associate research professor / senior research scientist

85
1 Statistical Calibration Relative to the Meter and the Triple Point of Water David B. Pollock Associate Research Professor / Senior Research Scientist Electrical Computer Engineering / Center for Applied Optics University of Alabama Huntsville 301 Sparkman Drive OB 444 Huntsville, AL 35899 Tuesday, August 20, 2015 Purpose: To answer the questions: Is Radiometry more accurate than Thermometry when Noise Equivalent Power is the Relative Standard Uncertainty Estimate, specifically when an energy fraction is kinetic and a fraction is momentum. Is radiometry or thermometry relatively more accurate?” Overview: Noise-Equivalent-Power is a linear, mean square Relative Uncertainty Scale. Planck Temperature, TP / Boltzmann Constant, σ ratio, expressed as a Fraction is 1 / 6 ppm. While the Luminance scale is the first radiation constant c1 L / h-bar, expressed as a Fraction is 0.01 ppm. The second radiation constant scale is c2 / k / hc, expressed as a Fraction is 0.1 ppm. The velocity-of-light / impedance scale c0 / ΩZ0 ratio ( 2.99792E-8 / 376.730315 ) -1 expressed as a Fraction 12566370614 1/3. And, the inverse velocity of light expressed as a Fraction is 33356409 1/2 exact. For example, compare two atomic-clock transition rates, 1-Hertz relative time N(1,2) periods. The difference of Clock rate #1 vs: Clock rate #2 produces an analytical comparison process similar to the one used to compare two units of energy propagating whether electrons, photons or pick your favorite particles. The periodic amplitude difference estimation process reveals whether Clock #1 rate or Clock #2 rate deviated from linear time, n t / N. Here the quantity N is greater than one period for a rate n / N e -nt . The current standard clock rate, a specific hyperfine-transition rate between two states of a Cesium atom isotope, 55 Cs, (Eh) atomic mass unit energy. The specific isotope mean state change rate is a whole positive number of periods relative to a mean time square rate, a ratio, n / N (t t0)δt. The Planck equation predicts the bound-state of periodic energy as an energy / energy-specific density ratio which is a periodic function of time, Temperature and length (distance). Further, as the Bureau International des Poids et Mesures, BIPM, state “All other SI units can be derived from these, (SI units) by multiplying together different powers of the base units.” i A periodic ratio rate is c / λ, period c ~ 3 E- 8, m-s -1 , specific density 1 c / λ 2 , spatial energy period 8πhc, ~ 5E-40J. We attempt to follow the National Institute of Standards and Technology (NIST) definitions. “The standard uncertainty u(y) of a measurement result y is the estimated standard deviation of y.” A “relative standard uncertainty ur(y) of a measurement result y is defined by ur(y) = u(y) / |y|, where y is not equal to 0.” Further, the NIST definitions specify Using concise notation as If, for example, y = 1 234.567 89 U and u(y) = 0.000 11 U, where U is the unit of y, then Y = (1 234.567 89 ± 0.000 11) U. A more concise form of this expression, and one that is in common use, is Y = 1 234.567 89(11) U, where it is understood that the number in parentheses is the numerical value of the standard uncertainty referred to the corresponding last digits of the quoted result.1 Introduction Order of presentation is: Invariant Velocity-of-Light, Accuracy, Energy-Temperature- Substance, Convergence, The Planck Function, Boltzmann - Stefan-Boltzmann - Planck, Bernoulli, Color, 1 Current (2014), Standard unit values are accessible at http://physics.nist.gov/cuu/index.html

Upload: others

Post on 26-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Associate Research Professor / Senior Research Scientist

1

Statistical Calibration Relative to the Meter and the Triple Point of Water

David B. Pollock

Associate Research Professor / Senior Research Scientist

Electrical Computer Engineering / Center for Applied Optics

University of Alabama Huntsville

301 Sparkman Drive

OB 444

Huntsville, AL 35899

Tuesday, August 20, 2015

Purpose: To answer the questions: “Is Radiometry more accurate than Thermometry when Noise

Equivalent Power is the Relative Standard Uncertainty Estimate, specifically when an energy fraction is

kinetic and a fraction is momentum. Is radiometry or thermometry relatively more accurate?”

Overview: Noise-Equivalent-Power is a linear, mean square Relative Uncertainty Scale. Planck

Temperature, TP / Boltzmann Constant, σ ratio, expressed as a Fraction is 1 / 6 ppm. While the

Luminance scale is the first radiation constant c1 L / h-bar, expressed as a Fraction is 0.01 ppm. The

second radiation constant scale is c2 / k / hc, expressed as a Fraction is 0.1 ppm. The velocity-of-light /

impedance scale c0 / ΩZ0 ratio ( 2.99792E-8 / 376.730315 )-1 expressed as a Fraction 12566370614 1/3.

And, the inverse velocity of light expressed as a Fraction is 33356409 1/2 exact.

For example, compare two atomic-clock transition rates, 1-Hertz relative time N(1,2) periods. The

difference of Clock rate #1 vs: Clock rate #2 produces an analytical comparison process similar to the one

used to compare two units of energy propagating whether electrons, photons or pick your favorite

particles. The periodic amplitude difference estimation process reveals whether Clock #1 rate or Clock #2

rate deviated from linear time, ∆n t / N. Here the quantity N is greater than one period for a rate n / N e-nt.

The current standard clock rate, a specific hyperfine-transition rate between two states of a Cesium atom

isotope, 55 Cs, (Eh) atomic mass unit energy. The specific isotope mean state change rate is a whole

positive number of periods relative to a mean time square rate, a ratio, n / N (t – t0)δt.

The Planck equation predicts the bound-state of periodic energy as an energy / energy-specific density

ratio which is a periodic function of time, Temperature and length (distance). Further, as the Bureau

International des Poids et Mesures, BIPM, state “All other SI units can be derived from these, (SI units)

by multiplying together different powers of the base units.” i A periodic ratio rate is c / λ, period c ~ 3 E-

8, m-s-1, specific density 1 c / λ2, spatial energy period 8πhc, ~ 5E-40J.

We attempt to follow the National Institute of Standards and Technology (NIST) definitions. “The

standard uncertainty u(y) of a measurement result y is the estimated standard deviation of y.” A “relative

standard uncertainty ur(y) of a measurement result y is defined by ur(y) = u(y) / |y|, where y is not equal to

0.” Further, the NIST definitions specify Using concise notation as “If, for example, y = 1 234.567 89 U

and u(y) = 0.000 11 U, where U is the unit of y, then Y = (1 234.567 89 ± 0.000 11) U. A more concise

form of this expression, and one that is in common use, is Y = 1 234.567 89(11) U, where it is understood

that the number in parentheses is the numerical value of the standard uncertainty referred to the

corresponding last digits of the quoted result.” 1

Introduction – Order of presentation is: Invariant Velocity-of-Light, Accuracy, Energy-Temperature-

Substance, Convergence, The Planck Function, Boltzmann - Stefan-Boltzmann - Planck, Bernoulli, Color,

1 Current (2014), Standard unit values are accessible at http://physics.nist.gov/cuu/index.html

Page 2: Associate Research Professor / Senior Research Scientist

2

Radiant Power, One-period-Wavelength-Temperature Product, Homogenous, In-homogeneous Energy

Density, Bound and Constrained Periodic Information, Temperature and Power Relative to the Triple

Point of Water, Bessel Function, a Calibration Recommendation.

Invariant statistical velocity-of-light, c – Has a value is continuous, a monotonic scale periodic length

(m / m-square), periodic time (s / s-square). However, Temperature is continuous (K / K4 ). We note that

one period of length is 1.000 000(00), m; one period of time is 1.000 000(00), s; one period of

temperature is 1.000 273(16), K. We conclude a specific periodic specific density scale is 3.333 333(16)

correlated periodic length, time and temperature.

The total derivative of periodic velocity of light, a time dependent frequency ν and frequency rate c / λ, is

shown as Equation(1.1). The reference rate value is exact, 2.997 92+E8 m-sec-1, NIST (Dr. Taylor, Barry

N.; Dr. Mohr, Peter J.; Douma, Michael, 2010).

2

2

1

c

cd dc d

cd c dc d

c dd c dc

, 1 / s. (1.1)

Accuracy – An accurate 3-dimension, periodic exponential function

N

2/3 2/3 2/3

n 0

df (X,Y, Z) x y z

is illustrated by Figure 1 X, Y, Z, singular values of x, y, z and

Figure 2 Singular values x, y, z. The point being singular exponential functions converge to first order

values 3,0; 198,0.

