chirp kteer

50
“Chirps” everywhere Patrick Flandrin* CNRS — ´ Ecole Normale Sup´ erieure de Lyon *thanks to Pierre-Olivier Amblard (LIS Grenoble), Fran¸ cois Auger (Univ. Nantes), Pierre Borgnat (ENS Ly on), Eric Chassande-Motti n (Obs. Nice), Franz Hlawatsch (TU Wien), Paulo Gon¸ calv` es (INRIAlp es), Olivier Michel (Univ. Nice) and Jerey C. O’Neill (iConverse)

Upload: soha-mohamed

Post on 08-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 1/50

“Chirps” everywhere

Patrick Flandrin*

CNRS — Ecole Normale Superieure de Lyon

*thanks toPierre-Olivier Amblard (LIS Grenoble), Francois Auger (Univ. Nantes),

Pierre Borgnat (ENS Lyon), Eric Chassande-Mottin (Obs. Nice),

Franz Hlawatsch (TU Wien), Paulo Goncalves (INRIAlpes),Olivier Michel (Univ. Nice) and Jeffrey C. O’Neill (iConverse)

Page 2: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 2/50

observation

Page 3: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 3/50

Doppler effect

Motion of a monochromatic source ⇒ differential  perception of 

the emitted frequency ⇒ “chirp”.

f + ∆ f f - ∆ f "chirp"

Page 4: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 4/50

Page 5: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 5/50

Pendulum

¨θ(t) + (g/L) θ(t) = 0

Fixed length L = L0 — Small oscillations are sinusoıdal, withfixed  period T 0 = 2π 

L0/g.

“Slowly” varying length L = L(t) — Small oscillations are quasi-sinusoıdal, with time-varying  pseudo-period T (t) ∼ 2π L(t)/g.

Page 6: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 6/50

Gravitational waves

Theory  — Though predicted by general relativity, gravitational 

waves  have never been observed directly. They are “space-time

vibrations,” resulting from the acceleration of moving masses

⇒ most promising sources in astrophysics  (e.g., coalescence of binary neutrons stars).

Experiments  — Several large instruments (VIRGO project for

France and Italy, LIGO project for the USA) are currently under

construction for a direct terrestrial  evidence via laser interferom-

etry .

Page 7: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 7/50

Page 8: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 8/50

time

gravitational wave

Page 9: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 9/50

VIRGO

Page 10: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 10/50

Bat echolocation

System — Active  system for navigation, “natural sonar”.

Signals  — Ultrasonic acoustic waves, transient (some ms) and“wide band” (some tens of kHz between 40 and 100kHz).

Performance — Nearly optimal, with adaptation of emitted wave-

forms to multiple tasks (detection, estimation, classification, in-

terference rejection,. . . ).

Page 11: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 11/50

time

bat echolocation call + echo

time

bat echolocation call (heterodyned)

Page 12: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 12/50

More examples

Waves and vibrations — Bird songs, music (“glissando”), speech,

geophysics (“whistling atmospherics”, vibroseis), wide band pulsespropagating in a dispersive medium, radar, sonar,. . .

Biology and medicine  — EEG (seizure), uterine EMG (contrac-

tions),. . .

Desorder and critical phenomena — Coherent structures in tur-

bulence, accumulation of precursors in earthquakes, “speculativebubbles” prior a financial krach,. . .

Mathematics  — Riemann and Weierstrass functions, . . .

Page 13: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 13/50

Page 14: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 14/50

Chirps

Definition — We will call “chirp” any complex signal of the form

x(t) = a(t) exp{iϕ(t)}, where  a(t) ≥ 0 is a low-pass amplitude 

whose evolution is slow as compared to the oscillations of the 

phase  ϕ(t).

Slow evolution?  — Usual heuristic conditions assume that:

1. |a(t)/a(t)| |ϕ(t)| : the amplitude is quasi-constant  at the

scale of one pseudo-period T (t) = 2π/|ϕ(t)|.

2. |ϕ(t)|/ϕ2(t) 1 : the pseudo-period T (t) is itself  slowly 

varying  from one oscillation to the next.

Page 15: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 15/50

Chirp spectrum

Stationary phase  — In the case where the phase derivative ϕ(t)

is monotonic, one can approximate the chirp spectrum

X(f ) = +∞

−∞a(t) ei(ϕ(t)−2πf t) dt

by its stationary phase approximation X(f ). We get this way:

|X(f )|2 ∝a2(ts)

|ϕ(ts)|,

with ts such that ϕ(ts) = 2πf .

Interpretation — The “instantaneous frequency” curve ϕ(t) de-

fines a one-to-one correspondence between one time and one

frequency. The chirp spectrum follows by weighting the visited 

frequencies  by the corresponding times of occupancy .

