

    25/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Modeling for linear analysis

    Rigiditymodeling

    Deck (usually not cracked)

    Piers (cracked)

    If on the bottomS.L.U is reached

    Secantstiffness

    y

    Rdeff c

    MIE

    φν=

    ν = 1.2 – coefficient for un-cracked regions

    26/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Soil-structureInteraction

    Only ifrelevant

    effects ≥ 30% onmaximum displacement

     Analysis

    modal analysis with response spectrum

    simplified analysis

    non linear dynamic analysis

    non linear static analysis (Push-over)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    14/63

    27/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Modal analysis with response spectrum

    - Important modal shapes for every direction of verification

    - If total mass ≡ ∑ masses related to modal shape

    ≥ 90% total mass

    - combination of modal response

    For independentshapes

    i

    i

    E E=   ∑   2

    ij i j

    i j

    E r E E=   ∑∑

    ij

    .   ︵ ︶r    ︵ ︶.   ︵ ︶

     ρ ρ 

     ρ ρ ρ 

    +

    = − + +

    3 2

    2 2

    0 02 1

    1 0 01 1

     j iT T . ρ = ≥ 0 8

    i = j = 1,.. , n

    rij

    = coefficient of correlation

    with T j < Ti

    For correlated

    shapes

    28/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Simplified analysis

    - Static forces equivalent to the inertia ones

    - Forces evaluation from design spectrum with T0 (fundamental periodin the direction considered) and distribution according to the

    fundamental shape.

     Applicable if the dynamic deflection is essentially governedby 1ST shape

    (1 degree of freedom oscillator)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    15/63

    29/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    a) Longitudinal direction of straight bridges with continuous beamdeck and effective mass of the piers < 1/5 deck’s mass (rigiddeck model)

    b) Transverse direction of bridges that respect a) and arelongitudinally symmetric (emax < 0.05 lbridge) with “e “ distancebetween centroids of masses and stiffnesses of the piers intransverse direction (flexible deck model)

    c) Girder bridges simply supported in longitudinal and transversal

    direction with effective mass of each pier < 1/5 mass carrieddeck (individual pier model)

     Applicable if the dynamic deflection is essentially governedby 1ST shape

    (1 degree of freedom oscillator)

    30/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Case a) and c)

    deck mass and mass of the upper half of allthe piers in a)

    M = deck mass on pier i and upper half mass of

    pier i in c)

    S d =  Response spectrum value for T1

    Case b)  Apply Rayleigh’s method

    The fundamental period is derived by the principle of energyconservation (kinetic “Ek ” and potential “Ep”)

    K =stiffness of the system

  • 8/18/2019 Les_16_Seismic Design of Bridges

    16/63

    31/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    The static deformation of the element subjected to concentrated forcescorrespondent to masses is evaluated and Ek = Ep is imposed.

    2 2 2 2

    k 0

    1 1E = mv   ︵t      ︶= mv cos t

    2 2ω ω &

    tsinvp2

    1

    )t(vp2

    1

    E 0p   ω==

    Epmax = Ekmax2

    vm

    2

    vp 2200   ω= 20

    02

    vm

    vp=ω

    with n masses

    =

    =

    =

    = ==ωn

    1i

    2

    i0i

    n

    1ii0i

    n

    1i

    2

    i0i

    n

    1ii0i

    2

    vm

    vmg

    vm

    vp

    The fundamental period is   ∑

    =

    =π=n

    1ii0i

    n

    1i

    2

    i0i

    vmg

    vm2T

    The seismic force in eachnode of the model is

    iid2

    i mvg

    )T(SF   ω= ( 2 = g/v0 for 1 mass)

    32/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Displacements calculation (linear analysis)

    + displacements due to spatial variability of motion

    displacements evaluated with dynamic or static analysis

    with for

    for

    FOR non linear dynamic analysis

    - Verify coherence of the chosen q value

    - ∑ actions on piers bottoms and abutments > 80% ∑ …… from linearanalysis

  • 8/18/2019 Les_16_Seismic Design of Bridges

    17/63

    33/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Non linear static analysis (Pushover)

     Assign horizontal forces and increase them until a pre-defineddisplacement in a referring node (pier cap) is reached

    Evaluation of theplastic hinges

    formation sequenceup to collapse

     Analysis ofredistributions due to

    the formation ofplastic hinges

    Evaluation of rotationin plastic hingesunder the pre-

    defined displacement

    Control that for the displacement evaluated with complete modal

    analysis and elastic spectrum (q = 1) the ductility requests in plastichinges are compatible with those available and that the actions in other

    elements are smaller than the resistance, with the capacity designcriteria.

