ece606: solid state devices lecture 20: electrostatics n

29
www.nanohub.org NCN ECE606: Solid State Devices ECE606: Solid State Devices Lecture 20: Electrostatics of pn junction diodes Mh dAh f lAl MuhammadAshraful Alam [email protected] Alam ECE606 S09 1

Upload: others

Post on 02-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE606: Solid State Devices Lecture 20: Electrostatics n

www.nanohub.orgNCN

ECE606: Solid State DevicesECE606: Solid State DevicesLecture 20: Electrostatics of p‐n junction diodes

M h d A h f l AlMuhammad Ashraful [email protected]

Alam  ECE‐606 S09 1

Page 2: ECE606: Solid State Devices Lecture 20: Electrostatics n

Outline

1) Introduction to p‐n junctions

2) Drawing band‐diagrams ) g g

3) Accurate solution in equilibrium

4) Band diagram with applied bias4) Band‐diagram with applied bias

f d d l hRef. Semiconductor Device Fundamentals, Chapter 5

Alam  ECE‐606 S09 2

Page 3: ECE606: Solid State Devices Lecture 20: Electrostatics n

What is a Diode good for ….

solar cells GaAs lasers

Organic LED

GaN lasersAvalanche Photodiode GaN lasersAvalanche Photodiode

Image google com

Alam  ECE‐606 S09 3

Image.google.com

Page 4: ECE606: Solid State Devices Lecture 20: Electrostatics n

p‐n Junction Devices …

Symbols

N PN P

N

AN

DN

Alam  ECE‐606 S09 4

Page 5: ECE606: Solid State Devices Lecture 20: Electrostatics n

Topic Map

Equilibrium DC Small Large CircuitsEquilibrium DC Small signal

Large Signal

Circuits

Diode

Schottky

BJT/HBT

MOS

Alam  ECE‐606 S09 5

Page 6: ECE606: Solid State Devices Lecture 20: Electrostatics n

Drawing Band Diagram in Equilibrium…

( )+ −∇• = − + −D AD q p n N N

1n∂

equilibrium

1N N N

n r gt q

∂= ∇• − +

∂J

J μ= + ∇N N Nqn E qD n DC dn/dt=0

1∂ −= ∇• − +

∂JP P P

p r gt q

J μ + ∇N N Nqn E qD n DC  dn/dt 0Small signal dn/dt ~ jωt x n 

Transient ‐‐‐ full solution∂t q

P P Pqp E qD pμ= − ∇J

Alam  ECE‐606 S09 6

Page 7: ECE606: Solid State Devices Lecture 20: Electrostatics n

P and N doped Material Side by Side … 

N‐dopedE P‐doped

Conduction BandEc

EEF

Conduction Band

EFValence Band

EVValence Band

N l t t f d

Alam  ECE‐606 S09 7

k‐kNo electron transfer under

ordinary circumstances!

Page 8: ECE606: Solid State Devices Lecture 20: Electrostatics n

Forming a Junction

DN AN

=n N

D A

= Ap N= Dn N

Junctionx

Ap2

0 = Ain n N

Actual Carrier Concentrations

n-side p-side

n p

ln(n),ln(p) n

pln(p)

Alam  ECE‐606 S09 8

Bulk Region Bulk RegionDepleted Region x

Page 9: ECE606: Solid State Devices Lecture 20: Electrostatics n

Formation of a Junction 

DN AN+

ln(ND) ln(NA)

ln(n)

ln(NA)

ln(p)

