high altitude long endurance uav configurationshigh altitude long endurance uav configurations:...

61
1/64 EILAT, May 18-19th 2005 High Altitude Long Endurance High Altitude Long Endurance UAV Configurations: UAV Configurations: C C ivil UAV ivil UAV AP AP plications plications & & E E conomic Effectivity conomic Effectivity of Potential of Potential CON CON figuration figuration Solutions Solutions Giulio ROMEO, Politecnico Di Torino Giulio ROMEO, Politecnico Di Torino (Turin (Turin Polytec Polytec . . Univ Univ .) .) , , Dept. of Aerospace Eng., Italy. Dept. of Aerospace Eng., Italy. Zvi Zvi SHAVIT SHAVIT , Israel , Israel Aircraft Aircraft Industries Industries , Israel , Israel Zdobyslaw Zdobyslaw GORAJ GORAJ , , Warsaw Univ Warsaw Univ . . of Technology of Technology , , Dept. of Dept. of Airplane Airplane & & Helicopter Helicopter Design, Design, Poland Poland Jean Jean HERMETZ, Onera, HERMETZ, Onera, France France CIRA, DLR, UNINA CIRA, DLR, UNINA

Upload: others

Post on 14-Mar-2021

6 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

1/64

EILAT, May 18-19th 2005

High Altitude Long Endurance High Altitude Long Endurance UAV Configurations: UAV Configurations:

CCivil UAVivil UAV APAPplicationsplications & & EEconomic Effectivityconomic Effectivityof Potentialof Potential CONCONfigurationfiguration SolutionsSolutions

Giulio ROMEO, Politecnico Di Torino Giulio ROMEO, Politecnico Di Torino (Turin (Turin PolytecPolytec..UnivUniv.).),, Dept. of Aerospace Eng., Italy.Dept. of Aerospace Eng., Italy.ZviZvi SHAVITSHAVIT, Israel , Israel AircraftAircraft IndustriesIndustries, Israel, IsraelZdobyslawZdobyslaw GORAJGORAJ, , Warsaw UnivWarsaw Univ.. of Technologyof Technology, , Dept. of Dept. of Airplane Airplane & & HelicopterHelicopter Design, Design, PolandPolandJeanJean HERMETZ, Onera, HERMETZ, Onera, FranceFranceCIRA, DLR, UNINACIRA, DLR, UNINA

Page 2: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

2/64

EILAT, May 18-19th 2005

Global Hawk

Helios

Heron

HeliPlat – EC 5FP

Lockheed Martin

POLITO, DIASP, [email protected]

Page 3: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

3/64

EILAT, May 18-19th 2005

LANDSAT - Orbit: 705KmSpatial Resolution: 15-60mRepeat Cycle: 14 daysDesign Life: 5 years

BIRD - Orbit: 570 KmSpatial Resolution: 370 mRepeat Cycle: 24 HOURSDesign Life: 5 years

Integration

SATELLITE + UAV

=

Higher Resolution +

Continuous Data

POLITO, DIASP, [email protected]

Page 4: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

4/64

EILAT, May 18-19th 2005HALE UAV Configuration

# MAIN GOAL: to define and consolidate, within a 2 iteration design cycle, 3 HALE Configurations:

- MODULAR- SOLAR- BLENDED

-# MULTI-DISCIPLINARY OPTIMISATION SOFTWARE developed to obtain the Optimised configuration

# FINAL CONFIGURATIONS: as result of best compromise among production cost, aerodynamic performance efficiency, structural efficiency and aeroelastic behaviour, propulsion efficiency, and safety.

# PERFORMANCE shall be improved by at least 20% with respect to current technologies.

# MAIN GOAL: to define and consolidate, within a 2 iteration design cycle, 3 HALE Configurations:

- MODULAR- SOLAR- BLENDED

-# MULTI-DISCIPLINARY OPTIMISATION SOFTWARE developed to obtain the Optimised configuration

# FINAL CONFIGURATIONS: as result of best compromise among production cost, aerodynamic performance efficiency, structural efficiency and aeroelastic behaviour, propulsion efficiency, and safety.