Page 3: Associate Research Professor / Senior Research Scientist

3

Figure 1 X, Y, Z, singular values of x, y, z

Figure 2 Singular values x, y, z

-200, 40000 200, 40000

-0.5, -1.25992105

0.5, 1.25992105

-250.00 -200.00 -150.00 -100.00 -50.00 0.00 50.00 100.00 150.00 200.00 250.00

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

40,000.00

45,000.00

-250 -200 -150 -100 -50 0 50 100 150 200 250

x^( - 1 / 3 ) Value, #

Exp

on

enti

al A

mp

litu

de

x^(

-1

/ 3

),

Val

ue

Am

pli

tud

e x^2

Val

ue,

#

x^( 2 ) Value, #

Accurate Exponential Calculationsx^(2) = x^( - 1 / 3 ) =

-0.5, -1.25992105

0.5, 1.25992105

-200, 34.19951893

3, 0 198, 0

402, 34.19951893

-300 -200 -100 0 100 200 300 400 500

-5

0

5

10

15

20

25

30

35

40

-200 -150 -100 -50 0 50 100 150 200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

+ / - x ^ ( - 2 / 3 )

Exp

on

enti

al A

mp

litu

de,

+ 2

/ 3

x ^ ( - 1 / 3 ), #

Exp

on

enti

al A

mp

litu

de

x^(-

1 /

3 )

Val

ue,

#

Accurate Exponential Numbers

x^( - 1 / 3 ) = - x^( 2 / 3 ) = + x^( 2 / 3 ) =

Page 4: Associate Research Professor / Senior Research Scientist

4

Energy-Temperature-Substance – Given substance A(Eh) and B(Eh), specific density ρa, ρb and atomic

mass unit u(amu) independent. Substance A at (Eh) Temperature T(a) and substance B(Eh) at Temperature

T(b) respectively continuously radiate electromagnetic energy whose field lines do not cross. Thermal

balance is achieved when the respective radiant emission ε(a,b) and absorption α(a,b) have a respective

steady-state value ∆T/T K. When photon kinetic energy specific density is sufficiently great (i.e. ionizing

radiation) thermal mechanical damage occurs. We restrict our discussion here to thermal momentum

transfer, a capacitance change rate dC / di δ(t-t0) an electric current. A solid-state sensor with some

detective quantum efficiency creates this electrical current proportional to the capacitive coupling as

incident energy frequency interacts with such a sensor. This type sensor samples frequency, a clock time

dependent sample rate (also a frequency).

An absolute Temperature scale relative to the Triple-Point of Water is exactly 273.160(07)K ppm.

Substance A and B each continuously radiate a small amount of spectral energy, ε = c / λ (εσT4) until an

equilibrium state A, B exists. The periodic rate ab is dK(t / λ)δ(t) (hc / λσK). The Radiant power is

8 , Jhc s, Concurrently A and B absorb and radiate energy until the equilibrium state is realized, a

radiative exchange a singular, mean Temperature value T A T B . With the accepted value for T0

273.160(06) as an absolute linear temperature scale and the Stefan-Boltzmann Constant σ = 5.670

373(21) 10-8, it would seem that using delta-temperature, Δ(2T(0) – σT), unit energy per estimate, as a

long-term peak signal-to-rms-noise, a ratio to estimate stability is appropriate.

4

3 4 1

2 3 2

3

4

'' 12

''

( )

( 4 )

(' )24 12

T

T T dT T

T

T

dT

d T

d T

T dT T

T T dT T

(2.1)

Optical Frequency, electromagnetic-energy, is constrained as the energy propagates along a single E-field

line a Value of + / - 1 Hz radiated by a specific Substance at a specific Temperature. We perceive only the

envelope of the frequency, either the eye or an optical sensor. Normal usage spectral emittance is ε, an

emission rate, and spectral absorbance is α, unit energy half-life. Transmittance plus Emittance minus the

product α exp(-αt) is equal to One.

The perception, eye or sensor, is relative to the Velocity-of-Light, Unit 2.99792E-8 m / s, exact. This

Value is less than the prime number Value 3. The 3 is the commonly used approximation of the rate at

which energy propagates. Unit Value for a Kelvin, Planck Temperature T(P) is 1.41683E-32K,

approximated as 1.5E-32K. The International reference Temperature is 273.16K, the Triple-point-of-

Water with an uncertainty of 6.00E-6.

To use a 3-color, monochromatic, 2.66 GHz computer to calculate Temperature specific density relative

to 300K we create a 3-dimensional matrix of specific red-green-blue points. Analytical examples (plots)

which follow use the computer Relative Absolute Temperature Color scale for R, G, B; for 1-dimension

Figure 3; for 2-dimensions Figure 4; for 3-dimensions Figure 5; for correlated periodicity Figure 6; and,

for constant rate Figure 7.

Page 5: Associate Research Professor / Senior Research Scientist

5

Figure 3 Absolute 3-color, 1-Dimension, 23 periods of the average absolute Temperature density scale relative to the

Triple-Point-of-Water.

Figure 4 Absolute 3-color, 2-Dimension, 23 periods, time-dependent, average, absolute Temperature density scales

relative to the Triple-Point-of Water.

Page 6: Associate Research Professor / Senior Research Scientist

6

Figure 5 Absolute 300 Temperature-Periods scale of 100K uniform temperature, Relative to SI Unit Values.

Figure 6 Correlated W - s, x = N c / λ, s-1

-6.00E+00

-4.00E+00

-2.00E+00

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1 5 9

13

17

21

25

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

10

1

10

5

10

9

11

3

11

7

12

1

12

5

12

9

13

3

13

7

14

1

14

5

14

9

15

3

15

7

16

1

16

5

Correlated, W - s = ( 5 x^4 Exp( -x ) ) - ( x^5 Exp( - x ) ), x = N (1 … 10^3) c / λ

Constant Error Bar, +2

Page 7: Associate Research Professor / Senior Research Scientist

7

Figure 7 A mean quantum energy propagation rate per 100 periods.

Convergence – Two binary, exponential series that converge to a singular value 1 as estimate number

n , are Equations (2.2), and (2.3).

2 3

0

11 1

1 1

xx x x x nx

x xn

ee e e e e

e e

(2.2)

2 3

0

11

1

xx x x x nx

x xn

ee e e e e

e e

(2.3)

We note the exponent of the Planck Function is Unit less. It however does have Unit values and Inverse

Unit values Figure 8. Shown is correlated energy and energy, each at an energy rate for 100 periods.

Three 6-degrees of freedom polynomials are shown. The Sum ( x / ( ex – 1 ) ), is shown on the computer

RGB scale: Red ( 187,000,000 ); Green ( 000,224,000 ); and Blue ( 000,000,227 ). Note the periodic rates

converge to +1 at zero and never cross.

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

1 5 91

31

72

12

5

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

101

Am

pli

tud

e

8-bit byte

Mean Quantum Rate = [ ( n - σ )^2 - 1 ] / 2

Page 8: Associate Research Professor / Senior Research Scientist

8

Figure 8 A unit-less exponential function that converges periodically at integer 10.

The Planck function – A Chi-square, exponential series, density distribution with specific Constant

values, Equations (2.2), (2.3) constant value products, energy-meter and meter-temperature. The energy-

distance-scale for Temperature is exponential with specific characteristic density function values C1 and

C2. The quantity C1 a constant scalar energy-distance dependency. The quantity C2 a constant scalar,

distance-temperature dependency. These two constants represent a “capacity” to radiate electromagnetic

energy as well as the inverse of C2 as a “capacity” to transform incident radiation into multiple Unit

Values of temperature, time, length, energy (kinetic, potential). The International System of Units

maintained by (Bureau International des Poids et Mesures, 8th edition, 2006; updated in 2014 ).

Eight power series converge with a limited number of terms, Equations (3.1) through (3.11). Respective,

specific, periodic unit values relative to the velocity of light in Vacuum, c, m / s, 299 792 458 (exact) and

temperature, K, 273.160(06) 1ppm, and distance, m, c, inverse seconds.

