cmos-mems

Upload: javed-hussain

Post on 07-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 CMOS-MEMS

    1/28

    0

    CMOSCMOS--MEMS Inertial Sensors and TheirMEMS Inertial Sensors and Their

    ApplicationsApplications

    Hongwei Qu

    Department of Electrical and Computer Engineering

    Oakland University

    Rochester, Michigan

    Huikai XieDepartment of Electrical and Computer Engineering

    University of FloridaGainesville, Florida

    2007 CMOS Emerging Technology Workshop, Whistler, BC Canada, July 12, 2007

  • 8/3/2019 CMOS-MEMS

    2/28

    1

    Outline

    Introduction

    MEMS and CMOS-MEMS Technologies

    Thin-Film CMOS-MEMS

    DRIE CMOS-MEMS

    Process Development and Improvement

    Integrated CMOS-MEMS Inertial Sensors

    MEMS Inertial Sensors: Applications

    3-Axis Accelerometer

    Design, Fabrication and Characterization

    Integrated Gyroscope Introduction Design and Fabrication

    Summary

  • 8/3/2019 CMOS-MEMS

    3/28

    2

    Introduction: MEMS Fabrication

    General MEMS Services

    MUMPs

    MEMS Exchange

    SUMMiT

    MOSIS

    Limitations

    Most are for surface MEMS

    Poly-Si based structures

    Size limitation

    Large parasitic

    Wet release Other Technologies

    SOI

    Wafer/glass bonding

    SUMMiT IV technology. Source: Sandia

    SiO2 (0.63m)Si3N4 (0.8m)

    MMPoly0 (0.3m)

    SACOX2

    (0.5m TEOS)

    11m

    Non-CMOS compatibility!

  • 8/3/2019 CMOS-MEMS

    4/28

    3

    Introduction: CMOS-MEMS

    CMOS-MEMS Technologies

    Full CMOS compatibility

    Low cost through mainstream CMOS foundries, no assembling

    High integration, high overall performance

    Multi-functional devices

    Technological Approaches

    Pre-CMOS (Sandia)

    Intra-CMOS (iMEMS, ADI)

    Post-CMOS (No foundry limit)

    Additional layers to CMOS

    Post-CMOS refractory metal/Poly Si deposition (not traditional

    CMOS process- no metallization )

    Post-CMOS SiGe/Ge deposition

    Post-CMOS etch (Wet or dry)

    Pre-CMOS Source: Sandia

  • 8/3/2019 CMOS-MEMS

    5/28

    4

    Post-CMOS MEMS: Prototyping Flow

    Post-CMOS Device Design and Fabrication Flow

    Electrical

    Design

    Structural

    and ProcessDesign

    Device Design

    FoundrySelection

    CMOS FoundryProcess

    Post-CMOS

    Microfabrication

    Tape-out

    Wafer or die level

    No harm to CMOS

    Device Package

    and

    Characterization

    Technological

    Requirements

  • 8/3/2019 CMOS-MEMS

    6/28

    5

    Dry Post-CMOS MEMS

    Particular Features

    Multiple metal layers

    Flexibility in wiring and low parasitics

    Maskless dry process

    Previous Approaches

    Thin film post-CMOS technology

    Easy process

    Curled structure

    Temperature dependence

    Size limit (400 m420 m)

    Release holes needed small proof

    mass

    DRIE post-CMOS technology

    Bulk MEMS performance with thin-film

    MEMS footprint

    Wu et al, IEEE Solid-state Circuits, 2004

  • 8/3/2019 CMOS-MEMS

    7/28

    6

    Backside etch.

    DRIE CMOS MEMS Technology

    Metal 4 removal by wet etch.Chips from TSMC foundry.

    DRIE Post-CMOS MEMS: Process Flow

    Performing thin film undercut andSCS structure etch independently

    1st SiO2 etch

    Si DRIE undercut of isolation beams

    Si DRIE for device release

    No undesired undercut

    2nd SiO2 etch

    Metal 4 is usedCMOS region

    Thin film

    region

    Other MEMS

    structures

    Qu et al, IEEE Sensors, 2004

  • 8/3/2019 CMOS-MEMS

    8/28

    7

    DRIE CMOS MEMS Technology

    Technical Issues

    Timing controlled etch

    Overheating of suspended

    structures

    Contamination

    Isolation trench

  • 8/3/2019 CMOS-MEMS

    9/28

    8

    Backside etch.

    DRIE CMOS MEMS Technology

    Metal 4 removal by wet etch.Chips from TSMC foundry.