# PERFORMANCE shall be improved by at least 20% with respect to current technologies.

POLITO, DIASP, [email protected]

Page 5: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

5/64

EILAT, May 18-19th 2005

MODULAR - IAI

SOLAR HALE - POLITO

BLENDED WING - WUT

BLENDED WING - ONERA

Design of 3 HALE UAVs

POLITO, DIASP, [email protected]

Page 6: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

6/64

EILAT, May 18-19th 2005SHAMPO SHAMPO Main CharacteristicsMain Characteristics

SOLAR HALE UAV

SolarHale Aircraft Multi Payload & Operation

POLITO, DIASP, [email protected]

Page 7: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

7/64

EILAT, May 18-19th 2005Main SystemsMain Systems

SOLAR HALE UAV

POLITO, DIASP, [email protected]

Solar Cells

Fuel Cells

O2 / H2 Tanks

Page 8: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

8/64

EILAT, May 18-19th 2005Development Development of Solar HALEof Solar HALE--UAVUAV

Classical configuration to improve longitudinal stability

1st configuration 2nd configuration

3rd configuration

SOLAR HALE UAV

Introduction of sweep angle to improve longitudinal stability

POLITO, DIASP, [email protected]

Page 9: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

9/64

EILAT, May 18-19th 2005

OUTER-Wing Section

BLENDED-zone section

Solar HALE Wing Solar HALE Wing SectionSectionAerodynamics SOLAR HALE UAVAerodynamics

POLITO, DIASP, [email protected]

Page 10: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

10/64

EILAT, May 18-19th 2005

DOWNWASH Reduction

TIP OPTIMIZATION (Tip Vortex Energy Reduction)

SOLAR HALE UAV

POLITO, DIASP, [email protected]

Aerodynamic developmentAerodynamic development

Page 11: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

11/64

EILAT, May 18-19th 2005Aerodynamic ResultsAerodynamic Results

EFFICIENCY

SOLAR HALE UAV

ENDURANCE PARAMETER

POLITO, DIASP, [email protected]

Page 12: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

12/64

EILAT, May 18-19th 2005Ailerons Ailerons & & Landing GearLanding Gear

Tricycle Landing Gear

Ailerons actuators

AileronsInboard section:18.8mOutboard section:30.8m

POLITO, DIASP, [email protected]

SOLAR HALE UAV

Page 13: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

13/64

EILAT, May 18-19th 2005Flight PerformanceFlight Performance

Longitudinal Static Stability

SOLAR HALE UAV

Lateral Static Stability

Take off & Landing distances:Take-off: 804m - Landing: 420m

POLITO, DIASP, [email protected]

Page 14: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

14/64

EILAT, May 18-19th 2005Flight Dynamic AnalysisFlight Dynamic Analysis

Within the MIL-F-8785C flying qualities levels criteria for a small light Aircraft in cruise condition (Cat B)

SOLAR HALE UAV

Longitudinal Dynamic Stability

Lateral Dynamic Stability

DERIVATIVES database

MATLAB-Simulink

Results

POLITO, DIASP, [email protected]

Page 15: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

15/64

EILAT, May 18-19th 2005Structural design & analysisStructural design & analysis

Leading edge wing-box

Conformal fuselage

Horizontal Tail

SOLAR HALE UAV

POLITO, DIASP, [email protected]

Page 16: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

16/64

EILAT, May 18-19th 2005Structural Structural design & design & analysisanalysis

Maximum wing deflection: 5.89mLoad factor = 4.5

Maximum fuselage deflection:29mmLoad factor = 4.5

SOLAR HALE UAV

POLITO, DIASP, [email protected]

Page 17: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

17/64

EILAT, May 18-19th 2005LinearLinear Flutter Flutter AnalysisAnalysis

V-g diagram

1st linear mode

2nd linear mode

Non-linear effect due to high-aspect ratio structure is not included in a 1st attempt. No critical speed detected up to 100m/s (at 17000m). Normative requirement fulfilled.

POLITO, DIASP, [email protected]

SOLAR HALE UAV

Page 18: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

18/64

EILAT, May 18-19th 2005Flight Flight Dynamic Dynamic of of Flexible AircraftFlexible Aircraft

SOLAR HALE UAV

Waszak and Schmidt (1988) performed in the

Visual and Motion Simulator facility at NASA Langley Research

Center

Tuzcu & MeirovitchVirginia Polytechnic institute 2003

POLITO, DIASP, [email protected]

Page 19: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

19/64

EILAT, May 18-19th 2005PRELIMINARY RELIABILITYPRELIMINARY RELIABILITY

SOLAR HALE UAVThe platform has to have a very long endurance of flight (4-5.000h)is supposed to fly continuously without failure the loss of a platform must not cause damage to the service. Catastrophic failure conditions must be extremely improbable, i.e.:The probability that a failure condition would occur maybe assessed on the

order of 10-9 or less.