24

1 1

2

2 2

16 32 31 1

0

8 4.992482 532 38 7.6 ,10 J m

1/ 1/ 1.438 7770(13) 13 , 10 m K

1/T 1

, / , 299 792

.416833(85)6 ,10 7.0579910 , 1 K

458

P

C c hc ppm

hcC

c m s exact

c ppmk

ppm E64

(3.1)

The Planck equation for spectral radiant intensity, Luminance, is Equation (3.2).

y = 2E-10x6 - 5E-08x5 + 7E-06x4 - 0.0004x3 + 1.014x2 + 1.7961x + 1

R² = 1

y = 2E-10x6 - 7E-08x5 + 8E-06x4 - 0.0005x3 + 0.016x2 + 0.7776x + 1

R² = 1

y = 2E-10x6 - 7E-08x5 + 8E-06x4 - 0.0005x3 + 0.016x2 - 0.2224x + 1

R² = -0.234

0 20 40 60 80 100 120

- 2/10

- 1/10

0

1/10

2/10

3/10

4/10

5/10

6/10

7/10

8/10

9/10

1.000E+00

1.000E+03

1.000E+06

1.000E+09

1.000E+12

1.000E+15

1.000E+18

1.000E+21

1.000E+24

1.000E+27

1.000E+30

1.000E+33

1.000E+36

1.000E+39

1.000E+42

0 20 40 60 80 100 120

x, Value

x,

Fra

ctio

n (

3 /

10

)

Lo

g x

, V

alu

e

x, Value

The Unitless Planck Function Exponent, x ≥1; 6-degrees of freedom

x Sum e-nx Sum ( x / ( ex -1 ) ) ( ex -1 ) / x x / (1 - e-x )

x / ( ex -1 ) Poly. (x Sum e-nx) Poly. (x / (1 - e-x )) Poly. (x / ( ex -1 ))

Page 9: Associate Research Professor / Senior Research Scientist

9

1/2 4 1

5

1, , ,Hz m K

1

, m - Hz

Planck Constant, #

Veocity of Light, m / s

Distance, m

Stefan-Boltzmann Constant, #

Temperature, K

hc

kT

hcL T t

kTe

c

h

c

k

T

(3.2)

Change variables:

2 2 2

2 2 2

2 2 2

2 2 2

, #

2 , m

cos cos , m cos2

cos , m cos2

, m-Hz2

hcx

kT

x y z

x y z

x y z

x y z

x y z

x y z

hhc

(3.3)

Now differentiate with respect to ν and T Equation (3.4) and then integrate. Expand the result as a power

series to obtain specific in-band energy, U(2)-U(1), and in-band energy specific density ρ, Equations (3.5)

, (3.6), (3.7), (3.8), (3.9), (3.10), and (3.11). 2

4

0 0

23

3

0 0 2

1, , 4

2 1

Integrate and T over the range from 0 :

4 1, , ,Hz K m

21

x

kT d TL T

e d dT

k T d TL T

d dTe

(3.4)

5

2 5

12

2 nx

n

M Thc x e

C

m – K5 (3.5)

4

2

412

2 6 6 3nx

n

T eM hc nx nx nx

C n

J – s-1 – m2 (3.6)

Page 10: Associate Research Professor / Senior Research Scientist

10

4

4

12

2q nx

n

M Tc x e

C

K – s-1 – m-1 (3.7)

2 2

24

2 2

2x x

M kc x

Te e

J – s-1 – m2 (3.8)

4

2

412

224 24 12 4

nx

n

M hc T enx nx nx nx

T T C n

K7 – s-1 – J-3 – m-2 (3.9)

3

312

26 6 3

nxq

n

M c T enx nx nx

T T C n

K7 – s-1 – J-4 – m-3 (3.10)

1

0

, J – m – K1

q

q nx

Peakxn

Peak Peak

MM

M xM x eT T e

T T

(3.11)

The Planck equation is a statistical, exponential peak at a specific periodic distance (commonly expressed

as a frequency) relative to the velocity of light, a specific rate expressed as meters / second.

Using Monochromatic (zero-harmonics) computer color (op. cit.) relationships to display results: Figure 9

One energetic quanta propagating in free-space.; and Figure 10. This is usually written as δ(t-t0) for an

event begun at t0.We note there is a continuous, one-quarter period lag for electromagnetic radiation,

(causality), the blue area of Figure 6 Correlated W - s, x = N c / λ, s-1.

Page 11: Associate Research Professor / Senior Research Scientist

11

Figure 9 One energetic quanta propagating in free-space.

Velocity of Light – Expressed as a Fraction, ¼ periods, Log3 Joule per meter-second, specific Spectral

Radiant Power Density values relative to Fraction, ¼ periods, Log2 Wavelength m2, are Figure 10, and

Figure 11. They illustrate 0-to-101 Unit Energy Values for the Equivalent Source values dν / ν, λ / dλ, and

the mean energy ν (t) with specific log scales noted by the Axes Titles.

1, 1.43878E-02

2, 2.87755E-02

3, 4.31633E-02

4, 5.75511E-02

5, 7.19389E-02

6, 8.63266E-02

7, 1.00714E-01

8, 1.15102E-01

9, 1.29490E-01

10, 1.43878E-01

0 20 40 60 80 100 120 140 160 180 200

-6.00E+00

-4.00E+00

-2.00E+00

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

0.0

0.1

1.0

10.0

100.0

1.E+00 1.E+01

Correlated Quanta, W - s

Qu

an

ta R

ate

, J

/ s

Log

Pea

k T

emp

eratu

re,

K

Log Quanta, N ( c / λ ), s-1 - K-1

Planck Correlated Energy

N ( c / λ ) Correlated, W - s

Page 12: Associate Research Professor / Senior Research Scientist

12

Figure 10 Unit Temperature, Frequency, and Distance

Figure 11 Average, Mean Square Energy, and Frequency Values with Constant Temperature T, Kelvin

Page 13: Associate Research Professor / Senior Research Scientist

13

Boltzmann, Stefan-Boltzmann, Planck – Relative to the Triple-point-of-water, tpw, per unit wavelength

per unit frequency plotted as discrete points is illustrated by three plots: Figure 12 “Point” source

Boltzmann Statistics, Constant value is 5.670 373(21) E-8 21 ppm, W-m-2- K4. Figure 13 Stefan-

Boltzmann Statistics plotted relative to tpw = 273.160(11) 1ppm. Figure 14 Planck Statistics plotted

relative to tpw = 273.160(11) 1ppm K (#). We call attention to the convergence to four, independent time

periodic values, photons “mingle”, relative to the velocity of light. The Figure 13 frequency peaks are

negative, source radiant energy reduction.

Figure 12 “Point” source Boltzmann Statistics, Constant value is 5.670 373(21) E-8 21 ppm, W-m-2- K4.

5.67037E-08,

1.00274E-07

5.67037E-08,

1.10302E-07

5.67037E-08,

1.20329E-07

5.67037E-08,

1.30356E-07

0.00000E+00

2.00000E-08

4.00000E-08

6.00000E-08

8.00000E-08

1.00000E-07

1.20000E-07

1.40000E-07

Wavelength, 1 E-6

Sca

led

Bo

ltzm

ann C

onst

ant

Boltzmann Statistics, Peak A = σ / 2 π λ = 5.6703 / ( 2 π 10.1 ) E-2

ε = 1 ε = 1.1 ε = 1.2 ε = 1.3

Page 14: Associate Research Professor / Senior Research Scientist

14

Figure 13 Stefan-Boltzmann Statistics plotted relative to tpw = 273.160(11) 1ppm.

Figure 14 Planck Statistics plotted relative to tpw = 273.160(11) 1ppm K (#)

2, -2.29E+00

18, 2.00E-01

32, 8.53E-01

2, -3.82E+00

18, -1.72E-01

32, 7.84E-01

2, -5.82E+00

18, -6.59E-01

2, -8.40E+00

18, -1.29E+00

32, 5.79E-01

2, 1.08289E-07

18, 4.45188E-07

32, 2.41845E-06

0

0.0000005

0.000001

0.0000015

0.000002

0.0000025

0.000003

-1.00E+01

-8.00E+00

-6.00E+00

-4.00E+00

-2.00E+00

0.00E+00

2.00E+00

0 5 10 15 20 25 30 35

Sp

ectr

al T

emp

erat

ure

, W

/ μ

m /

sr

W / m3

Stefan-Boltzmann, εW / m3 / K4

εK = 1 εK = 1.1 εK = 1.2 εK = 1.3 σ = 5.67000E-08 σ / λ / 2 / π

0.01, 0.00E+00

11.00, 6.21E-30

25.00, 1.69E-30

73.00, 5.43E-32 100.00, 1.71786E-32

0.01, 0.00E+00

11.00, 6.21E-30

12.00, 6.01E-30

56.00, 1.38E-31

73.00, 5.43E-32

99.00, 1.78299E-32

0 1/81 1/27 1/9 1/3 1 3 9 27 81 243

-1.00E-30

0.00E+00

1.00E-30

2.00E-30

3.00E-30

4.00E-30

5.00E-30

6.00E-30

7.00E-30

0.00E+00

1.00E-30

2.00E-30

3.00E-30

4.00E-30

5.00E-30

6.00E-30

7.00E-30

0 1/32 1/8 1/2 2 8 32 128

Cut-off Wavelength { Fraction 21 / 25 }, Log3 λc 273.15K

Po

wer

( 2

73

.15

K )

, W

/ c

m2

/ μ

m /

K /

sr

Po

wer

, W

/ c

m2

/ μ

m /

K /

sr

Cut-off Wavelength Fraction , 21 / 25 Log2 { λc ,μm ( 273.17K ), λc μm ( 273.16K ) }

Bound, Blackbody, Normal Spectral Radiance re:tpw K, 0.01-100, μm

273 1/6 273 1/6 273 1/7

Page 15: Associate Research Professor / Senior Research Scientist

15

Bernoulli Statistics apply to real physical properties for which a bound population N = 1 or greater and

has a fixed ratio, N / N2n / n! Repetitive increment n estimates converge with a finite number of terms

(estimates n) to a mean, μ = 0.500, and mean square value, σ2 = 0.250. The linear incremental, real scale

is +1.000(000) to +25.00(000), ppm. Correlated estimates n = 0.50(11) – 4.50(11) / 9.00(11).

