lecture 13 - jon tselecture 13 logic families ii professor sunil bhave cu school of electrical and...

8

Upload: others

Post on 28-Feb-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 13 - Jon TseLecture 13 Logic Families II Professor Sunil Bhave CU School of Electrical and Computer Engineering March 17, 2010 Ratioed Logic Ratioed Logic VDD LoadRL VDD VDD
Page 2: Lecture 13 - Jon TseLecture 13 Logic Families II Professor Sunil Bhave CU School of Electrical and Computer Engineering March 17, 2010 Ratioed Logic Ratioed Logic VDD LoadRL VDD VDD
Page 3: Lecture 13 - Jon TseLecture 13 Logic Families II Professor Sunil Bhave CU School of Electrical and Computer Engineering March 17, 2010 Ratioed Logic Ratioed Logic VDD LoadRL VDD VDD
Page 4: Lecture 13 - Jon TseLecture 13 Logic Families II Professor Sunil Bhave CU School of Electrical and Computer Engineering March 17, 2010 Ratioed Logic Ratioed Logic VDD LoadRL VDD VDD

Lecture 13Lecture 13

Logic Families II

Professor Sunil BhaveCU School of Electrical and Computer p

Engineering

March 17, 2010

RatioedLogic

Ratioed Logicg

VDD

RLLoad

VDD VDD

V

Resistive DepletionLoad

PMOSLoadVT < 0

PDNIn1In2I

FIn1In2I

F

PDNIn1In2I

FVSS

PDN

VSS

In3

VSS

In3

VSS

In3

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

Goal: to reduce the number of devices over complementary CMOSGoal: to reduce the number of devices over complementary CMOS

Ratioed LogicgVDD

N i L d

RLLoadResistive

N transistors + Load

• VOH = VDD

F

• VOL = RPN

RPN + RL

PDNIn1In2In3

• Assymetrical response

• Static power consumption

VSS

3 p p

• tpL= 0.69 RLCL

Page 5: Lecture 13 - Jon TseLecture 13 Logic Families II Professor Sunil Bhave CU School of Electrical and Computer Engineering March 17, 2010 Ratioed Logic Ratioed Logic VDD LoadRL VDD VDD

Active LoadsVDD VDD

VSS

DepletionLoad

PMOSLoadVT < 0

In1

F

In1

F

VSS

In2In3

PDNIn2In3

PDN

VSS VSS

depletion load NMOS pseudo-NMOS

Pseudo-NMOS

VDDDD

FCA B C D CL

VOH = VDD (similar to complementary CMOS)O p y

kn VDD VTn–( )VOLVOL

2

2-------------–

⎝ ⎠⎜ ⎟⎛ ⎞ kp

2------ VDD VTp–( )

2=

VOL VDD VT–( ) 1 1kpkn------–– (assuming that VT VTn VTp )= = =

SMALLER AREA & LOAD BUT STATIC POWER DISSIPATION!!!

P d NMOS VTCPseudo-NMOS VTC

2.5

3.0

1 5

2.0

]

W/Lp = 4

1.0

1.5

Vou

t[V

]

W/Lp = 2

W/L = 1W/L = 0 5

0.0 0.5 1.0 1.5 2.0 2.50.0

0.5W/Lp = 1

W/Lp = 0.25

W/Lp 0.5

Vin [V]

Improved Loadsp

V

M1

VDD

F

M1M2 M1 >> M2Enable

A B C D

F

CL

Ad ti L dAdaptive Load

Page 6: Lecture 13 - Jon TseLecture 13 Logic Families II Professor Sunil Bhave CU School of Electrical and Computer Engineering March 17, 2010 Ratioed Logic Ratioed Logic VDD LoadRL VDD VDD

Improved Loads (2)p ( )VDD VDD

M1 M2

Out Out

APDN1 PDN2A

BB

VSS VSS

Differential Cascode Voltage Switch Logic (DCVSL)g g ( )

DCVSL Examplep

Out

B B B B

Out

B

A A

B B B

XOR-NXOR gate

DCVSL T i t RDCVSL Transient Response

2.5

1.5

ge[V

] A B

A B

0.5

Vol

tag A B

A,BA,B

0 0.2 0.4 0.6 0.8 1.0-0.5

Time [ns][ ]

Pass-Transistor Logicg

ts Switch OutOut

A

B

Inpu

t

NetworkOut

BB

• N transistors• N transistors• No static consumption

Page 7: Lecture 13 - Jon TseLecture 13 Logic Families II Professor Sunil Bhave CU School of Electrical and Computer Engineering March 17, 2010 Ratioed Logic Ratioed Logic VDD LoadRL VDD VDD

E l AND G tExample: AND Gate

BB

BA

F = AB

0

NMOS O l L iNMOS-Only Logic

In

3.0

In

VDDOut

x

0.5μm/0.25μm0 5μm/0 25μm

1.5μm/0.25μm 2.0

Volta

ge[V

]

xOut

0.5μm/0.25μm

0 0.5 1 1.5 20.0

1.0V

0 0.5 1 1.5 2Time [ns]

NMOS-only Switchy

A = 2.5 V

C = 2.5V

A = 2.5 V

C = 2.5 V

BM2

MnB

CL M1

Mn

VB does not pull up to 2.5V, but 2.5V -VTNThreshold voltage loss causes

static power consumption

B TN

NMOS has higher threshold than PMOS (body effect)

NMOS Only Logic: Level Restoring TransistorLevel Restoring Transistor

VDD

M

MrB

VDDVDDLevel Restorer

M2

Mn OutAX

M1

• Advantage: Full Swing• Restorer adds capacitance takes away pull down current at X Restorer adds capacitance, takes away pull down current at X• Ratio problem

Page 8: Lecture 13 - Jon TseLecture 13 Logic Families II Professor Sunil Bhave CU School of Electrical and Computer Engineering March 17, 2010 Ratioed Logic Ratioed Logic VDD LoadRL VDD VDD

Restorer SizingRestorer Sizing

3.0•Upper limit on restorer size•Pass-transistor pull-down

2.0

W/Lr =1.50/0.25

W/Lr =1.75/0.25

olta

ge[V

]

pcan have several transistors in stack

1.0

W/Lr =1.0/0.25 W/Lr =1.25/0.25

Vo

0 100 200 300 400 5000.0

Time [ps]

Solution 2: Single Transistor Pass Gate with V =0VT=0

VDD

VDD

0V

OutVDD

0V 2.5V

0V

2.5V

VDD 0V

WATCH OUT FOR LEAKAGE CURRENTSWATCH OUT FOR LEAKAGE CURRENTS

Complementary Pass Transistor Logicp y g

P T i tA

FPass-Transistor

NetworkABB

A Inverse

(a)

FPass-TransistorNetwork

ABB

Inverse

A

B B B B

A

B B

A

B

A

B

B

A

B

F=AB

F=AB

F=A+B

F=A+B

A

A

A

F=A⊕ΒÝ

F=A⊕ΒÝ

(b)

OR/NOR EXOR/NEXORAND/NAND

Solution 3: Transmission Gate

CC

A B A B

CC

BA = 2.5 V

C = 2.5 V

CL

C = 0 V