“The safety standard that should be maintained is one in which UAVs are operated as safely as manned aircraft, insofar as they should not present or create a hazard to persons or properties in the air or on the ground greater than that created by manned aircraft conducting similar operations” (FAA Advisory Circular 8/5/96).

A MTBF=40000h for each motor and a MTBF=100000h for each propeller is assumed for the reliability analysis obtaining a 0.991.

POLITO, DIASP, [email protected]

Page 20: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

20/64

EILAT, May 18-19th 2005OBWOBW--02 02 conceptconcept

BLENDED HALE UAV (ONERA)

EXTERNAL VIEW

Page 21: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

21/64

EILAT, May 18-19th 2005OBWOBW--02 02 conceptconcept

External & internal viewsExternal & internal viewsExternal & internal views

Sensors fairings

Max. fuel capacity : 2800 kgMax. fuel capacity : 2800 kg

Reference area: 51.3 m²Aspect ratio: 18Wing loading : 105.3 kg/m²Max LD ratio (M=0.6): 32MMO: 0.636

Reference area: 51.3 m²Aspect ratio: 18Wing loading : 105.3 kg/m²Max LD ratio (M=0.6): 32MMO: 0.636

EO/IR sensor

Flight control systems & complementary equipment

Fuel systems & Air conditioning

Payload units

RR/Williams FJ44 2E engine

Phase array SATCOM antenna

SAR antenna

Fuel tanks

BLENDED HALE UAV (ONERA)

Page 22: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

22/64

EILAT, May 18-19th 2005

Performance & Performance & Flying qualities

OBWOBW--02 02 conceptconcept

Flying qualitiesMain performance (ONERA & IAI)Main performance (ONERA & IAI)

Initial climb altitude: 50 000 ft, Initial climb altitude: 50 000 ft, achieved in 20 minachieved in 20 minhold: 1 h at 10 000 fthold: 1 h at 10 000 ftloiter: 24 h at 60 000 ft loiter: 24 h at 60 000 ft loiter alt. reached during cruise loiter alt. reached during cruise segment (climbing cruise)segment (climbing cruise)Overall fuel consumption: 2628 kgOverall fuel consumption: 2628 kgService ceiling reached in 1h33Service ceiling reached in 1h33Overall mission duration: 29 hOverall mission duration: 29 hTake off distance: 542 m (Take off distance: 542 m (obsobs. 35 ft). 35 ft)BFL: 655 mBFL: 655 mLanding distance: 610 mLanding distance: 610 mBest Best RoCRoC at SL: at SL: 28 m/s (at 138 m/s TAS)

0 10 20 300

1

2

3

4

Time (h)

Lift (Cl) Drag (Cd)*100 L/D ratio / 10

0 10 20 300

0.5

1

1.5

2x 104

Time (h)

Range (km) Altitude (m)

0 10 20 302500

3000

3500

4000

4500

5000

5500

Time (h)

Weight (kg)

0 10 20 300

0.5

1

1.5

2x 104

Time (h)

Drag (N) Available Thrust (N)

0 10 20 301.5

2

2.5x 10-5

Time (h)

SFC (kg/N/s)

0 10 20 300

0.2

0.4

0.6

0.8

Time (h)

Mach

0 10 20 300

1

2

3

4

Time (h)

Lift (Cl) Drag (Cd)*100 L/D ratio / 10

0 10 20 300

0.5

1

1.5

2x 104

Time (h)

Range (km) Altitude (m)

0 10 20 302500

3000

3500

4000

4500

5000

5500

Time (h)

Weight (kg)

0 10 20 300

0.5

1

1.5

2x 104

Time (h)

Drag (N) Available Thrust (N)

0 10 20 301.5

2

2.5x 10-5

Time (h)

SFC (kg/N/s)

0 10 20 300

0.2

0.4

0.6

0.8

Time (h)

Mach

BLENDED HALE UAV (ONERA)

28 m/s (at 138 m/s TAS)

Page 23: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

23/64

EILAT, May 18-19th 2005Performance & Performance & Flying qualitiesFlying qualities

120 160 200 240 280Flight speed [m/s]

0

0.04

0.08

0.12

dam

ping

(ξ) &

freq

uenc

y (η

) coe

ffici

ents

[1/s

]