1

1

2

( ) 0,1

0.7

( )

x x

ixt x x

it

f x p q x

t e p q

q pe

p

pq

(4.1)

With a population of 100x fixed value numbers, μ = 50.000, σ = 29.15475947. The mean square Value

and the mean square variance Value, 2 2

/ 2 1( ) 675 , respectively fixed values. Random

computer clock cycle start time is shown Figure 15 Bernoulli numbers, random computer clock cycle

values for R, G, B Scale Values, x, y. The two dimension population average = 15 random computer

clock time numbers, dependent upon the specific clock cycle start for a calculation. Two number sets, red

and green, randomly return order ( 0, 0.# ) while blue returns ( 0, 0 ). RG&B return 100. Computer Clock

calculation start time is chosen randomly when the ctl-Save command is given. The delta time is one

clock period which is ambiguous to a computer as a 2-dimensional sub- matrix, (1, nan) or (nan, 1), nan

being not-a-number. A typical 2-D, Red, Green, Blue map is Figure 15, and the Red, Green, Blue

Histograms, a bar-chart, is Figure 16.

Page 16: Associate Research Professor / Senior Research Scientist

16

Figure 15 Bernoulli numbers, random computer clock cycle values for R, G, B Scale Values, x, y.

Color – We note Unit CIE tri-stimulus luminosity scale, (Technology), R, G, B, is commonly used with

3-vector unit values R = (187, 000, 000), G =(000, 224, 000), B = (000, 000, 227) to create an average

unit value false, spectral-intensity, color scale relative to 0 units, Figure 16 is 20-singluar monochromatic

periods. The contrast scale counts up 0 to 1 and down 1 to 0 by tenths, (0.1). These are real, specific, 3-

dimension Red, Green, Blue values R(187), G(224), B(227), decimal ∑(638) relative to 1 Color Space

f(x,y,z) = 1–x–y–z. These 3-color (actually singular, periodic, real) values are used throughout this paper

to illustrate individual real, physical single-period properties. These three values are from the

International Committee of Illumination (CIE) are appropriate for a singular Temperature u300K,

Illuminant “C”. (Technology)These three singular values are fixed for time and 3-space. Computer

computation start time is a “real” integer value. Random file save commands start on a random computer

clock cycle when the calculations are updated prior to a save command execution. For Figure 15 the Red,

Green and Blue change their respective zero order values randomly 0, n concurrent with their 2-D

position on the plot. The variability is random relative to the random clock cycle start value between 0

and 99 periods. For Figure 16 the colored areas are used by the computer as monochromatic energy,

increment 0.1. The 1-0-1 eight-bit byte exponential value scale is 25 + 1 = 1, 21 and 25 – 1 = 1, 0 or 0, 1.

The latter is ambiguous. These specific values lead to ambiguous results relative to computer clock values

(1, nan) and (nan, 1) when real data is coded counting up and decoded counting down. The bit shift

between counting up and counting down results in a correct average computer-clock-time-dependent

value, but an incorrect (negative random computer-clock-time-dependent value) there is a distribution of

clock values. Radiant Power, One-period, Wavelength-Temperature Product – The value of the

normal, specific frequency at specific integer 100K temperature is shown by Figure 17 Normal Energy,

Specific Density, J – s.

0, 29 100, 39.50, 15

100, 7.5

0, 0

100, 732.5042662

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

8.00E+02

0 20 40 60 80 100 120

SI

Un

it V

alu

e, #

Estimate n, #

Time correlated True =15

T + 2 σ / 4 Random 0-99 / 4 n ( σ / 4 )

Page 17: Associate Research Professor / Senior Research Scientist

17

Figure 16 False Intensity, respective RGB average color for 20-singular monochromatic periods.

Figure 17 Normal Energy, Specific Density, J – s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 00 19 37 56 75 94 112 131 150 168 187 168 150 131 112 94 75 56 37 19 0022

4567

90112

134157

179202

224202

179157

134112

9067

4522

00

23

45

68

91

114

136

159

182

204

227

204

182

159

136

114

91

68

45

23

00

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ME

AN

CO

LO

R,

%

AVERAGE COLOR INTENSITY NUMBER, #

RGB Color Bit#

Mean I, % R 187 G 224 B 227

100, 1.548607

-99, 1.548690

0, 0.000000

100, 0.451393

-99, 0.451310

0.000000, 2.000000

0.836080, 1.548607

0.000000

0.500000

1.000000

1.500000

2.000000

2.500000

0.000000

0.500000

1.000000

1.500000

2.000000

2.500000

-150 -100 -50 0 50 100 150

Sp

atia

l F

req

uen

cy,

Hz

/ r

Estimation Frequency, 1 / s

Normal Spatial Visibility, Average Specific Density, T = 100 K

I (ω) max , ( 1 / s ) ( 1 / K ) I (ω) min , ( 1 / s ) ( 1 / K ) Period = Sin x / N

Page 18: Associate Research Professor / Senior Research Scientist

18

Homogenous, in-Homogenous Energy Density – Specific substances, A(Eh) B(Eh) are with specific

quantum energy states assigned their respective Atomic Number density of states. However, Temperature

is continuous. Two mathematical representations are applied to describe homogenous continuous

periodicity and in-homogenous discrete periodicity, common origin, Equation (5.1). The two expressions

respectively are the sphere, S, and the complete elliptical integral, E, illustrated by Figure 18 Constrained

Periodic Information and Figure 19 The respective projected surface areas are a continuous circle and a

continuous parabola, each respective radius of curvature, circle c, parabola p. value Rc (c, p ) is constant

with time. The parabolic curvature is a product of the major-minor axes, ab. The circle curvature is r.

Periodic frequency is further illustrated by Figure 21 Periodic, single valued information frequency,

Figure 22 Space-time bandwidth, periodic energy quanta and Figure 23 Bound, periodic energy

frequency. These Figures further illustrate periodic energy frequency. Note the absence of information, 4th

quadrant, Figure 20 Stationary parabolic periods and 1st Half-period, Figure 21 Periodic, single valued

information frequency.

Bound and Constrained Periodic Information – The complete Elliptical Integral has a projected area A

given by the projected area, π ab when the semi-axes are 4 a E exactly, Equation (5.1). A sequence of

Figures follow to illustrate the consequences when energy is bound and constrained.

Page 19: Associate Research Professor / Senior Research Scientist

19

2 2

2 2

0

2 2x

20

2

Given an Ellipse, E, with semi-axes a,b.

a bC(circumference ) 2

2

The Elliptic integral, E, second kind is:

x sin

E ,k 1 k sin d

1 k zE ,k dx

1 z

The complete Elliptic integral, K, is:

dK

1 k s

/2

20

/22 2

0

2 2

2 2

F k,2in

E 1 k sin d E k,2

F k, E k, 2k,2 2 4

F k, E k, 02 2

When semi-axes a, b are 4aE exactly then:

a b2k

2a

a b2k

2b

and the circumscribed e

lliptical Area, A, is exactly:

A ab

(5.1)

Page 20: Associate Research Professor / Senior Research Scientist

20

Figure 18 Constrained Periodic Information

Figure 19 Bound Periodic Energy

3.33E-01, 4.36E-03

4.08E-17, -2.50E-01

-3.33E-01, 4.36E-03

-8.17E-17, 2.50E-01

1.53E-17, 3.33E-01

-2.50E-01, 4.08E-17

-4.59E-17, -3.33E-01

2.50E-01, -8.17E-17

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

n C

os

( x )

/ 4

, n (

Sin

x )

/ 3

n ( Sin x ) / 3 , n ( Cos x ) / 4

3-Dimensionsal Surfaces, Constrained Constant Periodicity

n ( Cos x ) / 4 n ( Sin x ) / 3

3.33E-01, 1.53E-17

-3.33E-01, -4.59E-17

-4.36E-03, 3.33E-01

-2.50E-01, 4.08E-17

-4.59E-17, -3.33E-

01

2.50E-01, -8.17E-17

-40.00% -20.00% 0.00% 20.00% 40.00%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

-40.00% -20.00% 0.00% 20.00% 40.00%

-30%

-20%

-10%

0%

10%

20%

30%

n ( Cos x ) / 4

n (

Sin

x )

/ 3

n ( Sin x ) / 3

n (

Co

s x )