    34/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Capacity design criterion

    In the plastic hingesi,Rd0u MM   γ=

    1q2.07.00   ≥+=γ factor of over resistance

    Non dissipative mechanism(shear)

    Structural elements that require toremain in linear field (supports,

    foundations, abutments)

    Designed for actions corresponding to   c 0 Rd,iM = γ M

    .

    .γ 

      ⎧

    = ⎨⎩01 35

    1 25

    Concrete members

    Steel members

  • 8/18/2019 Les_16_Seismic Design of Bridges

    18/63

    35/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Safety verification (R.C.)

    - γm same value used in non seismic verification

    - In the plastic hinges

    - Out of plastic hinges

    If Mc > MRd in the plastic hinge then Mc = MRd in the plastic hinge

    RdEd MM   ≤

    Rdc MM   ≤

    36/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Plastic hinges  Acting moments derived by calculation

    Pier design

    Other sections moments obtained placing γ0 MRd,i inthe plastic hinges

    Shear with capacity design.

    (hinge on top)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    19/63

    37/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Confinement reinforcement

    Not necessary if ηk  ≤ 0.08

    Box sections or double T if it is possible to reacha curvature μc = 13 (7) with cmax ≤ 0.0035

       I   f  n  e  c  e  s  s  a  r  y

    rectangularsection

    r.c. gross area

     Area of confined concrete

    s ≤ 6 φls ≤ 1/5 Minimum confined dim.

    circularsection s ≤ 6 φl

    s ≤ φnucleus

    .

    .

    0 18

    0 12

    → ductile behaviour

    → limited ductilebehaviour

    38/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    StirrupsSpacing

    ≤ 1/3 minimum nucleus dimension≤ 200 mm

    Extension ofconfinement

    dimension of section orthogonal to the axis of thehinges

    sections of Mmax and 0.8 Mmax

    (for a further length place half of the reinforcement)

    In the hinge zone all the longitudinal bars (no overlap allowed)have to be held by a transverse bar of minimum area

    f ys = f yd longitudinal reinforcing

    f yt = f yd transversal reinforcing

  • 8/18/2019 Les_16_Seismic Design of Bridges

    20/63

    39/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Fixed bearings

    Bearings

    Free supports

    Capacity design (γ0 MRd,i) max q = 1

    Independent verification in the two directions

    Stroke with full functionality for designseismic action

    Connections (when there’s insufficient room for the stroke)

    Design action: 1.5 α Qweight of connected part(minor weight)

    ag /gOverlap of displacement

    l = lm + deg + dEs

    dimension support(> 400 mm)

    effective relative displacement of ground

    (L = distance between fixed and free bearings)

    = dE + 0.4 dT

    ±μd dEd

    temperatureeffects

    relative total

    displacement

    40/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    CriteriaRemain in elastic field or with negligible residualdeformation in presence of the design seismicaction.

    Foundations

     Actions Capacity design (γ0 MRdx, γ0 MRdy)

    Foundationson piles

    (max q = 1)

    Plastic hinges in the connection withfootings and concrete rafts

    Confining reinforcement

  • 8/18/2019 Les_16_Seismic Design of Bridges

    21/63

    41/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Criteria Functionality with design seismic action

     Abutments

    Free bearings (longitudinal)

    in any case q = 1

    - Displacement uncoupled with respect to bridge

    - Own seismic forces and friction forces of bearings x 1.3

    Fixed bearings (transverse and longitudinal)

    - Coupled displacement

    transversal dir. seismic action evaluated with ag

    longitudinal dir. interaction with ground

    42/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Reduction of seismic horizontal response

    Seismic isolation

    Strategy

    Increase of T0 to reduce the value of the acceleration

    spectrumDissipation of relevant part of mechanic energytransmitted by the earthquake

    General

    requirementDeck, piers and abutments remain in elastic field

    also for the ultimate combination

    Don’t apply the capacity design neither the details for ductility

  • 8/18/2019 Les_16_Seismic Design of Bridges

    22/63

    43/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Characteristic of isolation devices