Q=p‐n+ND‐NA

qND Depleted RegionQ p D A

Bulk Region Bulk Region

Alam  ECE‐606 S09 9

Bulk Region

-qNA

Bulk Region

xn xp

Page 10: ECE606: Solid State Devices Lecture 20: Electrostatics n

Sketch of Electrostatics

position

Potential Vbi

E‐fieldmax ε ε

= =os s

npo

A Dx N qEK

xK

Nq

position

E field

p-n+ND-NAqND

Depleted Region

position

10

position

Bulk Region-qNA

Bulk Regionxpxn

Page 11: ECE606: Solid State Devices Lecture 20: Electrostatics n

Sketch of Electrostatics 

Potential xn xp

position

Band Diagram

position

Alam  ECE‐606 S09 11

Page 12: ECE606: Solid State Devices Lecture 20: Electrostatics n

Outline

1) Introduction to p‐n junctions

2) Drawing band‐diagrams

3) Analytical solution in equilibrium

4) Band‐diagram with applied bias

Alam  ECE‐606 S09 12

Page 13: ECE606: Solid State Devices Lecture 20: Electrostatics n

Short‐cut to Band‐diagram 

Neutral NeutralSpace Charge

DN ANVacuum levelVacuum level

Eχ2

EC

EEF

χ1

EV

Alam  ECE‐606 S09 13

… is equivalent to solving the Poisson equation

Page 14: ECE606: Solid State Devices Lecture 20: Electrostatics n

Built‐in Potential: boundary conditions @infinity

qVbi χ2

Δ1

χ1

χ2

Eg,2

Δ2

1 1 2 2 2χ χ+ + =Δ Δ+ −gb ,i EqV

2 1 12 2 χχΔ Δ= − − + −g ,bi EqV

( )2

11

2 2 χχ⎛ ⎞

= + + + −⎜ ⎟⎜ ⎟⎝ ⎠

B BA

g ,V , C ,

Dk T ln kNNT ln

NNE

Alam  ECE‐606 S09 14

( )2

2 112 χχ−= + −

g , BB ED

TC

A/ k

V , ,

k T lnN N e

NN

Page 15: ECE606: Solid State Devices Lecture 20: Electrostatics n

Interface Boundary Conditions

iti

D

E = (D/kεo)

positionxn xp

positionxn xp

01 0 21 2(0 ) (0 )ε ε− −= = =EKD E DK

K2

1

(0 ) (0 )− +=K

E EK

Alam  ECE‐606 S09 15

Displacement is continuous across the interface, field need not be ..

Page 16: ECE606: Solid State Devices Lecture 20: Electrostatics n

Built‐in voltage for Homo‐junctions

Neutral NeutralSpace Charge

DN AN

qVVacuum level

E

χ1χ1

qVbi

EC

EVEF

χ1

16

( )2 2 1

2 1

χ χ−= + −g , Bbi B E / k T

V , C

A D

,

qV k T lnN N e

N N2−= =

g B

A AB BE / k T

C

D D

iV

k T ln k T lnnN N eNN NN

Page 17: ECE606: Solid State Devices Lecture 20: Electrostatics n

Analytical Solution of Poisson Equation

NDepleted  Region

Q=p‐n+ND‐NA

qND

‐qNAp D Aposition

xn xp

( )2d VK q p n N N+ −= − − + −ε ( )0 2S D AK q p n N N

dx= +ε

Alam  ECE‐606 S09 17

Page 18: ECE606: Solid State Devices Lecture 20: Electrostatics n

Analytical Solution for Homojunctions

(Charge)p-n+ND-NA

qND -qNA ( )0

− = D

s

nqNEk

x

xn xp

position ( )0

+ = A

s

pqNk

xE

E‐field ⇒ =D An pN x N x

positionPotential ( ) ( )0 0

2 2

− +

= +n pbi

E x E xqVVbi

position 22

0 0

2 2

2 2ε ε= + AD pn

s s

qN xxqNk k

Small !

Alam  ECE‐606 S09 18

Small !

Page 19: ECE606: Solid State Devices Lecture 20: Electrostatics n

Depletion Regions in Homojunctions

N N

Neutral NeutralSpace Charge

xn xp

DN AN

=D AxN N x 02 εs Ak N V

22

+ A pnD qNqqxN xV

D pn AxN N x( )

0=+

s A

D An

Dbix

N NV

q N

2 εk N0 02 2ε ε

= +bis

p

s

nDqk k

V( )

02 ε=

+s D

A Ap

Dbi

k NxN N

Vq N

Alam  ECE‐606 S09 19

HW: Solve the same problem for a hetero-junction

Page 20: ECE606: Solid State Devices Lecture 20: Electrostatics n

Complete Analytical Solution)( AD NNq=ρ

N Px

)( AD NNq −=ρ0=ρ0=ρ

-xp 0 xn

x

qND

ρ E

V

qND

xn

-xp -xp xn0x x x

-xp xn

-qNA..........

................

0

ε

−−⎧ ≤ ≤

⎪⎪= ≤ ≤⎨

A

os

D

o

qNpK

qNnK

x xd x xdE

............. ,0ε⎨

⎪≤ − ≥⎪⎩

osK

p n

dxx x x x( )

00

εε−

′ ′= −∫ ∫ p

x xA

xS

qNd dxK

E 0

( )0

εε

ε′ ′=∫ ∫

nxD

x xS

qd N dxK

Alam  ECE‐606 S09 20

..........