/ 4

2-Dimensional Closed Integral Surfaces Bound ( x, y )( 0 → 400 radians )

n ( Cos x ) / 4 n ( Sin x ) / 3

Page 21: Associate Research Professor / Senior Research Scientist

21

Figure 20 Stationary parabolic periods

Figure 21 Periodic, single valued information frequency

1.50000, 0.00000

0.00000, -4.50000

-1.50000, 0.00000

-8

-6

-4

-2

0

2

4

6

8

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Rad

ians

Radians

Staionary Parabolic Periods0.253125 Cos x 0.51625 Cos x 1.125 Cos x 2.25 Cos x

4.5 Cos x 6 Sin x 5 Sin x 4 Sin x

-3E+136

-2E+136

-1E+136

0

1E+136

2E+136

3E+136

1

21

41

61

81

10

1

12

1

14

1

16

1

18

1

20

1

22

1

24

1

26

1

28

1

30

1

30

9

28

9

26

9

24

9

22

9

20

9

18

9

16

9

14

9

12

9

10

9

89

69

49

29 9

Am

pli

tud

e, #

Period Δn ( c / λ ), # m - s

Periodic Energy Frequency, x ( c / λ )x Exp -( x + 1 ) / n -x Exp ( x - 1 ) / n

Page 22: Associate Research Professor / Senior Research Scientist

22

Figure 22 Space-time bandwidth, periodic energy quanta

Figure 23 Bound, periodic energy frequency

-6

-4

-2

0

2

4

6

-7

-5

-3

-1

1

3

5

7

1

12

23

34

45

56

67

78

89

10

0

11

1

12

2

13

3

14

4

15

5

16

6

17

7

18

8

19

9

21

0

22

1

23

2

24

3

25

4

26

5

27

6

28

7

29

8

30

9

31

0

29

9

28

8

27

7

26

6

25

5

24

4

23

3

n S

in x

n C

os

xSin x 1.5 Sin x 2 Sin x 3 Sin x 4 Sin x 5 Sin x 6 Sin x

Cos x 2 Cos x 2.25 Cos x 4.5 Cos x 4 Cos x 5 Cos x 15 Cos x

-50

-40

-30

-20

-10

0

10

20

30

40

50

1

13

25

37

49

61

73

85

97

109

121

133

145

157

169

181

193

205

217

229

241

253

265

277

289

301

313

305

293

281

269

257

245

233

Am

pli

tud

e, L

og

2

Period, Radians

Constant Bandwidth, Amplitude n Period, Cos x

15 Cos x 5 Cos x 4.5 Cos x 4 Cos x 3 Cos x 2.25 Cos x 2 Cos x 1.5 Cos x

Page 23: Associate Research Professor / Senior Research Scientist

23

Temperature and Power Relative to the Triple Point of Water – One-hundred units of Spectral

Radiant Power specific density relative to the Triple-Point of Water 273.16K are shown by Figure 24 and

Figure 25. The temperature scale, K, is a continuous source of electromagnetic energy emission. The

specific radiant substance A(Eh), H2O, specific state 273.15K. These figures illustrate power specific

density of Eh(H2O), Z18 as the specific illumination frequency received from another substance B(Eh).

Figure 24 Relative Spectral Radiance.

1, 6.99E+03

1, 2.02E+03

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Rel

ativ

e In

ten

sity

Fra

ctio

n (

3 /

1

0 )

, W

-cm

2 -

μm

-1 -

sr-1

Fraction ( 3 / 10 ) μm - K

Third-order Relative Intensity, (1 … 6991)μm - K

= Max, μm = Std Dev Array

Page 24: Associate Research Professor / Senior Research Scientist

24

Figure 25 Energy specific density relataive to the Triple-Point of Water.

Visibility – Statistical Optics/Coherence theory recognizes Visibility as an energy-density-ratio, an

ensemble of time-space variant correlated energy written as 1 1 2 2, . Electromagnetic radiation

is linear shift-invariant and complex auto-correlated by an optical system, Figure 26. A computer false

color Red-Blue scale is Figure 27 (bit wise monochromatic). These two Figures are 8-bit bitmaps. Note

Information is correlated and Zero Order field lines do not cross.

2.02E+03, 6.99E+03 2.02E+03, 6.99E+03

6.99E+03, 2.02E+03 6.99E+03, 2.02E+03

1 3 9 27 81

0

500

1000

1500

2000

2500

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100

Log3 { Peak Temperature Fraction ( 3 / 10 ) }, K / m

{ S

td D

ev F

ract

ion (

3 /

10

) }

, K

{ P

eak T

emp

erat

ure

Fra

ctio

n (

3 /

10

) }

, K

Log { Peak Temperature Fraction ( 3 /10 ) }, K / m

Third-order Statistics, (1 … 6991)μm - K

= Max, μm = Std Dev Array

Page 25: Associate Research Professor / Senior Research Scientist

25

Figure 26 Correlated Information.

Figure 27 Real 8-bit values for RB on the RGB Illuminant Scale

y = 2E-09x6 - 6E-09x5 + 0.25x4 - 3E-09x3 + 5E-09x2 - 1.25x + 1

R² = 1

y = 1E-08x6 - 3E-08x5 + 0.5x4 - 2E-08x3 + 6E-09x2 - 2.5x + 2

R² = 1

0.00 0.20 0.40 0.60 0.80 1.00 1.20

-0.50

0.00

0.50

1.00

1.50

2.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Reverse Order, Argument, x

Co

rrel

ated

Rad

iant

Ener

gy

Co

rrel

atio

n B

and

wid

th,

m -

Hz

Argument, x

Periodic Correlated Electromagnetic Radiationf ( x ), Correlation 2 f ( x / 2 ), Correlated Poly. (2 f ( x / 2 ), Correlated )

1.50, 0.20

1.50, -0.20

y = -4.9352x6 + 31.471x5 - 77.167x4 + 90.819x3 - 51.923x2 + 12.216x

R² = 0.4117

y = 4.9352x6 - 31.471x5 + 77.167x4 - 90.819x3 + 51.923x2 - 12.216x

R² = 0.4117

0.000.501.001.502.002.503.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Blue periodicity = 227 ( 8-bits )

Blu

e b

it x

-val

ue

Red

bit

x-v

alu

e

Red peiodicity = 187 ( 7-bits )

Real 8-bit, R, B Values

r1 (ν), r2 (ν) Period = x / 2 r1 (ν), r2 (ν) Period = - x / 2

Poly. (r1 (ν), r2 (ν) Period = x / 2) Poly. (r1 (ν), r2 (ν) Period = - x / 2)

Page 26: Associate Research Professor / Senior Research Scientist

26

Figure 28 Periodic, correlated frequency, ν.

Bessel Functions – The first kind are symmetric in frequency illustrated by Figure 29 Frequency density

plus and minus 100 periods of frequency. and, by Figure 30 Potential electromagnetic energy, eV, concise

electron mass equivalent energy, 8.187 105 06(36) x 10-14 J. Note the frequency scale offsets, 100 periods

and 15 periods respectively. Note also the spatial and temporal scales over-shoot, an under-damped

periodic system of values, causality at A and B are random in time, respectively complex-auto-correlated

units of energy emitted or sensed. It is important to recall the Bessel function describes a frequency

envelope Value centered at 1 and period + / - 3 Units of Frequency.

0.00, 0.00

1.00, -1.00

0.00, 1.00

1.00, 0.00

y = -2E-09x6 + 5E-09x5 - 7E-09x4 + 3E-09x3 + 3E-09x2 - 1x

R² = 1

y = 2E-09x6 - 6E-09x5 + 0.25x4 - 3E-09x3 + 5E-09x2 - 1.25x + 1

R² = 1

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Per

iod

icit

y (

+ /

-x )

, #

Period x, #

Correlated Periodicity

r1 (ν), r2 (ν) Period = - x f (x) = ( 5 (1 - x ) -1+ x^4 ) / 4

Poly. (r1 (ν), r2 (ν) Period = - x) Poly. (f (x) = ( 5 (1 - x ) -1+ x^4 ) / 4)

Page 27: Associate Research Professor / Senior Research Scientist

27

Figure 29 Frequency density plus and minus 100 periods of frequency.