    Isolators

    Re-centering of vertical loadsDissipation capacityLateral restraint for non seismic actions

    High vertical rigidity andlow horizontal rigidity

     Auxiliarydevices

    Re-centering of vertical loadDissipation capacityLateral restraint for non seismic actions

    Devices with non linear behavior not dependent ondeformation speedDevices with damping behavior dependent ondeformation speedDevices with linear or almost linear behavior

    44/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Elastomeric isolators

    Characteristicparameters

    K e = equivalent rigidity

    d

    FKe  =

    force correspondent to “d” 

    max displacement in a cycle

    e

    dinet

     AGK   =

    single layer cross section

    ∑ layers thickness

    ξe = equivalent damping

    dF2Wde π=ξ 2e

    de

    dK2W

    π=ξ

    Energy dissipatedin a completecycle

  • 8/18/2019 Les_16_Seismic Design of Bridges

    23/63

    45/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Sliding bearings with low friction made ofsteel and teflon (0 ≤ f ≤ 3%)

    Sliding isolators

    response F/δ monotonic with decreasingrigidity, independent from velocity

    auxiliary devices with non linear behaviour

    parameters

    elastic stiffness1

    11

    d

    FK   =

    post-elastic stiffness

    12

    122

    dd

    FFK

    −−

    =

    46/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Resisting force proportional to velocity (Vα)

    (fluid viscous dampers)

     Auxiliary devices with damping behavior

    - Behaviour characterized by Fmax and dd for a fixed amplitude and

    frequency

    - Relation F/d for a cycle of sinusoidal displacement

    (ellipse)

    Fmax

  • 8/18/2019 Les_16_Seismic Design of Bridges

    24/63

    47/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

     Auxiliary devices with linear or almost-linear behavior

    - Defined by parameters

    - Iperelastic behaviour

    K eff = equivalent rigidity

    ξeff = equivalent damping

    Design criteria

    - Accessibility / Inspectionability / Easy substitution / Re-centering

    - Protection by fire / aggressive agents- Joints and sliding surfaces to allow displacement of theinsulators

    d

    eff eff 

    M

    T Kπ =  2

    48/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Modelling

    Worst combination of mechanical properties in time

    Deck and piers withelastic-linear response

    System of isolation with linear orviscoelastic linear behaviour

    - With linear model use secantstiffness referred to the totaldisplacement for the L.S.considered

     Vertical deformability has to bemodeled if K v / K eff < 800

    verticalrigidity

    equivalent horizontalrigidity ∑ j K eff,j

    cd

    d,j

     j

    eff eff 

    E

    K dξ  π =

    ∑22

    d,j

     j

    E   =

    Sum of dissipated energy of allisolators in a full deformation cycleat design displacement

    cdd

  • 8/18/2019 Les_16_Seismic Design of Bridges

    25/63

    49/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Linear modeling of system of isolation

    When?

    - Distance of the bridge from the nearest known seismicallyactive fault exceeds ten kilometers

    - Linear equivalent damping ≤ 30%

    - Ground conditions corresponding to type A/B/C/E

    If the previous requestsare not fulfilled

    Non linear model able to describethe behavior of the structure

    50/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    SEISMIC DESIGN OF BRIDGES

    Taller piers work better:

     Pinerolo bridge

  • 8/18/2019 Les_16_Seismic Design of Bridges

    26/63

    51/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier

    52/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    700

       4   0   0

       1   5   0

       H

       6   4   0

    200÷250

       1   0   0

    400

    - longitudinal directionH/LX=10/1=10.0>3.5 qx=3.5

    - transverse direction:

    H/LX=10.0/4.0=2.5 qy=2.5

    Ground level

       3   6   0

    The height ofthe pier hasbeen enhancedto 10 m byplacing theextrados of the

    foundation morethan 2 m belowthe groundlevel. In such away we get :

  • 8/18/2019 Les_16_Seismic Design of Bridges

    27/63

    53/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier base section

    x

    y

    54/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier reinforcement: base and top sections

  • 8/18/2019 Les_16_Seismic Design of Bridges

    28/63

    55/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier reinforcement: base and top sections

