ece606: solid state devices lecture 16 p-n diode ac...

23
Klimeck – ECE606 Fall 2012 – notes adopted from Alam ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck [email protected] Klimeck – ECE606 Fall 2012 – notes adopted from Alam Topic Map 2 Equilibrium DC Small signal Large Signal Circuits Diode Schottky BJT/HBT MOSFET Diode in Non-Equilibrium (External DC+AC voltage applied)

Upload: others

Post on 10-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

ECE606: Solid State DevicesLecture 16

p-n diode AC Response

Gerhard [email protected]

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Topic Map

2

Equilibrium DC Small signal

Large Signal

Circuits

Diode

Schottky

BJT/HBT

MOSFET

Diode in Non-Equilibrium(External DC+AC voltage applied)

Page 2: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Why should we study AC Response?

3

Series Resistance

Conductance

Diffusion Capacitance

Junction Capacitance

www.sci-toy.com

Motivation

Radio

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

4

1) Conductance and series resistance

2) Majority carrier junction capacitance

3) Minority carrier diffusion capacitance

4) Conclusion

Ref. SDF, Chapter 7

Page 3: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Forward Bias Conductance

5

( )( )/ 1A Sq V R I moI I e −= −β

0

1

( )FBS

m

q IgR

Iβ+

+=

0

ln ( )oA S

I Iq V R I

I m

β+ = −

( )A

So

m dVR

q I I dI= −

RS

G

CJ

V

2

45

1

3

6,7

ln(I)

Cdiff

m = RG (2), diff (1), Ambipolar (2)

Forward Bias Conductance

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reverse Bias Conductance

6

( )( )/

0

1A Sq V R I moI I e

I

−= −

≈ −

β

02i

bi A

qnB V V

τ− −

01

2i

RB bi A

qn B

g V Vτ=

02i

bi A

qnB V V

τ− −

RS

G

CJ

Cdiff

V

2

45

1

3

6,7

ln(I)

Reverse Bias Conductance

Page 4: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

7

1) Conductance and series resistance

2) Majority carrier junction capacitance

3) Minority carrier diffusion capacitance

4) Conclusion

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Junction Capacitance

8

VDC

Series Resistance

Conductance

Diffusion Capacitance

Junction Capacitance

Depletion width modulation

Charge modulation

Majority carrier effect

Forward biased diode + AC signal

Fn

Fp

VA> 0

VA< 0

Page 5: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Majority Carrier Junction Capacitance

9

0 0

0 02 2( )

s sJ

n p s sbi A

D A

K A K AC

W W K KV V

qN qN

= =+

+ −

ε εε ε

Cj

Va

Measure

0

x

∆ρ

x

∆ρ

VA < 0

VA > 0

Series Resistance

Conductance

Diffusion Capacitance

Junction Capacitance

Majority Carrier Junction Capacitance

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Measurement of Built-in Potential

10

2 20

1 2( )

( ) AJ D s

biV VC qN x K Aε

≈ −

plot CJ-2

VA

measureCJ

VA

(Assume single sided p+-n junction)

Vbi

Derive Vbi from CJmeasurements

Page 6: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

.. And Variable Doping

11

2 20

2

( )(

1)bi

sDA

J

V VNq KC Ax ε

≈ −

plot CJ-2

VA

measureCJ

VA

Charge

VA<0VA=0

VA>0

220

2 1

(1 )( )

s AJD qK A d C

NV

xdε

=

Measure doping concentration as a function of position

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Dielectric Relaxation Time (majority side)

12

1 nn n

dn dJR G

dt q dx= − +n N NJ qn E qD n= + ∇µ

VDC

( ) ( )1 ND N

d n d qn dN

dt q dx dx

µµ

∆= =

E E

( )00

D AS

d qp n n N N

dx k ε= − − ∆ + −E

( )0 0

0D

S S

NqNd n nn

dt k kεµ

εσ∆ ∆= − ∆ = −

0

00 0( ) S d

t t

kn t n e n eε τσ− −

∆ = =

0 0.1 pssd

K ετ = ≈σVery fast

How long does it take for the signal to cross the junction?