Page 16: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 16/50

01020

Linear scale

Energy spectral density

-0.1

0

0.1

Real part

Signal in time

RSP, Lh=15, Nf=128, log. scale, Threshold=0.05%

Time [s]

Frequency [Hz]

50 100 150 200 2500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Page 17: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 17/50

representation

Page 18: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 18/50

Time-frequency

Idea — Give a mathematical formulation to musical notation

Objective  — Write the “musical score” of a signal

Constraint  — Get a localized  representation in chirp cases:

ρ(t, f ) ∼ a2(t) δ (f  − ϕ(t)/2π) .

Page 19: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 19/50

Local methods and localization

The example of the short-time Fourier transform — One defines

the local  quantity:

F (h)x (t, f ) =

 ∞−∞

x(s) h(s − t) e−i2πf s ds.

Measure  — Such a representation results from an interaction

between the analyzed signal and some apparatus  (the window

h(t)).

Adaptation — Analysis adapted to impulses  if  h(t) → δ(t) and to

spectral lines  if  h(t) → 1 ⇒ adapting analysis to chirps  requires

h(t) to be (locally) dependent on the signal .

Page 20: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 20/50

Self-adaptation of local methods

Matched filtering — If the window h(t) is the time-reversed signal

x−(t) := x(−t), one gets F (x−)x (t, f ) = W x(t/2, f /2)/2, where

W x(t, f ) := +∞

−∞x(t + τ /2) x(t − τ /2) e−i2πf τ  dτ,

is the so-called Wigner-Ville Distribution (Wigner, ’32; Ville,

’48).

Linear chirps  — The WVD localizes perfectly  on straight lines 

in the TF plane:

x(t) = exp{i2π(f 0t + αt2/2)} ⇒ W x(t, f ) = δ (f  − (f 0 + αt)) .

Remark  — Localization via self-adaptation ends up in a quadratic 

transformation (energy distribution).

Page 21: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 21/50

Beyond linear chirps

Global approach — The principle of self-adaptation via phase 

compensation can be extended to non linear  chirps (Bertrand &

Bertrand, ’84 ; Goncalves et F., ’94).

Limitations  — Specific models and heavy computational burden.

Local approach — Spectrogram/scalogram = smoothed  WVD

⇒ localized distributions via reassignment towards local centroıds

(Kodera et al., ’76 ; Auger & F., ’94).

Page 22: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 22/50

128 points

signal model

Wigne

r-Ville

window = 21

spectro

window = 21

reass. spectro

63

63

127 points

127 points

Page 23: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 23/50

manipulation

Page 24: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 24/50

Chirps and dispersion

Example  — Acoustic backscattering of an ultrasonic wave on

a thin spherical shell ⇒ frequency dispersion of elastic surfacewaves.

time

acoustic backscaterring

Page 25: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 25/50

time

frequency

acoustic backscaterring

time

frequency

Page 26: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 26/50

time

frequ

ency

dispersion

time

frequ

ency

compression

Page 27: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 27/50

Pulse compression

Limitation — Correlation radius ∼ 1/spectral bandwidth, ∀ signal

duration.

“Reception” — Post-processing by matched filtering (radar, sonar,

vibroseismics, non destructive evaluation).

“Emission” — Pre-processing by dispersive grating  (productionof ultra-short laser pulses).

Page 28: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 28/50

Chirps and detection/estimation

Optimality — Matched filtering, maximum likelihood, contrast,. . . :basic ingredient = correlation “observation — template”.

Time-frequency interpretation — Unitarity  of a time-frequency

distribution ρx(t, f ) guarantees the equivalence:

|x, y|2 = ρx, ρy.

Chirps  — Unitarity + localization ⇒ detection/estimation via

path integration in the plane.

Page 29: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 29/50

Time-frequency detection?

Language  — Time-frequency offers a natural language  for deal-ing with detection/estimation problems beyond  nominal situa-

tions.

Robustness — Uncertainties in a chirp model can be incorporatedby replacing the integration curve  by a domain (example of post-newtonian approximations in the case of gravitational waves).

time

freque

ncy

gravitational wave

?

Page 30: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 30/50

Doppler tolerance

Signal design — Specification of performance by a geometrical 

interpretation of the time-frequency structure of a chirp.

time

frequency

linear chirp

time

frequency

hyperbolic chirp

Page 31: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 31/50

time

frequency

bat echolocation calls (+ echo)

time

frequency

Page 32: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 32/50

modeling

Page 33: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 33/50

Chirps and “atomic” decompositions

Fourier  — The usual Fourier Transform (FT) can be formally

written as (F x)(f ) := x, ef , with ef (t) := exp{i2πf t}, so that:

x(t) =  +∞

−∞x, e

f  e

f (t) df.

Extensions  — Replace complex exponentials by chirps, consid-

ered as warped versions of monochromatic waves, or by “chirplets”

(chirps of short duration) ⇒ modified short-time FTs or wavelet 

transforms modifiees .

