introduction tdf rev gasal13 14

25
8/13/2019 Introduction TDF Rev Gasal13 14 http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 1/25 Transformasi Diagram Fasa: INTRODUCTION

Upload: rais-fikry

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 1/25

Transformasi Diagram Fasa:

INTRODUCTION

Page 2: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 2/25

Transfromasi Fasa

Solid

Liquid

solid

solid

LiquidPeleburan

Pembekuan

solid

GasLiquid

Melting

Boiling

Sublimation

•Change from one phase to another

•Occurs because energy change is negative/goes from high to low energy state

Page 3: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 3/25

Transformasi AllotropicThe Solid phases are crystalline, but difference in composition, crystall

structure/dimensions

Page 4: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 4/25

Beberapa definisi

System: A body of engineering material under investigation. e.g. Ag –  Cu

system, NiO-MgO system (or even sugar-milk system)

Component of a system: Pure metals and or compounds of which an

alloy is composed, e.g. Cu and Ag or Fe and Fe3C. They are thesolute(s) and solvent

Solubility Limit:  The maximum concentration of solute atoms that may

dissolve in the Solvent to form a “solid solution” at some temperature. 

Page 5: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 5/25

DefinisiPhases:  A homogenous portion of a system that has uniform physical and

chemical characteristics, e.g. pure material, solid solution, liquid solution,

and gaseous solution, ice and water, syrup and sugar. Single phase system = Homogeneous system

Multi phase system = Heterogeneous system or mixtures

Microstructure:  A system’s microstructure is characterized by the number

of phases present, their proportions, and the manner in which they are

distributed or arranged. Factors affecting microstructure are: alloying

elements present, their concentrations, and the heat treatment of the alloy.

Phase boundary :

- Boundary between phases in a phase diagram

Page 6: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 6/25

Definisi

Phase Equilibrium: A stable configuration with lowest free-energy (internal energy of

a system, and also randomness or disorder of the atoms or molecules (entropy).

Any change in Temperature, Composition, and Pressure causes an increase in free

energy and away from Equilibrium thus forcing a move to another ‘state’  

Equilibrium Phase Diagram: It is a “map” of the information about the control of

microstructure or phase structure of a particular material system. The relationships

 between temperature and the compositions and the quantities of phases present at

equilibrium are represented.

Definition that focus on “Binary Systems” 

Binary Isomorphous Systems: An alloy system that contains two components that attain

complete liquid and solid solubility of the components, e.g. Cu and Ni alloy. It is thesimplest binary system.

Binary Eutectic Systems: An alloy system that contains two components that has a

special composition with a minimum melting temperature.

Page 7: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 7/25

With these definitions in mind:

ISSUES TO ADDRESS...

• When we combine two elements... what “equilibrium state” would we expect to get? 

• In particular, if we specify... 

--a composition (e.g., wt% Cu - wt% Ni), and

--a temperature (T  

) and/or a Pressure (P)then...

How many phases do we get?

What is the composition of each phase?

How much of each phase do we get?

Phase BPhase A 

Nickel atom  Copper atom 

Page 8: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 8/25

Gibb’s Phase Rule: a tool to define the number of phases and/or

degrees of phase changes that can be found in a system at equilibrium

where:

F is # degrees of freedom of the system (independent parameters)

C is # components (elements) in system

P is # phases at equil. N is # "noncompostional" parameters in system (temp &/or Press

 F C P N 

ure)

• For any system under study the rule determines if the system is at equilibrium

• For a given system, we can use it to predict how many phases can be expected

• Using this rule, for a given phase field, we can predict how many independent parameters(degrees of freedom) we can specify

• Typically, N = 1 in most condensed systems – pressure is fixed!

Page 9: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 9/25

Looking at a simple “Phase Diagram” for Sugar – 

Water (or milk)

Page 10: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 10/25

Effect of Temperature (T) & Composition (C o)

• Changing T  can change # of phases:

D (100 C,90)

2 phases

B (100 C,70)

1 phase

See path A to B.

•  Changing C o can change # of phases: See path B to D.

Adapted from Fig.

9.1,

Callister 7e. 

 A (20 C,70)

2 phases

70 80 1006040200

   T   e   m   p   e   r   a   t   u   r   e    (   °   C    )

C o  =Composition (wt% sugar)

L(liquid solution

i.e, syrup)

20

100

40

60

80

0

L (liquid)

+

S (solid

sugar)

water-

sugar

system

Page 11: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 11/25

A simple phase diagram

Temperature

Triple point

(Invariant point)

Solid

Liquid

Vapor

Pressure

Phase boundary

System: H2O

At triple point, P=3, C=1, F=0

i.e. this is an invariant pointAt phase boundary, P=2, C=1, F=1

In each phase, P=1, C=1, F=2

Page 12: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 12/25

Solidification(cooling) curves

L

S

L

S

Pure metal Alloy

Tm L S L + S

Solidification

complete

Soldification

begins

TL 

TS 

Page 13: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 13/25

Phase Diagram: A Map based on a System’s Free Energy indicating “equilibuim”

system structures – as predicted by Gibbs Rule

•  Indicate ‘stable’ phases as function of T , P & C omposition,

• We will focus on: -binary systems: just 2 components.

-independent variables: T  and C o  (P = 1 atm is almost always used).