ξPHUGOID

ηPHUGOID

OBW_2; H=19 km; W=6000 kg Spiral & Phugoid: λ=ξ+/−ηi, where i=sqrt(-1)

ξSPIRAL

120 160 200 240 280Flight speed [m/s]

0

0.4

0.8

1.2

1.6

dam

ping

ratio

(ζd)

& u

ndam

ped

frequ

ency

(ωnd

)

OBW_2; H=19 km; W=6000 kg Dutch Roll: ζd =ξ/ −sqrt(ξ2+η2), ωnd=sqrt(ξ2+η2)

ωnd

ζd

Flying qualities (ONERA & Flying qualities (ONERA & WUT)WUT)

Computation of short Computation of short period, period, dutchdutch roll, roll, phygophygoïïddand spiral motionsand spiral motionsVehicle doesnVehicle doesn’’t satisfy t satisfy requirements for Dutch roll requirements for Dutch roll modemode

–– OBW_2 fulfils FAR 25 and OBW_2 fulfils FAR 25 and MILMIL--FF--8785C at (level 3) 8785C at (level 3)

–– Does not fulfill FAR 23 and Does not fulfill FAR 23 and MILMIL--FF--8785C at (level 2). 8785C at (level 2).

–– Cannot be human manned Cannot be human manned in a backup in a backup --> use of a > use of a robust automatic flight robust automatic flight control

BLENDED HALE UAV (ONERA)

control

Page 24: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

24/64

EILAT, May 18-19th 2005Aerodynamic analysisAerodynamic analysis

BLENDED HALE UAV (ONERA)

Page 25: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

25/64

EILAT, May 18-19th 2005

BLENDED HALE UAV (ONERA)

Safety Safety & & ReliabilityReliability

Page 26: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

26/64

EILAT, May 18-19th 2005Structural Structural design & design & analysisanalysis

BLENDED HALE UAV (ONERA)

Page 27: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

27/64

EILAT, May 18-19th 2005OBWOBW--02 02 conceptconcept

BLENDED HALE UAV (ONERA)

Page 28: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

28/64

EILAT, May 18-19th 2005PW114 PW114 Concept Concept

Flying wingOverall AR: 17.7MTOW: 6350 kgWing area: 44.4 m2

Wetted area: 119.7 m2

Wing loading: 143 kg/m2

Engines: 2xWilliams FJ44-3, FJ44-4 in the future

BLENDED HALE UAV (WUT)

AN OVERALL DESCRIPTION

Page 29: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

29/64

EILAT, May 18-19th 2005Main SensorsMain Sensors

EO/IR sensorSATCOM antennaElectronic racks

Synthetic Aparture Radar

Navigation system Parachute recovery system

BLENDED HALE UAV (WUT)

Page 30: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

30/64

EILAT, May 18-19th 2005

FlyFly-- byby--wirewire or or classical configurationclassical configuration?? BLENDED HALE UAV (WUT)

Sc=2.16; a1=0.07

Sc=1.50; a1=0.10

Sc=4.50; a1=0.10

Sc=2.16; a1=0.09

Sc=2.16; a1=0.10

Arm of CANARD versus Sc & a1

PW-111

-16 -14 -12 -10 -8stability margin [% MAC]

-4.0

-2.0

0.0

2.0

4.0

dim

ensi

onle

ss a

rm L

H/c

aCANARD

Classicaltailplane

To reduce instabilityat the CG fixed one had to move

the foreplane back

Page 31: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

31/64

EILAT, May 18-19th 2005Development Development HALE PWHALE PW--11x 11x

PW-111

PW-113

PW-114

Modification to improvelongitudinal stability

Further modification to improvelongitudinal stability

BLENDED HALE UAV (WUT)

PW-114

PW-112

Modification to improvelateral stability

Page 32: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

32/64

EILAT, May 18-19th 2005Development Development HALE PWHALE PW--11x 11x

BLENDED HALE UAV (WUT)

Page 33: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

33/64

EILAT, May 18-19th 2005HALE HALE -- Wing Wing sectionsection

0 0.2 0.4 0.6 0.8 1-0.1

0

0.1

0.2 Global Hawk LRT-17.5 BLENDED HALE UAV (WUT)

transition

sonic line

- 2

- 1

00.5 1.0

C ptransition

Thickness limitation DTE closure

recoveryregion sonic line

- 2

- 1

0

1

0.5 1.0

x/c

supersonic zone

LRT-17.5: (t/c)max=17.5%, Mdes=0.62Redes=1.5*106, Cl des=1.18

Page 34: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

34/64

EILAT, May 18-19th 2005FlapsFlaps, , spoilersspoilers, elevons , elevons

BLENDED HALE UAV (WUT)