    1st SiO2 etch

    Si DRIE undercut of isolation beams

    Improved DRIE CMOS-MEMS

    PR coating

    Other material

    Footing effect

    PR ashing for device release

    H. Qu, et al, Solid State Sensors Workshop, Hilton Head Island, 2006

  • 8/3/2019 CMOS-MEMS

    10/28

    9

    Transition

    Introduction CMOS-MEMS Technology Thin-Film CMOS-MEMS

    DRIE CMOS-MEMS Process Improvement

    Integrated CMOS-MEMS Inertial Sensors MEMS Inertial Sensors: Applications

    3-Axis Accelerometer Design, Fabrication and Characterization

    Integrated Gyroscope Introduction

    Design and Fabrication

    Summary

  • 8/3/2019 CMOS-MEMS

    11/28

    10

    MEMS Inertial Sensors

    Applications: Everywhere in modern life Vehicle safety

    Seismetic and Engineering monitoring

    Health/Athletic monitoring Virtual reality, image stabilization

    Logistic, transportation

    Consume electronics (PC, Playstation)

    Portable electronics (MP3, cell phone, etc.)

    Requirements Smaller size for 3-axis sensing

    Low power Low-noise (high resolution)

  • 8/3/2019 CMOS-MEMS

    12/28

    11

    Device Design

    Simplified 3D model of the device

    3-axis DRIE Accelerometer

    XY

    Z

    Imbalanced Z

    proof mass

    Lateral proof mass

    X, Y fingersZ torsional beams

    X, Ysprings

    Z fingers

    Si

    substrate

    Circu

    itsCK

    T

    H. Qu, et al, Solid State Sensors Workshop, Hilton Head Island, 2006

  • 8/3/2019 CMOS-MEMS

    13/28

    12

    Device Design

    Lateral sensing

    Fingerlength

    C1 C2

    gap

    Stator

    Rotor

    Sensing Mechanisms

    1C dx

    Cgap

    ma F k dx

    = =

    Z-axis sensing

    C1

    Vm+

    Vm-

    Stator Stator

    Cb

    Ca

    Rotor

    M1

    Fully differential sensing in all three axes?

  • 8/3/2019 CMOS-MEMS

    14/28

    13

    Fully Differential Configuration

    Lateral Sensing

    Vm-Vm+

    Vout+ Vout-

    C1a

    C3a

    C1b

    C3bC2b

    C4b

    C2a

    C4a

    driving combfingers

    sensing combfingers

    Vm+

    Vm-

    C1a

    C3a

    C3b C1b

    C4b C2b

    C2a C4a

    Vm+

    Vm-

    C1

    C2

    C3

    C4

    Vout+ Vout-

    4 groups of sensing comb fingers with common-centroid wiring for CM rejection

    mechanical

    spring

  • 8/3/2019 CMOS-MEMS

    15/28

    14

    Two groups on each end for offset cancellation swapped connections for a common-centroid

    configuration

    C1 = C1b+C2a = C2= C1a+C2b

    C3 = C3b+C4a = C4= C3a+C4b(at original displacement)

    z

    xy

    C1b

    C1a

    C2b

    C2a

    Vm+

    Vm-

    Vs

    Torsional beams and anchors

    Z-Axis Sensing

    Offset cancellation

    Fully differentialsensing

    C2a, C2b

    C1a, C1b

    Stators

    C3a, C3bC4a, C4b

    L L Vm+

    Vm-

    Vs1

    C2a

    C1a

    C1b

    C2b

    C1

    C2

    Vm+

    Vm-

    Vs1C2

    C1

    M1

    M3

    M2Vm+

    Vm-

    Vs

    C1 C3

    C2 C4

  • 8/3/2019 CMOS-MEMS

    16/28

    15

    Device Design: Interface Circuit

    Low-power, low-noise dual-chopper amplifier

    D. Fang et al, VLSI Symposium 2006

    Low-power: 1mW

    AA battery: 1000 hours

    Low noise: 16 nV/Hz

    Total gain: 44dB

    Dual chopper: 1 MHz and

    20 kHz Offset cancellation

    2 2 2 2( )e

    n m e m

    Va a a a

    S= + = +

  • 8/3/2019 CMOS-MEMS

    17/28

    16

    3-axis DRIE Accelerometer Design: Summary

    440 fF in lateral

    86 fF in Z

    Total capacitance

    1.6~2.5 mV/gSensitivity in Y

    4.5 mV/gSensitivity in Z

    1 mW / axisPower dissipation

    1~ 10 g/HzBrownian Noise floor

    1.5~2.3 mV/gSensitivity in X

    2.1mFinger gap

    40 mLength of z finger

    90 m (overlap 85 m)Length of x_y fingers

    50 m Silicon+6 mCMOS

    Thickness of thestructure

    1000*1000m2Device size

    3-axis

    Cadence layout of the devices

    CKT for 1-axis acclCKT for YX-CKT

    Z-CKT Test CKT

  • 8/3/2019 CMOS-MEMS

    18/28

    17

    3-axis Accelerometer: Fabricated Devices

    3 mm

    3mm

    y-axiscircuit

    x

    -axis

    c

    ircuit

    z-axis

    circuit

    Packaged Devices

    PLCC-52 package Photo of a bonded die.