    Pos Shape L N° W Pos Shape L N° W

    56/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Reinforcement under bearings

    section Top view

  • 8/18/2019 Les_16_Seismic Design of Bridges

    29/63

    57/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Reinforcement of seismic end of strokes

    section Front view

    58/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Reinforcement table

  • 8/18/2019 Les_16_Seismic Design of Bridges

    30/63

    59/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Seismic end of stroke (on piers and abutments)

    Grouting

    Neoprene layer60x40x6.9 cm

    Sealing

    Policloroprene(hardness Sh A60±5)

    Steel plateS275 JR 

    M12fasteners

    M12fasteners

    Policloroprene(hardness Sh

     A60±5)

    Steel plateS275 JR 

    Neoprene layer60x40x6.9 cm

    Sealing

    Grouting

    Bridge deck 

     Abutment or pier

    60/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Reinforcement cage of

    the pier 

  • 8/18/2019 Les_16_Seismic Design of Bridges

    31/63

    61/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Detail of reinforcement cage at the foot of the pier 

    62/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    SEISMIC DESIGN OF BRIDGES

     Hysteretic damping bearings application:

     Highway in Algeria

  • 8/18/2019 Les_16_Seismic Design of Bridges

    32/63

    63/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    General dimensions

    Segments for each half hammer

    Carriageway in direction of Oran

    64/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Construction by launching girder

  • 8/18/2019 Les_16_Seismic Design of Bridges

    33/63

    65/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Tallest pier ∼ 24 m

    ORAN ALGER

       A   X   E   D   E

       L   A   P   I   L   E

    E E

    COUPEA-AEch:1/50

    COUPEB-BEch:1/50

    C CC C

    E E

       A   X   E

       D   E

       T   R   A   C   A   G   E

       A   X   E

       G   E   N   E   R   A   L   E   D   E

       L   '   A   U   T   O   R   O   U   T   E

    CHAUSSEE VERSORAN

       A   X   E

       D   E

       L   A   P   I   L   E

    Shortest pier ∼ 6.5 m

    ORAN ALGER

       A   X   E   D   E

       L   A   P   I   L   E

    E E

    COUPEA-AEch:1/50

    COUPEB-BEch:1/50

    C CC C

    E E

       A   X   E   D   E

       T   R   A   C   A   G   E

       A   X   E   G   E   N   E   R   A   L   E   D   E

       L   '   A   U   T   O   R   O   U   T   E

    CHAUSSEEVERSORAN

       A   X   E   D   E

       L   A

       P   I   L   E

    66/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Hysteretic damping bearings scheme

    Longitudinal damper

    Transverse damper

     A B

    Long. sledge Trans. sledge   inclination 

  • 8/18/2019 Les_16_Seismic Design of Bridges

    34/63

    67/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Longitudinal damper

    Frontview

    Topview

    68/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    VUE FRONTALE

    PLAN

     A-A (1 : 3)

    VUE AXONOMETRIQUE

     A

     A

    Transverse damper

    Top view

    Front view

     Assonometric view

    Longitudinal axisof the bridge

  • 8/18/2019 Les_16_Seismic Design of Bridges

    35/63

    69/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Finite element model – non linear analysis

    70/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Finite element model – non linear analysis

    X axis = East – West direction

     Y axis = North – South direction

  • 8/18/2019 Les_16_Seismic Design of Bridges

    36/63

    71/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

    -0.4000

    -0.3000

    -0.2000

    -0.1000

    0.0000

    0.1000

    0.2000

    0.3000

    0.4000

    0.00 5.00 10.00 15.00 20.00 25.00

    X direction (horizontal)

    Time [s]

    ag/g

    72/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

     Y direction (horizontal)

    Time [s]

    ag/g

    -0.4000

    -0.3000

    -0.2000

    -0.1000

    0.0000

    0.1000

    0.2000

    0.3000

    0.4000

    0.00 5.00 10.00 15.00 20.00 25.00

  • 8/18/2019 Les_16_Seismic Design of Bridges

    37/63

    73/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

    Z direction (vertical)

    Time [s]

    ag/g

    -0.4000

    -0.3000

    -0.2000

    -0.1000

    0.0000

    0.1000

    0.2000

    0.3000

    0.4000

    0.00 5.00 10.00 15.00 20.00 25.00

    74/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms spectrum

    X direction (horizontal)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    38/63

    75/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms spectrum

     Y direction (horizontal)

