bioimpedance basics

39
1 Bioimpedance Basics FYS4180 – høsten 2012 Ørjan G. Martinsen

Upload: others

Post on 20-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bioimpedance Basics

1

BioimpedanceBasics

FYS4180 – høsten 2012Ørjan G. Martinsen

Page 2: Bioimpedance Basics

2

BioimpedanceBasics

Impedance:• is a measure of the impediment or opposition to the flow of alternating current

• is a complex number. 

• has an “ohmic” part (free ions) and a capacitive part (bound ions). 

• is the inverse of admittance (conductance and susceptance)

It:• changes with tissue type, physiology and anatomy

• can hence be used as a transducer mechanism for physiological parameters

• can be measured with two, or more electrodes

• can be measured invasively or non‐invasively

• depends on the measurement frequency

• does normally not require any expensive components

Page 3: Bioimpedance Basics

3

Material propertiesSimple parallel plate:

AdC

AdG

r

0 :tyPermittivi

:tyConductivi

dAR :yResistivit

Complex values

= ’ + j ’’

ρ = ρ’ + j ρ’’

= ’ + j ’’

Page 4: Bioimpedance Basics

4

Two‐electrode system

sinIm Reactance

cosRe Resistance

Impedance

iv

ivX

iv

ivR

ivZ

sinIm eSusceptanc

cosRe eConductanc

1 Admittance

vi

viB

vi

viG

ZviY

sin1sin90 ifonly 1 and

cos1cos0 ifonly 1

BX

GR

Page 5: Bioimpedance Basics

5

Four‐electrode system

Page 6: Bioimpedance Basics

6

Transfer impedance

i v i v

• Input: i ,   output: v ,   transfer function: 

• This is transfer impedance, not impedance

• Cannot use for calculation of ,  or 

• Except for homogenous, uniform material

A B

Ziv

Page 7: Bioimpedance Basics

7

Sensitivity field calculations

• Simple and very powerful tool, but not used very much

• Example: Direct current resistance measurement with a four‐electrode system on a homogeneous medium

Page 8: Bioimpedance Basics

8

Sensitivity field calculations #1

Imagine that you inject a current I between the two current electrodes, and compute the current density J1 in each small volume element in the material as a result of this current

Page 9: Bioimpedance Basics

9

Sensitivity field calculations #2

Imagine that you instead inject the same current between the voltage pick-up electrodes, and again compute the resulting current density J2 in each small volume element.

Page 10: Bioimpedance Basics

10

Sensitivity field calculations #3

• The sensitivity S and total measured resistance R are then (reciprocal system): 

• Positive S: Increased resistivity in this area  higher total measured resistance• Negative S: Increased resistivity in this area  lower total measured resistance• High absolute value of S: Very sensitive to changes in resistivity

dvI

RI

SV

2

212

21 and JJJJ

Page 11: Bioimpedance Basics

11

Four‐electrode system

Page 12: Bioimpedance Basics

12

Closer look …

Page 13: Bioimpedance Basics

13

Adding a low‐conducting slice

A slice with only 20% of the conductivity of the surrounding medium is added

Page 14: Bioimpedance Basics

14

Volume impedance density

The plot now shows the sensitivity divided by the conductivity (same as multiplying with the resistivity, since this is DC).

Page 15: Bioimpedance Basics

15

Two‐electrode system

Page 16: Bioimpedance Basics

16

Dispersions

Counter-ions

Charging of cell membranes

Relaxation ofwater molecules

E.g. makromolecules

Page 17: Bioimpedance Basics

17

Data analysis• Measured with Solartron 1260 + 

1294• Four electrodes on lower leg• Exported as text file

Page 18: Bioimpedance Basics

18

Bode plot of impedance

-1.00E+01

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06

Z'Z''

Page 19: Bioimpedance Basics

19

Bode plot of admittance

-2.00E-02

-1.00E-02

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06

Y'Y''

2222 XRXB

XRRG

Page 20: Bioimpedance Basics

20

Bode plot of |Z| and 

-20

-10

0

10

20

30

40

50

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06

|Z|f

Page 21: Bioimpedance Basics

21

Bode plot of |Y| and 

0

0.01

0.02

0.03

0.04

0.05

0.06

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06-1.50E+01

-1.00E+01

-5.00E+00

0.00E+00

5.00E+00

1.00E+01

1.50E+01

|Y|f

Page 22: Bioimpedance Basics

22

Wessel, Nyquist, Argand, Cole, …

-6.00E+00

-4.00E+00

-2.00E+00

0.00E+00

2.00E+00

4.00E+00

1.5E+01 2.0E+01 2.5E+01 3.0E+01 3.5E+01 4.0E+01 4.5E+01

Impedance

-1.00E-02

-5.00E-03

0.00E+00

5.00E-03

1.00E-02

2.0E-02 2.5E-02 3.0E-02 3.5E-02 4.0E-02 4.5E-02 5.0E-02 5.5E-02

Admittance

Page 23: Bioimpedance Basics

23

Measuring sweat activity

Page 24: Bioimpedance Basics

24http://www.fys.uio.no/elg/bioimp

Elektrodermal response EDR

• Psychiatry• Neurological 

diseases• Pain assessment• Lie detection• Anesthetic depth

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70

Time [sec]

Con

duct

ance

G o

r sus

cept

ance

B S

/cm

2 ] G righ

G left

B right

B left

Page 25: Bioimpedance Basics

25

Measurements under stress

0

2

4

6

8

10

12

14

16

18

20

13:33 13:34 13:35 13:36 13:36 13:37 13:38 13:39 13:40 13:40 13:41 13:42 13:43 13:44 13:44 13:45 13:46 13:47

Skin

AC

con

duct

ance

[µS/

cm2 ]

Left axilla

Right axilla

Hypothenar

Abdomen

Relaxation Relaxation

Stress‐period withcalculations

Page 26: Bioimpedance Basics

26

Measurements during physical excercise

Page 27: Bioimpedance Basics

27

Needle positioning –where is the needle tip?

Page 28: Bioimpedance Basics

28

Page 29: Bioimpedance Basics

29

• Insulated shafts

• Commonly used for EMG

• Apply a small electric current between the needle and a counter‐electrode

• Measurement sensitivity is  J 2

• Can also use hollow needle

Needle positioning

Page 30: Bioimpedance Basics

30

Page 31: Bioimpedance Basics

31

Page 32: Bioimpedance Basics

32

Collecting tissue data

Page 33: Bioimpedance Basics

33

Classification – arteries and veinsone outlier removed

Page 34: Bioimpedance Basics

34

Classification – muscle and fat

Page 35: Bioimpedance Basics

35

Classification – subdermis and fat

Page 36: Bioimpedance Basics

36

Needle arrayTo find blood vessels (artery and vein) during Emergency Cardiopulmonary Bypass (ECPB) for hypothermia and controlled reperfusion. The objective is to develop an automatic tool that finds blood vessels and 

guides the cannulae into the vessels.

Page 37: Bioimpedance Basics

37

Page 38: Bioimpedance Basics

38

Invasive 2D imaging?

• Ongoing data analysis• No classification yet• Simple plot of phase angle 

at 100 kHz

Page 39: Bioimpedance Basics

39

First invasive impedance tomography image

• No multivariate analysis• No classification  only continuous color

• Simple plot of phase angle at 100 kHz

• Multivariate classification will most likely increase the image quality

• Step in vs. step out