0

( ) ( ) 0ε

= − + − ≤ ≤ppS

Aqx N x x x xK

E ..........

0

( ) ( ) 0ε

= − − ≤ ≤D nnS

qx x xN x xK

E

Page 21: ECE606: Solid State Devices Lecture 20: Electrostatics n

Outline

1) Introduction to p‐n junction transistors) p j

2) Drawing band‐diagrams 

3) Analytical solution in equilibrium3) Analytical solution in equilibrium

4) Band‐diagram with applied bias

Alam  ECE‐606 S09 21

Page 22: ECE606: Solid State Devices Lecture 20: Electrostatics n

Topic Map

Equilibrium DC Small Large CircuitsEquilibrium DC Small signal

Large Signal

Circuits

Diode

Schottky

BJT/HBT

MOS

Alam  ECE‐606 S09 22

Page 23: ECE606: Solid State Devices Lecture 20: Electrostatics n

Applying Bias to p‐n Junction 

3ln(I) 1 Diff i li it d2

1

3( ) 1. Diffusion limited

2. Ambipolar transport

V

1

6,73. High injection

4. R-G in depletionVA 4. R G in depletion

5. Breakdown

4

5

6. Trap-assisted R-G

7. Esaki Tunneling

Alam  ECE‐606 S09 23

Page 24: ECE606: Solid State Devices Lecture 20: Electrostatics n

Forward and Reverse Bias

DN AN

Forward Bias

DN AN

Reverse Bias

Alam  ECE‐606 S09 24

Page 25: ECE606: Solid State Devices Lecture 20: Electrostatics n

Band Diagram with Applied Bias…

( )D AD q p n N N+ −∇• = − + −

1n∂

Band diagram (now) …

1N N N

n r gt q

∂= ∇• − +

∂J

J μ= + ∇N N Nqn E qD n

1P P P

p r gt q

∂= − ∇• − +

∂J

J μ + ∇N N Nqn E qD nNext class …

t q∂

P P Pqp E qD pμ= − ∇J

Alam  ECE‐606 S09 25

Page 26: ECE606: Solid State Devices Lecture 20: Electrostatics n

Applying a Bias: Poisson Equation

qVbi

Max value of V ?

EF-EV

EC-EF

Max value of Vbi?

( )( ) β−= in EFn x n e

E F

q(Vbi-V)( )

( )

( ) β− −

=

=

i

p i

ni

Fi

E

n x n e

p x n eEC-Fn

Fp-EV

-qV ( )2 β−× = pn FFin p n e

Alam  ECE‐606 S09 26

Page 27: ECE606: Solid State Devices Lecture 20: Electrostatics n

Depletion Widths

GND-V DN AN

xn xp

N = N xx ( )02 ( )s A

bin

k NV

q N N NVx

ε= −

+

( )22

ADbi

n pqNqNVq V

xx− = +

D A pnN = N xx ( )D A Dq N N N+

2k Nε( )0 02 2bi

s s

Vq Vkk ε ε

+( )

02 ( )s Dbi

A A Dp

k NV

q N N NVx

ε= −

+

Alam  ECE‐606 S09 27

What about heterojunctions? 

Page 28: ECE606: Solid State Devices Lecture 20: Electrostatics n

Fields and Depletion at Forward/Reverse BiasesVA<0

Charge

VA=0VA>0

NP

VA<0VA=0

VA>0

Barrier height is reduced

Electric Field

Position

V 0

Barrier height is reduced at forward biases

Position

VA<0VA=0

VA>0Significant increase of peak field at reverse bias …

PotentialVA<0VA=0VA>0

Alam  ECE‐606 S09

Position

Page 29: ECE606: Solid State Devices Lecture 20: Electrostatics n

Conclusion

1) Learning to draw band‐diagram is one of the most1) Learning to draw band diagram is one of the most 

important topic you learn in this course. Band‐diagram 

i hi l f i kl l i P i iis a graphical way of quickly solving Poisson equation. 

2) If you consistently follow the rules of drawing band‐

diagrams, you will always get correct results. Try to 

follow the rules, not guess the final result.

Alam  ECE‐606 S09 29