Figure 30 Periodic Energy Density

0.20, 0.50

2.00, 1.33 2.00, 3.32E-01 -2.00, 3.32E-01

-100.00-50.000.0050.00100.00150.00200.00

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-100.00 -50.00 0.00 50.00 100.00 150.00 200.00

Reverse Order { Log2 [ 2 π ω ( t - t0 ) }

Pow

er,

J /

s

En

ergy,

J /

s

Log2 [ 2 π ω ( t - t0) ]

Lambetian Source Energy Distribution, + π sr

Phase Period = J0 ( x ) / 2 Energy E = [ 2 J1 ( x ) ]^2 , J / s / sr Power = [1 - 2 Cos x ]^2 / 4 , J / s / sr

12, 0.17210, 0.17

12, 1.16 210, 1.16

12, 1.33 210, 1.330446016

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 6

11

16

21

26

31

36

41

46

51

56

61

66

71

76

81

86

91

96

101

106

111

116

121

126

131

136

141

146

151

156

161

166

171

176

181

186

191

196

201

206

211

Inte

nsi

ty A

mp

litu

de,

N /

2

Period, N

Half-Energy Density, 0 - 101 N / 2

Half-Energy E / 2 = [ J1 ( x ) ]^2 / 2 , J / s / sr Δ Intensity = ( E - E / 2 ) Energy E = [ 2 J1 ( x ) ]^2 , J / s / sr

Page 28: Associate Research Professor / Senior Research Scientist

28

Figure 31 Relative Energy Intensity

Figure 32 Spectral Intensity Envelope

-2, 0.6652 2, 0.6652

0, 1.0000

0.00

0.20

0.40

0.60

0.80

1.00

1.20

-100 -80 -60 -40 -20 0 20 40 60 80 100

Inte

nsi

ty A

mp

litu

de,

I (

t )

Period ( x ), m - s

Relative Intensity[ Bessel J1 (x) ]^2 [ Bessel J0 (x) ]^2

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

-100 -80 -60 -40 -20 0 20 40 60 80 100

Sca

lar

Inte

nsi

ty

Periodic Scale, (Frequency x )

Relative Spectral Intensity

[ Bessel J1 (x) ]^2 + 2*[ Bessel J0 (x) ]^2 2 [ Bessel J1 ( x ) ]^2

ABS { [ Bessel J1 (x) ]^2 - 2*[ Bessel J0 (x) ]^2 }

Page 29: Associate Research Professor / Senior Research Scientist

29

Recommended Calibration

Calibrate an Optical Sensor relative to the Triple-Point of Water!

It is suggested that a power spectral density is an adequate estimate of either a passive or active remote

sensor, periodic energy, eV 0.5110 041 (16) MeV 3.1 ppm, and, 931.4812 MeV, 5.5ppm. The peak-

power, a frequency of period ν, easily saturates a sensor without causing damage. Long-half lives and

accordingly persistent energy with time result in a single photon undergoing multiple reflections and

transmission periods before its energy depletion is less than the continuum, a sensitivity reduction.

Momentum exchange between an energetic photon and a molecular mass ensemble of substance is

significantly weak, 1-Joule is equivalent to 1.602 176 565(35) E(-19)eV.

The suggestion is made that a Performance ratio, 1-minus a ratio of a mean signal to mean-square signal

is appropriate to periodically monitor a sensor stability (Marathay, et al., 2010). Amplitude is easily

saturated and as Figure 29, Figure 30, and, Figure 31 show there is an intensity pole, a “hole” on the

sensor optical axis. At 3200x digital image magnification a white square embedded on a black

background appears at the center of a data frame. The conclusion is an array-average to array-mean-

square value, a ratio, / 2Expectation 2 , is an effective performance estimator relative to the velocity

of light and temperature (the triple point of water).

The impact on a calibration instrument or chamber with 4-π sr temperature inhomogeneity greater than

0.01K is significant for a calibration 0.01ppm. As a practical matter this isn’t realistic. However, when the

magnitude of an array average is greater than 90 relative to a mean-square-average noise less than 10 for a

single data frame, a valid inhomogeneity estimate is made. The average value greater than 90 and mean-

square value less than 10 form a statistical power / per data frame ratio relative to the velocity-of-light in

a vacuum. An array average value is an intrinsic, dc electrical current noise off-set numerically added to a

peak energy frequency estimate. Average energy Peaks greater than 90, steady state oscillating field,

periodically capacity sampled at some impedance Z0 is a steady state current, dc. Subtraction corrects

(removes) the intrinsic steady state dc term pixel by pixel when an array average signal is less than 10.

Residuals greater than 7-σ are either dead, inhomogeneous, or non-linear pixels. Dynamic contrast bounds

signals greater than 90 when kT noise is less than 10. One Joule meter mol-1, NA hc, is concisely 0.119

626 565 779(84)i . The ratio (differential) of the inverse Planck temperature value, (TP)-1 and (TP) is

1E+64. While the ratio (differential) of ( h c / k )-1 and ( h c / k ) is 100 000 000.9.

Typical analyzed data illustrating the points made herein (Statistical Calibration, Relative to the Triple

Point of Water, 2014), is available from the CALCON 2014 Proceedings, see specifically the analyzed

data shown on page 96. The experiment configuration and details appear on slide 67.

Page 30: Associate Research Professor / Senior Research Scientist

30

References Bureau International des Poids et Mesures. 8th edition, 2006; updated in 2014 . BIPM - SI base units.

[Online] 8th edition, 2006; updated in 2014 . http://www.bipm.org/en/measurement-units/base-units.html.

Dr. Taylor, Barry N.; Dr. Mohr, Peter J.; Douma, Michael. 2010. The NISTReference on Constant,

Units, and Uncertainty. Physical Measurement Laboratory of NIST, National Institute of Standards and

Technology. Gaithersburg : Department of Commerce, 2010. CODATA analysis of 2014.

Marathay, Arvind S., McCalmont, John E. and Pollock, David B. 2010. Chapter 7; Radiometry, Wave

Optics, and Spatial Coherence. [book auth.] Markus Testorf, Bryan Hennelly and Jorge Ojeda-Castaeda.

[ed.] Taisuke Soda. Phase Space Optics. s.l. : McGraw-Hill, 2010, pp. 217 - 236.

Statistical Calibration, Relative to the Triple Point of Water. Pollock, D. B. 2014. Logan, UT : Space

Dynamics Laboratory, 2014. CALCON 2014.

Technology, Rochester Institue of. http://www.cs.rit.edu/~ncs/color/t_chroma.html. [Online] [Cited:

July 28, 2015.]

Page 31: Associate Research Professor / Senior Research Scientist

31

i See URL - http://www.bipm.org/en/measurement-units/base-units.html

And URL - http://physics.nist.gov/cuu/index.html

CO-Data 2014

Normal Value Standard Uncertainty Relative Std Unc,

Sci Concise Reciprocal Std Unc, Fraction

J m mol-1, NA hc = 0.119626566 0.000 000 000 084 1.00E-10 0.119 626 565 779(84) 8 1/3

m s-1, c, c0 = 2.99792E-08 exact exact 2.99792E-08 33356409 1/2

Ω, Z 0 = 376.7303135 exact exact 376.7303135 0

1 / 6, TP / σ = 2.49866E-25 1.67E+00 4002146336230170000000000

c0 / Ω Z0 = 7.95775E-11 Exact 12566370614 1/3

W m-2 K-4, σ = 5.67037E-08 0.000 021 x 10E(-8) 3.60E-06 5.670 373(21) x 10(-8) 17635524 1/7

K, TP = 1.41683E-32 0.000 085 x 10E(32) 6.00E-06 1.416 833(85) x 10(32) 70579948377825800000000000000000

m K , c2 = 0.01438777 0.000 0013 x 10E(-2) 9.10E-07 1.438 7770(13) x 10(-2) 69 1/2

m-1 k -1, k / h c = 69.503476 0.000 063 9.10E-07 69.503 476(63) 0

Hz K-1, k / h = 20836618000 0.000 0019 x 10E(10) 9.10E-07 2.083 6618(19) x 10E(10) 0

J K-1, k = 1.38065E-23 0.000 0013 x 10E(-23) 9.10E-07 1.380 6488(13) x 10(-23) 72429715652525100000000

J s, h = 6.62607E-34 0.000 000 29 x 10(-34) 4.40E-08 6.626 069 57(29) x 10E(-34) 1509190311746150000000000000000000

W m2 sr-1, c1L = 1.19104E-16 0.000 000 053 x 10E(-16) 4.40E-08 1.191 042 869(53) x 10(-16) 8396003418748480

J - s, h-bar = 1.05457E-34 0.000 000 047 x 10E-(34) 4.40E-08 1.054 571 726(47) x 10(-34) 9482522386533240000000000000000000

J, eV = 1.60218E-19 0.000 000 035 x 10E(-19) 2.20E-08 1.602 176 565(35) x 10(-19) 6241509343260180000

A J-1, e / h = 2.41799E+14 0.000 000 053 x 10(14) 2.20E-08 2.417 989 348(53) x 10(14) 0

Page 32: Associate Research Professor / Senior Research Scientist

32

Other Ratios

m k , hc / k = 0.01438777 1.59E+04 1.10E+06 1.438776948E-10 69 1/2

K-1, TP-1 = 7.05799E+31 5.26316E-05 1.67E+05 7.05799E-33 0

J-1 s-1 , h-1 = 1.50919E+33 3.44828E-28 2.27E+07 6.62607E-34 0

J, 8 π hc = 4.99248E-40 4.992 482 532 (25)E-40 π 2.00301E+39 2003011514892740000000000000000000000000

m2 s, c / λ2 = 2.99792E-10 1.00E+01 3335640952 3335640952

J sr-1 s-1, 16 hc / 2π = 5.05844E-41 1 / π 1.97689E+40 19768931262818000000000000000000000000000

3 m k , hc / k = 0.043163309 3.00E+00 23.16782533 23 1/6

1, h c / λ k TP = 2.77391E+32 1.00E+00 3.60502E-33 0

4 J m Hz-1, hc = 7.94578E-41 4.00E+01 1.25853E+40 12585292520485600000000000000000000000000

2 T(0) - σ, K-8 = 546.3181178 2.00E+00 0.001830435 0

2 T(0), K = 546.320002 2.00E+00 0.001830429 0

Δ K, = 0.001884198 Δ.00E+00 530.7297013 530 3/4

http://us.wow.com/wiki/Triple_point?s_chn=11&s_pt=source2&type=content&v_t=content

http://www.bipm.org/en/measurement-units/base-units.html

The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.