Page 34: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 34/50

Modified TFs — Example

Mellin Transform — A Mellin Transform (MT) of a signal x(t) ∈L2(IR+, t−2α+1dt) can be defined as the projection:

(Mx)(s) := +∞

0x(t) t−i2πs−α dt = x, c.

• Analysis on hyperbolic  chirps c(t) := t−α

exp{i2πs log t}.

• ϕc(t)/2π = s/t ⇒, the Mellin parameter s can be interpreted

as a hyperbolic chirp rate .

• The MT can also be seen as a form of  warped  FT, since

x(t) := e(1−α)t x(et) ⇒ (Mx)(s) = (F x)(s).

Page 35: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 35/50

Page 36: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 36/50

“Chirplet” decomposition — An example

signal + noise 8 atoms

Page 37: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 37/50

Chirps and self-similarity

Dilation — Given H, λ > 0, let DH,λ be the operator acting on

processes {X(t), t > 0} as (DH,λX)(t) := λ−H  X(λt).

Self-similarity  — A process {X(t), t > 0} is said to be self-similar 

of parameter H  (or “H -ss”) if, for any λ > 0,

{(DH,λX)(t), t > 0}d

= {X(t), t > 0}.

Self-similarity and stationarity  — Self-similar processes and sta-tionary processes can be put in a one-to-one correspondence

(Lamperti, ’62).

Page 38: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 38/50

Lamperti

Definition — Given H > 0, the Lamperti transformation LH 

acts

on {Y (t), t ∈ IR} as:

(LH Y )(t) := tH  Y (log t), t > 0,

and its inverse L

−1

H  acts on {X(t), t > 0} as :(L−1

H  X)(t) := e−Ht X(et), t ∈ IR.

Theorem — If  {Y (t), t ∈ IR} is stationary, its Lamperti transform{(LH Y )(t), t > 0} is H -ss. Conversely, if  {X(t), t > 0} is H -ss, its

(inverse) Lamperti transform {(L−1H  X)(t), t ∈ IR} is stationary.

Page 39: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 39/50

tone

Lamperti

chirp

Page 40: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 40/50

“Spectral” representations

Fourier  — (Harmonisable) stationary  processes admit a spectral

representation based on Fourier modes (monochromatic waves):

Y (t) = +∞

−∞ei2πf t dξ(f ).

Mellin — (Multiplicatively harmonisable) self-similar  processes

admit a corresponding representation based on Mellin modes

(hyperbolic chirps):

X(t) = +∞

−∞tH +i2πf  dξ(f ).

Page 41: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 41/50

Page 42: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 42/50

Weierstrass function (H = 0.5)

"delampertized" Weierstrass function

Page 43: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 43/50

Weierstrass-Mandelbrot

Fourier  — In the case where g(t) = 1 − exp it, one gets the so-

called Weierstrass-Mandelbrot function, whose usual representa-

tion is given by a superposition of Fourier modes (in geometricalprogression).

Mellin — An equivalent representation exists (Berry and Lewis,

’80), as superposition of Mellin modes, i.e., of hyperbolic chirps.

Page 44: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 44/50

time

original

Weierstrass function (λ = 1.07; H = 0.3; tmax = 1; N = 1000;ν = 1)

time

detrended

Page 45: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 45/50

time

frequency

detrended Weierstrass function

Page 46: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 46/50

Chirps and power laws

A general model  — C α,β (t) = a tα exp{i(b tβ  + c)}.

Example  — Newtonian approximation of the inspiraling  part of 

gravitational waves → (α, β ) = (−1/4, 5/8).

Typology  — At t = 0: divergence of  amplitude  if  α < 0, of 

“instantaneous frequency” if  β < 1 and of  phase  if  β < 0.

Oscillating singularities . The case (α > 0, β < 0) is beyond asimple Holder characterization ⇒ development of specific tools

(2-microlocal analysis , wavelets ).

Page 47: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 47/50

The Riemann function as an example

Definition — σ(t) :=

∞n=1 n−2 sin πn2t

Differentiability  — σ(t) happens to be non-differentiable if  t =

t0 = (2p + 1)/(2q + 1), p, q ∈ IN (Hardy, ’16) but  differentiable in

t = t0 (Gerver, ’70).

Local chirps  — One can show (Meyer, ’96) that, in the vicinity

of  z = 1, the holomorphic version of Riemann function reads

σ(1 + z) = σ(1) − πz/2 +∞

n=1

K n(z) C 3/2,−1(z),

leading to σ(1 + t) = σ(1) − πt/2 + O(|t|3/2) when t → 0.

Page 48: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 48/50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Riemann function

time

frequency

0.955 0.96 0.965 0.97

Page 49: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 49/50

conclusion

Page 50: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 50/50

Chirps and time-frequency

Signals  — Chirps “everywhere”

Representations  — Natural description framework = the time-

frequency plane

Models  — “Chirps = time-frequency trajectories” ⇒ the notion

of  instantaneous frequency can be approached as a by-product

of representations in the plane (e.g., “ridges”, or fixed points of reassignment operators)