Phase Diagram -- 

for Cu-Ni system

• 2 phases are possible: L  (liquid) 

(FCC solid solution) • 3 ‘phase fields’ are observed: 

L L + 

wt% Ni 20  40  60  80  100 0 1000 

1100 1200 1300 1400 1500 1600 T (°C) 

L (liquid) 

(FCC solid

solution) An “Isomorphic”

Phase System

Page 14: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 14/25

wt% Ni 20  40  60  80  100 0 1000 1100 1200

 1300 1400 1500 1600 T (°C) 

L (liquid) 

(FCC solid

solution) 

Cu-Niphase

diagram

Phase Diagrams:

• Rule 1: If we know T  and C o then we know the # and types of all phases

present.

• Examples: 

 A(1100 C, 60):

1 phase:B (1250 C, 35):

2 phases: L +

       B     (

   1   2   5   0

   C ,

   3   5

    )

  A(1100 C,60) 

Page 15: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 15/25

wt% Ni 20 

1200 

1300 

T (°C) L (liquid) 

(solid) 30  40  50 

Cu-Ni

system

Phase Diagrams:

• Examples: T   A   A 

35 C  o 32 C  L 

At T   A = 1320 C:

Only Liquid (L)C  L  = C o ( = 35 wt% Ni) 

At T  B  = 1250 C:

Both and L 

C  L  = C   liquidus  ( = 32 wt% Ni)

C   = C   solidus  ( = 43 wt% Ni) 

At T  D = 1190 C:

Only Solid (  )

C   = C  o  ( = 35 wt% Ni  ) 

C  o = 35 wt% Ni 

adapted from Phase Diagrams

of Binary Nickel Alloys, P. Nash (Ed.), ASM

International, Materials Park, OH, 1991.

B T  B D 

T  D 

tie line 

4 C  3 

• Rule 2: If we know T  and C o we know the composition of each phase

Page 16: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 16/25

• Tie line – a line connecting the phases in equilibrium with each other

 – at a fixed temperature (a so-called Isotherm)

The Lever Rule

How much of each phase?

We can Think of it as a lever! So to balance:

ML  M  

R S

R M S M  L

L

L

LL

L

LC C 

C C 

S R 

R W 

C C 

C C 

S R 

M M 

M W 

00  

wt% Ni 20 

1200 

1300 T (°C) 

L (liquid) 

(solid) 3 0  4 0  5 0 

B T  B 

tie line 

C  o C  

L  C  

S R 

Page 17: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 17/25

• Rule 3:  If we know T  and C o then we know the amount of each phase

(given in wt%)

• Examples: 

At T   A : Only Liquid (L)

W  L = 100 wt%, W   = 0 At T  D :  Only Solid (  )

W  L = 0, W   = 100 wt% 

C  o = 35 wt% Ni 

Therefore we define…. 

wt% Ni 20 

1200 

1300 

T (°C) L (liquid) 

(solid) 3 0  4 0  5 0 

Cu-Ni

system

T  A   A 

35 C  o 32 

C  L 

B T  B 

D T  D 

tie line 

4 C  3 

R  S At T  B :  Both and L 

%733243

3543 wt 

= 27 wt%

W L S 

R  + S 

W   R 

R  + S 

Notice: as in a lever “the opposite leg” controls with a balance

(fulcrum) at the ‘base composition’ and R+S = tie line length =

difference in composition limiting phase boundary, at the temp of

interest

Page 18: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 18/25

Pembuatan diagram Fasa: Biner/ dua

komponen

• Conduct an experiment

• Take 10 metal samples(pure Cu, Cu-10%Ni,

Cu-20%Ni, Cu-30%Ni………, pure Ni) 

• Melt each sample and then let it solidify

• Record the cooling curves

Note temperatures at which phasetransformations occur

Page 19: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 19/25

Hasil grafik pembekuan masin-masin komposisi

L

S

L S

t

T

L

L + S

TL 

TS  S

L

L + S

TL 

TS 

Pure Cu

Cu-10%Ni

Cu-20%Ni

LL S

Pure Ni

S

TNi 

TCu 

Page 20: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 20/25

Binary isomorphous phase diagram

x x

x

x

x

x

xx

x

xx

x

x x x x

x x x x

L+S

Composition

Temp

TCu 

TNi 

10 60 70 80 9030 40 50200 100

Cu Ni%Ni

Cu

Ni

Page 21: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 21/25

Microstructural changes during solidification

L

S

L S

T

t

Tm 

S

Pure metal

S

Page 22: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 22/25

Microstructural changes during solidification

L

S

Alloy

L + S

TL 

TS 

S

T

t

Page 23: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 23/25

Binary isomorphous phase diagram

L+S

Composition

T

10 60 70 80 9030 40 50200 100

A B%B

S

T1 

T2 

T3 

T4 

CL  C0  CS 

Page 24: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 24/25

Catatan :

• Diagram fasa tersebut adalah diagram fasa dalam

kesetimbangan (slow cooling)

• The phase boundary which separates the L fromthe L+S region is called LIQUIDUS

• The phase boundary which separates the S fromthe L+S region is called SOLIDUS

• The horizontal (isothermal) line drawn at aspecific temperature is called the TIE LINE

The tie line can be meaningfully drawn only in atwo-phase region

• The average composition of the alloy is CO

Page 25: Introduction TDF Rev Gasal13 14

8/13/2019 Introduction TDF Rev Gasal13 14

http://slidepdf.com/reader/full/introduction-tdf-rev-gasal13-14 25/25

• The intersection of the tie line with the liquidus givesthe composition of the liquid, CL 

• The intersection of the tie line with the solidus gives

the composition of the solid, CS

• By simple mass balance,

CO = f S CS + f L CL

and f S + f L = 1

CO = f S CS + (1- f S) CL 

S  f   0C    LC 

S C    LC S  f     OC    LC 

S C    LC    L f     S C    OC 

S C    LC Lever

Rule

Catatan :