Page 35: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

35/64

EILAT, May 18-19th 2005Longitudinal trimming

δelevon=0o

0 2 4 6α0.20

0.40

0.60

0.80

1.00

1.20

C L

δelevon= -10o

δelevon= -15o

δelevon= -11o

PW-114; H=19,5 km; Ma=0.6

δelevon=8o

BEGINING OFTHE PATROL

END OFTHE PATROL

Longitudinal trimmingBLENDED HALE

UAV (WUT)

0.00 2.00 4.00 6.00α-0.20

-0.10

0.00

0.10

0.20

C M

δelevon= -15o

δelevon=0o

δelevon= -10oδelevon= -8o δelevon= -11o

PW-114; H=19,5 km; Ma=0.6

END OFTHE PATROL BEGINING OF

THE PATROL

Page 36: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

36/64

EILAT, May 18-19th 2005

BLENDED HALE UAV (WUT)

Tank I Tank II Tank III Tank IV

I:2000 lII:1500 lIII:1400 lIV:700 l

Σ=5600 l = 4200 kg

Order of empting: I,IV,II,III

Fuel Fuel systemsystem

Page 37: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

37/64

EILAT, May 18-19th 2005

Wing – torque box

Carbon rowing

Sandwich cover

Wing Wing structurestructureBLENDED HALE

UAV (WUT)

Page 38: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

38/64

EILAT, May 18-19th 2005

66fuel installationfuel installation

16.5 16.5 actuatorsactuators

33control surfacescontrol surfaces’’ consoles consoles

7.8 7.8 wingtip with brackets wingtip with brackets

11.5 11.5 control surfaces control surfaces

9696torsion box with fuel ribs, nose torsion box with fuel ribs, nose and antiand anti--icing installationicing installation

[kg][kg]Weights of wing componentsWeights of wing components

Torsion Torsion box box sectionsectionBLENDED HALE

UAV (WUT)

1001009,289,28Torsion box totalTorsion box total

9.59.50,880,88mm66

9,59,50,870,87mm5

6,50,59mm4

343,17mm3

343,17mm2

6,50,60mm1

%Mass [kg]Mass [kg] %

0,60 6,51

3,17 342

3,17 343

0,59 6,542x 140,8 = 2x 140,8 = 281.6 kg281.6 kg

≈≈ 4,5 % of 4,5 % of max TOWmax TOW

Whole wingWhole wing5

Page 39: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

39/64

EILAT, May 18-19th 2005

BLENDED HALE UAV (WUT)

Structure Structure of of fuselagefuselage

Page 40: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

40/64

EILAT, May 18-19th 2005Power Power unitunit

Location and attachment• Compact design• Small interference drag• Small assembly weight• High efficiency of straight intakes• Easy access & simply

maintenance

BLENDED HALE UAV (WUT)

Page 41: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

41/64

EILAT, May 18-19th 2005PW114 PW114 main systemsmain systems

BLENDED HALE UAV (WUT)

Page 42: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

42/64

EILAT, May 18-19th 2005FlutterFlutter

Symmetric mode, fuel in wing only

BLENDED HALE UAV (WUT)

Vkr = 100 m/s

Page 43: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

43/64

EILAT, May 18-19th 2005PW114 &PW114 & Global HawkGlobal Hawk

BLENDED HALE UAV (WUT)

33,533,5

0.320.32

2727

0.240.24

Payload/takePayload/take--off thrust [kg/kN]off thrust [kg/kN]

Payload/empty weight [kg/Payload/empty weight [kg/kgkg]]

15,815,819,919,9Payload/wing area [kg/mPayload/wing area [kg/m22]]304,1304,1314,1314,1Thrust loading [kg/kN]Thrust loading [kg/kN]143143231,5231,5Wing loading [kg/mWing loading [kg/m22]]20,920,93737TakeTake--off thrust [kN]off thrust [kN]635063501162211622TakeTake--off weight [kg]off weight [kg]4150415065836583Fuel weight [kg]Fuel weight [kg]70070010001000Payload [kg]Payload [kg]2200220041774177Empty weight [kg]Empty weight [kg]17,717,725,125,1Aspect ratioAspect ratio44,444,450,250,2Wing area [mWing area [m22]]282835,435,4Wing span [m]Wing span [m]PWPW--111144GHGHparameterparameter