Majority side Neglect

N-side

Page 7: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

13

1) Conductance and series resistance

2) Majority carrier junction capacitance

3) Minority carrier diffusion capacitance

4) Conclusion

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Diffusion Capacitance for Minority Carriers

14

1 nN N

n dJr g

t q dx

∂ = − +∂

N N N

dnqn qD

dxµ= +J E

( ) ( )20 0

2

j t j t j tdc ac dc ac dc ac

N

n

n n n e d n n n e n n eD

t dx

∂ + ∆ + ∆ + ∆ + ∆ ∆ + ∆= −∂

ω ω ω

τ

VDC

np

x

Minority Carrier side

DC AC

ACAC

Page 8: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Diffusion Capacitance for Minority Carriers

15

( ) ( )20 0

2

dc dj t j t

acc dcN

j tac

n

acn e nn d nD

t d

n n

x

e n en ωω ω

τ∂ + + + + += −

∂∆∆ ∆∆∆ ∆

2 2

2 2ac dc ac

ac Ndcj t j t j

n

t

n

d dn n n nj n D

d dxe

xe eω ω ωω

τ τ∆ ∆ ∆ ∆∆ = + − −

2

2C 0D : n n

x x

dc dcN

n

L Ldcn Ae B

d n nD

dxe

τ− +∆ ∆

⇒ ∆ +− ==

( )2

2* * *AC : 0 1 n n n

x x x

L L Lac acN an

nc

d n nD j

dn Ce De C

xeωτ

τ− + −

⇒∆ ∆ ∆ = +− + →=

( ) ( )* */ 1 / 1n n n n n n nL D j jτ ωτ τ τ ωτ= + = +

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

AC Boundary Conditions

16

( )

2

2

( 0) 1

1

j tac

c

d

d

c V e

qVi kT

dcA

qkTj t

ac j tA ac

Vi

dc n

nn x e

N

eenp e

n

N

ω

ωω

+

∆ = = −

∆ + =

+ ∆ −∆

( )2

1dc

j tacqV q

i kT kTdc a

V e

cA

j t nn n ee e

N

ω

ω

∆ + ∆ ≈ −

2

( 0)dcqV

ac kTac

i

A

qVn x e C

kT

n

N∆ = = =

2

1 1dcqV

ackit

T

A

jqVe

n e

N kT

ω ≈ + −

xn

n

Taylor expansion

Page 9: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

AC Current and Impedance

17

2

*0

dcqVac n i kT

ac nx n A

acVd n qD q nJ qD e

dx L kT N=

∆= − =

2

( 0)dcqV

ac i kTac

A

qV nn x e

kT NC∆ = = =

2 2

0*1

dcq

nn

Vac n i kT

acac A

J q D nY e G

V kTj

NLωτ+= = ≡

* * *( ) n n n

x x x

L L Lacn x e De eC C

− + −∆ = + →Finally…

AC Impedance

AC Current

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Diffusion Conductance and Capacitance

18

1/ 22 20

1/ 22 20

1 12

1 12

D n

D n

GG

GC

τ

ω ω

ω

τ

= + +

= + −

0 1ac D D nY G j C G j= + ≡ +ω ωτ

Separate in real & imaginary parts …

DG ω∝

1/DC ω∝Product of GD and CDfrequency-independent

Page 10: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Small Signal pn-diodeConclusion

19

1) Small signal response relevant for many analog

applications.

2) Small signal parameters always refer to the DC operating

conditions, as such the parameter changes with bias

condition.

3) Important to distinguish between majority and minority

carrier capacitance. Their relative importance depends on

specific applications.

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

ECE606: Solid State Devicesp-n diode

Large Signal Response

Gerhard [email protected]

Page 11: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Topic Map

21

Equilibrium DC Small signal

Large Signal

Circuits

Diode

Schottky

BJT/HBT

MOSFET

Digital Signals:switch on and off

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

22

1) Large signal response and charge control model

2) Turn-off characteristics

3) Turn-on characteristics

4) Other applications

5) Conclusion

Ref. SDF, Chapter 8

Page 12: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Digital, Large Signal Applications

23

V

ln(I)

‘1’ to ‘0’

‘0’ to ‘1’

1-2

---:If transition is very fast

AV‘1’:1V‘0’:-2V

:If transition is slow, every point is in quasi-equlibrium�treat them like DC

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

A Closer Look to Fast Transition

24

V

ln(I)