  • 8/3/2019 CMOS-MEMS

    19/28

    18

    90

    m

    (a

    )

    1mm

    1mm

    300m

    700 m

    3-axis Accelerometer: Microstructures

    Isolationtrenches

  • 8/3/2019 CMOS-MEMS

    20/28

    19

    3-axis Accelerometer: Characterization

    Test Setups Rotary table

    Hand-heldshaker

    Spectrumanalyzer

    shaker

    Referenceaccelerometer

    Kistler8638B5

    DUT

  • 8/3/2019 CMOS-MEMS

    21/28

    20

    3-axis Accelerometer: Characterization

    Static test results of the 3-axis

    accelerometer

    Static Response and Noise Test0.05g Pk

    12 g/Hz

    0.5g Pk

    110g/Hz

    0.5g Pk

    110g/Hz

    Noise spectrum of the lateral andz-axis accelerometer

  • 8/3/2019 CMOS-MEMS

    22/28

    21

    Summary of the 3-Axis Accelerometer

    0.30.35 (L)2.11/4.71 (z)

    -No-linearity (%)

    350110.0-Z-axis noise floor (g/Hz)

    1.6 (lateral)/0.6 (z)1.51.5 (lateral) /0.5 (z)Bandwidth (kHz)

    12.26~2.38(L)

    2.11~4.71 (z)

    Inter-axis coupling (%)

    17.03-TCO (mg/C)

    0.01-0.307TCS (%/C)

    87.9(L)/73.4(z)Dynamic range (dB) (BW=100Hz)

    28012.07.97Lateral-axis noise floor (g/Hz)

    270~330320240Z-axis overall sensitivity (mV/g)

    270~330460450Lateral-axis sensitivity (mV/g)

    -2.022.4Z-axis mechanical sensitivity

    -3.544.5Lateral-axis mechanical sensitivity (mV/g)

    0.6 ~ 1.1511Power consumption (mW)

    44 (with package)-33Chip size (mmmm)

    ADXL330TestedDesignedParameter (Unit)

  • 8/3/2019 CMOS-MEMS

    23/28

    22

    Rotational Sensing Principle: Coriolis Acceleration

    Device Design and Fabrication

    Lateral driving, lateral sensing

    DRIE CMOS-MEMS

    Integrated CMOS-MEMS Gyroscope

    2c

    a v = rr r

    Fabricated Integrated gyroscope

    Driving comb

    fingers

    Driving

    mechanical

    spring

    Sensing

    spring

    Sensing

    comb fingersProof mass

    X

    Y

  • 8/3/2019 CMOS-MEMS

    24/28

    23

    Summary

    CMOS-MEMS

    Monolithic Integration

    High performance, low Cost

    CMOS-MEMS Inertial Sensors

    Bulk silicon microstructures with footprint of surface

    devices

    High resolution

    Emerging Applications

    Portable electronics Security

    Wireless sensor networks

  • 8/3/2019 CMOS-MEMS

    25/28

    24

    Acknowledgements

    NASA UF/UCF Space Research Initiative

    MOSIS Educational Program

  • 8/3/2019 CMOS-MEMS

    26/28

    25

    Z-Axis Sensing: Mechanisms

    Coventor simulation of Z capacitance change and displacement versus Z acceleration(using 3 swapped fingers)

    -200 -150 -100 -50 0 50 100 150 2006

    7

    8

    9

    10

    11

    12

    13

    Acceleration in z direction (g)

    Capacitance(fF)

    -200 -150 -100 -50 0 50 100 150 200-10

    -5

    0

    5

    10

    Maximumd

    isplacementinzdirection

    (um)

    -200 -150 -100 -50 0 50 100 150 200-2

    -1

    0

    1

    2

    Acceleration in z direction (g)

    Maximumr

    otaionalangle(degree)

  • 8/3/2019 CMOS-MEMS

    27/28

    26

    Z-Axis Sensing: Mechanisms

    Coventor simulation of Z capacitance change.

    -50 0 50-1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Acceleration in z direction (g)

    Capacitance(fF)

    y = 0.0024*x - 2.1e-018

    C1

    C2

    C1b

    C1a

    1 2

    1 2

    C C

    C C

    +

  • 8/3/2019 CMOS-MEMS

    28/28

    27

    DR by S/N

    Dynamic Range by S/NRatio

    Y-axis of R5

    THD=5%

    DR=103.6-20.90=82.7 dB