Page 33: Associate Research Professor / Senior Research Scientist

Statistical Calibration

Relative to the Meter and the Triple

Point of WaterDavid B. Pollock

Associate Research Professor / Senior Research Scientist

Electrical Computer Engineering / Center for Applied Optics

University of Alabama, 301 Sparkman Drive, OB444

Huntsville, AL 35899 (256) 824-2514 Email: [email protected]

08 - 24 - 2015 1

Page 34: Associate Research Professor / Senior Research Scientist

Accurate

Radiometry or Thermometry?• Radiometry – Mean Square Spectral Energy Intensity incident a

Substance A from a Substance B. Inversely B from A.

• Thermometry – Mean Quadratic Thermal Energy Density Differential dTa (A) / dTb ( B )

• Time Standard – Cesium Isotope, 1 / s

• Temperature Standard – Triple-Point-of-Water, 1 / 273.16K

• Length Standard – c m-s exact.

• Standard Frequency – c m-s-1 exact.

• Relative Standard Uncertainty, Random Periodic Difference

– Time c d(t-t0), 1 / s

– dT / T, 1 / K

– dL / L, 1/ m

• Accuracy – RSS { Time2 + Temperature2 + Length2 }

08 - 24 - 2015 2

Page 35: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 3

Frequency Velocity of Light c,

Nth Order Bound Quantum Force

2

2

0

2

0 2

1

2 ( )

2 ( )

c

cd dc d

cd c dc d

d f t t t

dc cf t t t c d

2 3 4 5 60

-1

1

1 1 2 6 24 61

1 =

-1 ;

!0 & = ;

positive integer, 0n

n axn

n

Information

a a a a a a

nx e dx

an

na

a

n a

1 2q q;

2

0

2

Force F = F = m a4 r

Energy E = mc

Page 36: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 4

0.90, 1.68E+55

1.00, 5.00E-01 1.10, 5.00E-01

y = 5E+53x6 - 6E+54x5 + 3E+55x4 - 5E+55x3 + 4E+55x2 - 5E+54x + 0.1

R² = 0.2236

-4.00E+54

-2.00E+54

0.00E+00

2.00E+54

4.00E+54

6.00E+54

8.00E+54

1.00E+55

1.20E+55

1.40E+55

1.60E+55

1.80E+55

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

Po

wer

Sp

ectr

al S

pec

ific

Den

sity

, W

/ c

m2

/ μ

m /

sr

@ 2

73

.16

K

Wavelength, ( 0.09 … 3.90 )μm

Energy Specific Density Distribution @ TPW, 273.160(04)K

0.00E+00 273.16 Poly. (0.00E+00 273.16)

Page 37: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 5

1, 1.000000

2, 1.452623

3, 0.640985

3, 0.576725

3, -0.576725

1, 1.000000

-100-50050100

-60.000000%

-40.000000%

-20.000000%

0.000000%

20.000000%

40.000000%

60.000000%

80.000000%

100.000000%

120.000000%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

-100 -50 0 50 100

Specific Value Unit ( x ), u + / - 100.00(1,0) u

Sp

ecif

ic V

alu

e, u

, %

Sp

ecif

ic D

ensi

ty, u

, %

Specific Density Unit ( x ), u - / + 100.00(0,1) u

Bound Information x, + / - 100u

∆^2 = { J1 ( x,1 ) / x } { J1 ( x,0 ) / x }

Page 38: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 6

1, 2

1, 3

0, -1

1, 511

0 1/5 2/5 3/5 4/5 1 1 1/5

-1.0E+00

9.9E+01

2.0E+02

3.0E+02

4.0E+02

5.0E+02

6.0E+02

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

0 1/5 2/5 3/5 4/5 1 1 1/5

Fraction

8-b

it C

ounts

, +

/ -

1

Pea

k-t

o-P

eak I

nfo

rmat

ion

, 8

-bit

Byte

Fraction

E-field Information

[ Peak - ( Counts - 1 ) ] / 2 Peak-to-Peak ∆ | Counts | ∆Counts - 2

Electron Mass, 1 Exp-8 eV = 0.5110041(16) MeV 3.1 ppm

Page 39: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 7

y = 2E-10x6 - 5E-08x5 + 7E-06x4 - 0.0004x3 + 1.014x2 + 1.7961x + 1

R² = 1

y = 2E-10x6 - 7E-08x5 + 8E-06x4 - 0.0005x3 + 0.016x2 + 0.7776x + 1

R² = 1

y = 2E-10x6 - 7E-08x5 + 8E-06x4 - 0.0005x3 + 0.016x2 - 0.2224x + 1

R² = -0.234

0 20 40 60 80 100 120

- 2/10

- 1/10

0

1/10

2/10

3/10

4/10

5/10

6/10

7/10

8/10

9/10

1.000E+001.000E+021.000E+041.000E+061.000E+081.000E+101.000E+121.000E+141.000E+161.000E+181.000E+201.000E+221.000E+241.000E+261.000E+281.000E+301.000E+321.000E+341.000E+361.000E+381.000E+401.000E+421.000E+44

0 20 40 60 80 100 120

x, Value

x, F

ract

ion (

3 /

10

)

Lo

g x

, V

alu

e

x, Value

The Planck Function Exponent, x ≥1u

x Sum e-nx Sum ( x / ( ex -1 ) ) ( ex -1 ) / x x / (1 - e-x )

x / ( ex -1 ) Poly. (x Sum e-nx) Poly. (x / (1 - e-x )) Poly. (x / ( ex -1 ))

Page 40: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 8

0, 0.001

1, 1.001

2, 2.001

3, 3.001

4, 4.0015, 5.0016, 6.001

7, 7.001

0, 0.00 1, 1.00 2, 2.00 3, 3.00 4, 4.00

5, 5.00 6, 6.00 7, 7.00

0, 0.00E+00

1, 2.73E+00

2, 1.48E+01

3, 6.04E+01

4, 2.19E+02

5, 7.44E+02

6, 2.43E+03

7, 7.70E+03

y = x + 0.001

R² = 1

0.00E+00 1.00E+00 2.00E+00 3.00E+00 4.00E+00 5.00E+00 6.00E+00 7.00E+00 8.00E+00

-1.00E+03

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

8.00E+03

9.00E+03 0

1/729

1/243

1/81

1/27

1/9

1/3

1

3

9

012345678

Scientific #

Inte

ger

Sci

enti

fic

Val

ue

Lo

g3

{ I

nte

ger

Fra

ctio

n (

31

2 /

94

3 )

}, #

Integer #

Smoothed, Scientific, Linear Binary Analysis, w / 8-bit ByteA + 0.001 A - 0.001 A exp (A + 0.003) Linear (A + 0.001)

Red = 187, 000, 000

Green = 000, 224, 000

Blue = 000, 000, 227

Page 41: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 9

3.33E-01, 1.53E-17

-3.33E-01, -4.59E-17

-4.36E-03, 3.33E-01

-2.50E-01, 4.08E-17

-4.59E-17, -3.33E-01

2.50E-01, -8.17E-17

-40.00% -30.00% -20.00% -10.00% 0.00% 10.00% 20.00% 30.00% 40.00%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

-40.00% -30.00% -20.00% -10.00% 0.00% 10.00% 20.00% 30.00% 40.00%

-30%

-20%

-10%

0%

10%

20%

30%

n ( Cos x ) / 4

n (

Sin

x )

/ 3

n ( Sin x ) / 3

n (

Cos

x )