Comparison

Page 44: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

44/64

EILAT, May 18-19th 2005Aerodynamic comparisonAerodynamic comparison

0.00 0.02 0.04 0.06 0.08

CD0.0

0.4

0.8

1.2

1.6 CL

Polar curveHALE modular (IAI)HALE BW - PW-113 (WUT)

HALE modular, W=6000 kg

CL=0.8, CD=0.0270,PW-113, WH=0=4350 kg

CL=1.1, CD=0.0359, K=31.25

K=29.6 (H=15km)

BLENDED HALE UAV (WUT)

Page 45: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

45/64

EILAT, May 18-19th 2005

MODULAR HALE UAV (IAI)

A MultiA Multi--Role HighRole High--Altitude LongAltitude Long--Endurance AircraftEndurance Aircraftfor Civil and Parafor Civil and Para--military Missionsmilitary Missions

–– Modular twin jet aircraft concept Modular twin jet aircraft concept (2 engines to improve reliability)(2 engines to improve reliability)

–– Mission endurance Mission endurance ----> 24 hr at 1000km range> 24 hr at 1000km range

–– 500 kg interchangeable payload bay 500 kg interchangeable payload bay (The modular concept)(The modular concept)

–– Payload power 8kW MAXPayload power 8kW MAX

–– 65000 ft MAX ceiling altitude65000 ft MAX ceiling altitude

–– MAX Cruise speed 0.65 MACH at 60kftMAX Cruise speed 0.65 MACH at 60kft

Modular HALE Modular HALE -- UAVUAV

Page 46: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

46/64

EILAT, May 18-19th 2005

MODULAR HALE UAV (IAI)

Configuration FeaturesConfiguration Features

Page 47: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

47/64

EILAT, May 18-19th 2005RequirementsRequirements

Performance requirements (Starting point) MODULAR HALE

UAV (IAI)

Page 48: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

48/64

EILAT, May 18-19th 20053 3 views Drawingviews Drawing

MODULAR HALE UAV (IAI)

Page 49: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

49/64

EILAT, May 18-19th 2005Structural Structural designdesign

MODULAR HALE UAV (IAI)

Page 50: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

50/64

EILAT, May 18-19th 2005FuselageFuselage

MODULAR HALE UAV (IAI)

Page 51: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

51/64

EILAT, May 18-19th 2005

meshed body:7386 body panels

body

By WUT

Aerodynamic analysisAerodynamic analysis

MODULAR HALE UAV (IAI)

Page 52: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

52/64

EILAT, May 18-19th 2005

MODULAR HALE UAV (IAI)

Wing Wing structure conceptstructure concept

Page 53: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

53/64

EILAT, May 18-19th 2005

FEM ANALYSIS BY POLITO

DISPLACEMENT RESULTS

WING BOX BUCKLING

Wing Wing structure analysisstructure analysisMODULAR HALE UAV (IAI)

Page 54: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

54/64

EILAT, May 18-19th 2005Avionics Avionics systemsystem

MODULAR HALE UAV (IAI)

Page 55: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

55/64

EILAT, May 18-19th 2005CommunicationCommunication systemsystem

MODULAR HALE UAV (IAI)

Page 56: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

56/64

EILAT, May 18-19th 2005

MODULAR HALE UAV (IAI)

PayloadPayload

Page 57: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

57/64

EILAT, May 18-19th 2005PayloadPayload

MODULAR HALE UAV (IAI)

Page 58: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

58/64

EILAT, May 18-19th 2005ConclusionConclusion & & RecommendationsRecommendations

HALE UAV

Page 59: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

59/64

EILAT, May 18-19th 2005ConclusionConclusion&&recommendationsrecommendations

HALE UAV

Page 60: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

60/64

EILAT, May 18-19th 2005ConclusionConclusion & & RecommendationsRecommendations

HALE UAV

Page 61: High Altitude Long Endurance UAV ConfigurationsHigh Altitude Long Endurance UAV Configurations: Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions Giulio

61/64

EILAT, May 18-19th 2005ConclusionConclusion&&recommendationsrecommendations

HALE UAV