    76/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms spectrum

    Z direction (vertical)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    39/63

    77/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

    Longitudinal (abutment C1) damper displacements

    Time [s]

       D   i  s  p   l  a  c  e  m  e  n   t   [  m   ]

    78/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

    Longitudinal (abutment C1) damper reaction

    Time [s]

       F  o  r  c  e   [   k   N   ]

  • 8/18/2019 Les_16_Seismic Design of Bridges

    40/63

    79/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

    Longitudinal (abutment C1) damper reaction vs. displacement

    Displacement [m]

       F  o  r  c  e   [   k   N   ]

    80/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

    Transverse Pier P1 damper displacements

    Time [s]

       D   i  s  p   l  a  c  e  m  e  n   t   [  m

       ]

  • 8/18/2019 Les_16_Seismic Design of Bridges

    41/63

    81/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

    Transverse Pier P1 damper reaction

    Time [s]

       F  o  r  c  e   [   k   N   ]

    82/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

    Transverse Pier P1 damper reaction vs. displacement

    Displacement [m]

       F  o  r  c  e   [   k   N   ]

  • 8/18/2019 Les_16_Seismic Design of Bridges

    42/63

    83/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Piers dimensions and orientation of the internal actions

    M2

    M3

    84/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e  p   i  e  r   [  m   ]

    Maximum F1 (axial force)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    43/63

    85/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e

      p   i  e  r   [  m   ]

    Maximum M2 (transverse bending moment)

    86/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e  p   i  e  r   [  m   ]

    Maximum M3 (longitudinal bending moment)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    44/63

    87/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e

      p   i  e  r   [  m   ]

    Minimum F1 (axial force)

    88/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e  p   i  e  r   [  m   ]

    Minimum M2 (transverse bending moment)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    45/63

    89/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e

      p   i  e  r   [  m   ]

    Minimum M3 (longitudinal bending moment)

    90/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 (25m tall) reinforcement (base section)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    46/63

    91/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 reinforcement table Pos Shape L N° W

    Total weight 37019 kg

    92/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    SEISMIC DESIGN OF BRIDGES

     Lead-rubber bearings application:

     Highway in Sicily

  • 8/18/2019 Les_16_Seismic Design of Bridges

    47/63

    93/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    General dimensions

    2 decks made of three 90m spans each with 53m tall piers

    94/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Two solutions:Hysteretic Damping Bearings (HDB)

    Lead rubber bearings (LRB)

    Transverse HDB

    Longitudinal HDB

    Two direction free bearing

    Lead rubber bearing LRB

    Two direction free bearing

    Type 1

    Type 1

    Type 2

    Type 2

    Type 2

    Type 2

    Type 1

    Type 1

  • 8/18/2019 Les_16_Seismic Design of Bridges

    48/63

    95/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Frontview

    Topview

    Hysteretic damping Bearings

    Type1 Type2 Type3

    f y

    [kN] 1750 1950 7250

    f u

    [kN] 2012.5 2242.5 8337.5

    δy [mm]10 10 10

    δu

    [mm] 150 150 150

    K1

    [kN/m] 175000 195000 725000

    K2

    [kN/m] 1875 2089.286 7767.857

    96/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Lead rubber bearings

  • 8/18/2019 Les_16_Seismic Design of Bridges

    49/63

    97/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Finite element model – non linear analysis

    x

    y

    98/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

    X direction (horizontal)

    Time [s]

    ag/g

  • 8/18/2019 Les_16_Seismic Design of Bridges

    50/63

    99/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

     Y direction (horizontal)

    Time [s]

    ag/g

    100/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms

    Z direction (vertical)

    Time [s]

    ag/g

  • 8/18/2019 Les_16_Seismic Design of Bridges

    51/63

    101/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms spectrum

    X direction (horizontal)

    102/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms spectrum

     Y direction (horizontal)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    52/63

    103/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms spectrum

    Z direction (vertical)

    104/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms – Lead Rubber Bearings

    Pier P2 longitudinal damper displacements

    Time [s]

       D   i  s  p   l  a  c  e  m  e  n   t   [  m

       ]

  • 8/18/2019 Les_16_Seismic Design of Bridges

    53/63

    105/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P2 longitudinal damper reaction

    Time [s]

       F  o  r  c  e   [   k   N   ]