‘1’ to ‘0’

AV‘1’:1V‘0’:-2V

-0.1IR

-IR

IF

tstrr

tr

i(t)

t

VA(t)

1-2

Before transition occur

constant voltage, current change from IF to IR

constant current, voltage change form 1V to 0V

Page 13: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Definitions

25

ts … Charge storage time

tr … Recovery time

trr .. Reverse recovery time-0.1IR

-IR

IF

tstrr

tr

i(t)

t

VA(t)

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Continuity Equations

26

1P P P

pr g

t q

∂ = ∇ • − +∂

J

( )D AD q p n N N+ −∇ • = − + −

P P Pqp qD pµ= − ∇J E

1N N N

nr g

t q

∂ = ∇ • − +∂

J

N N Nqn qD nµ= + ∇J E

Full analytical solution impossible for large signal….

,n n

n diffn

Q Qi

t

∂ = −∂ τ

,p p

p diff

n

Q Qi

t

∂= −

∂ τ

Charge control equations:Approximation when you havelarge transient response

Page 14: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

forward bias, minority carrier has been injected

How Does Current Flip Without Voltage Flipping?

27

VDC

n(x,t)

x

n(x,t)

x

Recombination�n(x,t) exponentially dying outWhere did the charge go?

1. Back to the left-hand side2. Recombine with the trap and the

majority carrier

n(x,t)

x

When voltage start to change, n(x,t) suddenly bended downwards, dn/dxchange sign and current flip from p�n to n�p

0<dx

dn

0>dx

dn

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Large Signal Charge Control Model

28

1 nN N

n dJr g

t q dx

∂ = − +∂ N N N

dnqn qD

dxµ= +J E

( ) ( )2

2Nn

n d n nD

t dx τ∂ ∆ ∆ ∆= −

minority carrier

Page 15: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Large Signal Charge Control Model

29

( )0

pW

Q qA n dx≡ ∆∫

( ) ( )2

2Nn

n d n nD

t dx τ∂ ∆ ∆ ∆= −

( ) ( )0p

N Nnx W x

d qA n d qA nQ QD D

t dx dx= =

∆ ∆∂ = − −∂ τ

diffn

Q Qi

t

∂ = −∂ τ

Area under thecurve @ given time

n(x,t)

xx(qA), integrate

Current going out Current coming in

Recombination

( ) ( )0 0 0

p n nW W W

Nn

dx dx dxd

ddD

t

qAqA n n n

dx x

qA

τ∆∂

= −∂

∆∆∫ ∫ ∫

pW pW

(Total charge that is building in)=(net electrons flowing in) – (recombination)

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

30

1) Large signal response and charge control model

2) Turn-off characteristics

3) Turn-on characteristics

4) Other applications

5) Conclusion

Page 16: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Turn-off Characteristics: Determine (ts)

31

diffn

Q Qi

t

∂ = −∂ τ

(0 )0 F

n

Q Qt I

t

−∂< = −∂ τ

AV‘1’‘0’

P

N

S R

VRVF

IF

IR

Vj

+

-

-0.1IR

-IR

IF

tstrr

tr

i(t)

Why does the current remain constanteven with t>0?

=0 (Time Independent)

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Boundary Condition

32

diffn

Q Qi

t

∂ = −∂ τ

(0 )0 F

n

Q Qt I

t

−∂< = −∂ τ

(0 ) (0 )F nQ I Q− += =τ

Note. For a capacitor, voltage can not change instantly. So charge can not change instantly ….

AV‘1’‘0’

P

N

S R

VRVF

IF

IR

Vj

+

-

=0

Page 17: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Turn-off Current Transient

33

P

N

S R

VRVF

IF

IR

Vj

+

-

Since Vj can’t be larger than the band gap, which is smaller than VR, the diode will be forced to supply the negative current IR

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Turn-off Current Transient

34

diff

n

Q Qi

t

∂ = −∂ τ

0 Rn

Q Qt I

t

∂> = − −∂ τ

( )

(0 ) 0

s sQ t t

QR

n

dQdt

QI+

=

− +

∫ ∫τ

(0 ) /ln

( ) /R n

s n

R s n

I Qt

I Q t

++=+

τττ

P

N

S R

VRVF

IF

IR

Vj

+

-

n(x,t)

x

n(x,t)

x

Approximately constant!