    1st Accelerograms – Lead Rubber Bearings

    106/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P2 longitudinal damper reaction vs. displacement

    Displacement [m]

       F  o  r  c  e   [   k   N   ]

    1st Accelerograms – Lead Rubber Bearings

  • 8/18/2019 Les_16_Seismic Design of Bridges

    54/63

    107/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P2 transverse damper displacements

    Time [s]

       D   i  s  p   l  a  c  e  m  e  n   t   [  m   ]

    1st Accelerograms – Lead Rubber Bearings

    108/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P2 transverse damper reaction

    Time [s]

       F  o  r  c  e   [   k   N   ]

    1st Accelerograms – Lead Rubber Bearings

  • 8/18/2019 Les_16_Seismic Design of Bridges

    55/63

    109/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P2 transverse damper reaction vs. displacement

    Displacement [m]

       F  o  r  c  e   [   k   N   ]

    1st Accelerograms – Lead Rubber Bearings

    110/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    1st Accelerograms – Hysteretic Damper Bearings

    Pier P2 transverse damper displacements

    Time [s]

       D   i  s  p   l  a  c  e  m  e  n   t   [  m

       ]

  • 8/18/2019 Les_16_Seismic Design of Bridges

    56/63

    111/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P2 transverse damper reaction

    Time [s]

       F  o  r  c  e   [   k   N   ]

    1st Accelerograms – Hysteretic Damper Bearings

    112/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P2 transverse damper reaction vs. displacement

    Displacement [m]

       F  o  r  c  e   [   k   N   ]

    1st Accelerograms – Hysteretic Damper Bearings

  • 8/18/2019 Les_16_Seismic Design of Bridges

    57/63

    113/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e

      p   i  e  r   [  m   ]

    F1max M2max M3max

    F1 = axial forceM2 = transverse bending momentM3 = longitudinal bending moment

    114/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e  p   i  e  r   [  m   ]

    F1min M2min M3min

    F1 = axial forceM2 = transverse bending momentM3 = longitudinal bending moment

  • 8/18/2019 Les_16_Seismic Design of Bridges

    58/63

    115/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e

      p   i  e  r   [  m   ]

    F1max M2max M3min

    F1 = axial force

    M2 = transverse bending momentM3 = longitudinal bending moment

    116/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e  p   i  e  r   [  m   ]

    F1max M2min M3max

    F1 = axial forceM2 = transverse bending momentM3 = longitudinal bending moment

  • 8/18/2019 Les_16_Seismic Design of Bridges

    59/63

    117/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e

      p   i  e  r   [  m   ]

    F1max M2min M3min

    F1 = axial force

    M2 = transverse bending momentM3 = longitudinal bending moment

    118/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e  p   i  e  r   [  m   ]

    F1min M2max M3max

    F1 = axial forceM2 = transverse bending momentM3 = longitudinal bending moment

  • 8/18/2019 Les_16_Seismic Design of Bridges

    60/63

    119/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e

      p   i  e  r   [  m   ]

    F1min M2max M3min

    F1 = axial force

    M2 = transverse bending momentM3 = longitudinal bending moment

    120/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 design internal actions – Seismic combination

    Internal action F1=N[kN] M2,M3 [kNm]

       V  e  r   t   i  c  a   l   c  o  o  r   d   i  n  a   t  e  a   l  o  n  g   t   h  e  p   i  e  r   [  m   ]

    F1min M2min M3max

    F1 = axial forceM2 = transverse bending momentM3 = longitudinal bending moment

  • 8/18/2019 Les_16_Seismic Design of Bridges

    61/63

    121/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 (53m tall)reinforcement

    Upper half 

    (front view and

    vertical section)

    122/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 (53m tall)reinforcement(section B-B)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    62/63

    123/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 (53m tall)reinforcement

    Lower half 

    (front view and

    vertical section)

    124/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 (53m tall) reinforcement

    Base (front view and vertical section)

  • 8/18/2019 Les_16_Seismic Design of Bridges

    63/63

    125/126Seismic design of bridges

    Politecnico di Torino

    Department of structural and geotechnical engineering

     “Bridge design” 

    Pier P1 (53m tall)reinforcement(section A-A)

    126/126Seismic design of bridges

    Pier P1 (53m tall)reinforcement table

    Pos Shape