See how the slope change

Page 18: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Storage Time

35

(0 ) /ln ln

( ) /R n R F

s n n

R s n R

I Q I It

I Q t I

++ += =+

ττ ττ

V

ln(I)

‘1’ to ‘0’

‘0’ to ‘1’

P

N

S R

VRVF

IF

IR

Vj

+

-

n(x,t)

x

Shorten it for fast response!

A

i

N

n2

Q(ts)

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Turn-off Voltage Transient

36

(0, )( ) ln p

Apo

n tkTt

q nυ =

( )/( ) ln ( ) pt

n p R R FQ t I I I e−= − + + ττ

Allows easy calculation of np(0,t).

t

Va

(t)

ts

P

N

S R

VRVF

IF

IR

Vj

+

-

n(x,t)

x

Page 19: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Recovery Time

37

1 0.1

r

p

t

r F

p Rr

p

t e Ierf

It

+ = +τ

τ πτ

V

ln(I)

‘1’ to ‘0’

‘0’ to ‘1’

tr0.51.27 0.15

1 0.15( ) 1 ex

xxerf x

+−+

= −

Useful formula …

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Recovery Time

38

V

ln(I)

‘1’ to ‘0’

‘0’ to ‘1’

tr

22

2

( )2

( )2

p Rp n

n F

rr r f

p Rp n

F

W IW L

D It t t

IW L

I

= + ≈

τ

Ref. Sze/Ng, p. 117

ts

Page 20: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

39

1) Large signal response and charge control model

2) Turn-off characteristics

3) Turn-on characteristics

4) Other applications

5) Conclusion

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Turn-on Characteristics: Boundary Condition

40

diffn

Q Qi

t

∂ = −∂ τ

( )F

n

Q Q tt I

t

∂ = ∞→ ∞ = −∂ τ

( ) F nQ t I= ∞ = τ

AV‘1’‘0’

P

N

S R

VRVF

IF

IR

Vj

+

-

Page 21: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Turn-on Characteristics

41

diffn

Q Qi

t

∂ = −∂ τ

0 Fn

Q Qt I

t

∂> = −∂ τ

( ) ( ) 1 1n n

t t

F nQ t Q t e I e− −

= → ∞ − = −

τ ττ

np(x,t)time

x

P

N

S R

VRVF

IF

IR

Vj

+

-

Check:Q(t=0)=0Q(t �∞)=IF τn

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

42

1) large signal response and charge control model

2) turn-off characteristics

3) turn-on characteristics

4) other applications

5) conclusion

Page 22: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Diffusion Time

43

diff

n

Q Qi

t

∂ = −∂ τ

(0 ) ( )

dififf

fd

Q Q ti

τ

+ − = ∞ =

2

2p

n

W

D=

np(x,t)

x

Q(0+)

Wp(0)

2(0 )(0)di

p

d

p

pn

ff

p

iff

nq W

Qn

qDW

+

∆ = = ∆

Diffusion velocity

No recombination( , ) 'n x t C Dx∆ = +

Electrons get scattered to the other side, the average time is…

)/(2

1~

pn

p

WD

Only half of themgoes to the right

recombination

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Two line derivation of Steady State Diode Current

44

diffn

Q Qi

t τ∂ = −∂

ddiff

iff

Qi

τ=

( )( )

2

2

2

11

2

12

A

AqVn idif

qV

f

ip

diff p p A

A

n

nq e W

D nQi q e

W

D

N

NWβ

β

τ

× −=

×= = −

np(x,t)

x

Q

Exact Expression!

n diffτ τ→

Page 23: ECE606: Solid State Devices Lecture 16 p-n diode AC Responseee606/downloads/ECE606_f12_Lecture16.pdf · ECE606: Solid State Devices Lecture 16 p-n diode AC Response Gerhard Klimeck

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Large Signal pn-diodeConclusion

45

Large signal response of devices of great importance for digital applications.

Analytical solution of partial differential equation often difficult (if not impossible), therefore approximate methods like Charge-control approximation often help simplify the solution and still provide a great deal of insight into the dynamics of switching operation.

Be careful in using the boundary condition which is often dictated by external circuit conditions.