/ 4

2-Dimension, Closed Integral, Bound Surfaces, ( x, y )( 0 → 400 radians )

n ( Cos x ) / 4 n ( Sin x ) / 3

Page 42: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 10

3.33E-01, 4.36E-03

4.08E-17, -2.50E-01

-3.33E-01, 4.36E-03

-8.17E-17, 2.50E-01

1.53E-17, 3.33E-01

-2.50E-01, 4.08E-17

-4.59E-17, -3.33E-01

2.50E-01, -8.17E-17

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

n C

os

( x

) /

4, n

( S

in x

) /

3

n ( Sin x ) / 3 , n ( Cos x ) / 4

4-Dimension, Constrained Surfaces 4π sr, Constant Periodicity

n ( Cos x ) / 4 n ( Sin x ) / 3

Page 43: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 11

1.50000, 0.00000

0.00000, -4.50000

-1.50000, 0.00000

-8

-6

-4

-2

0

2

4

6

8

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Rad

ian

s

Radians

3-Periods, Stationary Parabolic Information

0.253125 Cos x 0.51625 Cos x 1.125 Cos x 2.25 Cos x 4.5 Cos x

6 Sin x 5 Sin x 4 Sin x 3 Sin x 1.5 Sin x

Page 44: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 12

399, 159400.3752100, 33340000.00

0 50 100 150 200 250 300 350 400

0.00

5000000.00

10000000.00

15000000.00

20000000.00

25000000.00

30000000.00

35000000.00

40000000.00

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

180,000.00

0 50 100 150 200 250 300 350 400

h / 2 = { | r1 | + | r2 | } / ( 3 π ), m

Vo

lum

e (

r 1-

r 2 )

/ (

π2

h )

, m

2/

m

No

rmal

Pro

ject

ed S

urf

ace

Are

a, h

(r 1

,r2 ) /

π,

m2

h = ( r1 + r2 ) / 2, m

2-Period Stationary Hyper-sine Information

Projected Surface Area Normal ( h, r1 , r2 ) = ( r1 + r2 ) ^ [ h^2 + ( r1 - r2 )^2 ) ^ 0.5, sr

Normal Volume ( h, r1 , r2 ) = { ( r1 )2 + ( r1 r2 )2 + ( r2 )2 } / 3, m^3

Page 45: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 13

-0.5, -1.25992105

0.5, 1.25992105

-200, 34.19951893

3, 0 198, 0

402, 34.19951893

-300 -200 -100 0 100 200 300 400 500

-5

0

5

10

15

20

25

30

35

40

-200 -150 -100 -50 0 50 100 150 200

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

+ / - x ^ ( - 2 / 3 )

Ex

po

nen

tial

Am

pli

tud

e, +

2 /

3

x ^ ( - 1 / 3 ), #

Val

ue,

#

Accurate Calculations with Exponential Numbers

x^( - 1 / 3 ) = - x^( 2 / 3 ) = + x^( 2 / 3 ) =

Page 46: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 14

-200, 40000 200, 40000

-0.5, -1.25992105

0.5, 1.25992105

-250.00 -200.00 -150.00 -100.00 -50.00 0.00 50.00 100.00 150.00 200.00 250.00

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

40,000.00

45,000.00

-250 -200 -150 -100 -50 0 50 100 150 200 250

x^( - 1 / 3 ) Value, #

Ex

po

nen

tial

Am

pli

tud

e x

, V

alu

e, #

Am

pli

tud

e x

^2

Val

ue,

#

x^( 2 ) Value, #

Accurate Calculations with Exponential, Periods

x^(2) = x^( - 1 / 3 ) =

Page 47: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 15

-3, 2.55E+101 3, 2.55E+101

-11 -9 -7 -5 -3 -1 1 3 5

0.00E+00

5.00E+100

1.00E+101

1.50E+101

2.00E+101

2.50E+101

3.00E+101

1.0000E-01

1.0000E+04

1.0000E+09

1.0000E+14

1.0000E+19

1.0000E+24

1.0000E+29

1.0000E+34

1.0000E+39

1.0000E+44

1.0000E+49

1.0000E+54

1.0000E+59

1.0000E+64

1.0000E+69

1.0000E+74

1.0000E+79

1.0000E+84

-10 -5 0 5 10

2N + N2

Mea

n F

lux

= 1

, V

aria

nce

= 1

.41

42

1

Lo

g {

Gau

ssia

n F

lux

, P

h /

s }

Estimate Variance Number, #N

Statistical Distribution Photon Flux, N

Variance = 1 Variance = 2 Variance = 3 Variance = 4Variance = 5 Variance = 6 Variance = 7 Variance = 8

Page 48: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 16

4.80E+01, 2.55E+101 1.68E+02, 2.55E+101

1.00E+00 3.00E+00 9.00E+00 2.70E+01 8.10E+01 2.43E+02 7.29E+02

0.00E+00

5.00E+100

1.00E+101

1.50E+101

2.00E+101

2.50E+101

3.00E+101

2.38419E-074.76837E-079.53674E-071.90735E-063.81470E-067.62939E-061.52588E-053.05176E-056.10352E-051.22070E-042.44141E-044.88281E-049.76563E-041.95313E-033.90625E-037.81250E-031.56250E-023.12500E-026.25000E-021.25000E-012.50000E-015.00000E-011.00000E+002.00000E+004.00000E+008.00000E+001.60000E+013.20000E+016.40000E+011.28000E+022.56000E+02

3.0 9.0 27.0 81.0 243.0

Log 3 { 2 N + N 2 }, #

Lo

g 3

{ μ

= 1

, σ

= 2

0.5

}

Lo

g 2

{ F

lux

Den

sity

}#

-m

2

Log3 { 2 N + N2 }, #

Flux Density, n - m2

μ = σ = 0 μ = σ = 1 μ = σ = 2 μ = σ = 3 μ = σ = 4 μ = σ = 5

μ = σ = 6 μ = σ = 7 μ = σ = 8 μ = σ = 9 μ = σ = 10 μ, σ = 1, 2^0.5

Integral xn e-ax dx = Г (n +1 ) / a n+1

n > -1, a > 0 & = n! / a n+1

n positive integer, a > 0

Page 49: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0019

3756

7594

112131

150168

187168

150131

11294

7556

3719

00

22

45

67

90

112

134

157

179

202

224

202

179

157

134

112

90

67

45

22

00

23

45

68

91

114

136

159

182

204

227

204

182

159

136

114

91

68

45

23

00

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ME

AN

CO

LO

R,

%

AVERAGE COLOR INTENSITY NUMBER, #

RGB Color Bit#

Mean I, % R 187 G 224 B 227

Page 50: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 18

1 2 3 4 5

= Population Average 5.05E+01 3.57E+01 5.15E+01 3.52E+03 9.56E+03

= Population Stadard Deviation 2.93E+01 2.07E+01 2.93E+01 3.11E+03 8.46E+03

= Avg / Std 1.72E+00 1.72E+00 1.76E+00 1.13E+00 1.13E+00

1, 1.72E+00 2, 1.72E+003, 1.76E+00

4, 1.13E+00 5, 1.13E+00

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

-4.00E+03

-2.00E+03

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1.40E+04

AV

ER

AG

E J

/ K

PE

RIO

DIC

ITY

OF

L

IGH

T,

M /

S

AXIS TITLE

Energy Specfic Density Distribution Relative to

The Velocity of Light SI

( Population 0 - 101 ), J / m / s / K

= Population Average = Population Stadard Deviation = Avg / Std

Page 51: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 19

1 - Cos N / x

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

1

10

19

28

37

46

55

64

73

82

91

10

0

10

9

11

8

12

7

13

6

14

5

15

4

16

3

17

2

18

1

19

0

19

9

20

8

21

7

22

6

23

5

24

4

25

3

26

2

27

1

28

0

28

9

29

8

AM

PL

ITU

DE

, 1

-N

/ X

DIS

TA

NC

E,

M /

S

Visibility

∆I( ω )min , 100.00(10)

0.000000-0.100000 0.100000-0.200000 0.200000-0.300000 0.300000-0.400000 0.400000-0.500000

0.500000-0.600000 0.600000-0.700000 0.700000-0.800000 0.800000-0.900000 0.900000-1.000000

Page 52: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 20

-6.00E+00

-4.00E+00

-2.00E+00

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1 6

11

16

21

26

31

36

41

46

51

56

61

66

71

76

81

86

91

96

10

1

10

6

11

1

11

6

12

1

12

6

13

1

13

6

14

1

14

6

15

1

15

6

16

1

Correlated, W - s = ( 5 x^4 Exp( -x ) ) - ( x^5 Exp( - x ) ), x = N (1 … 10^3) c / λ

Constant Error Bar, +2

Page 53: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 21

-1.000000

-0.500000

0.000000

0.500000

1.000000

1.500000

2.000000

1 8

15

22

29

36

43

50

57

64

71

78

85

92

99

106

113

120

127

134

141

148

155

162

169

176

183

190

197

204

211

218

225

232

239

246

253

260

267

274

281

288

295

Per

iod N

Period, x / N

300 Temperature Periods, Frequency Constant, Uniform Temperature, 100K

Maximum Energy Frequency = 1 + Cos x / N Period = Sin x / N Minimum Energy Frequency = 1 - Cos N / x ∆ν, m / s = 1

f { x } = ( h c / λ k T )

Page 54: Associate Research Professor / Senior Research Scientist

Concluding Remarks

• Accuracy is Statistical Relative Intensity, root 2 / 2

• One binary count is the mean square uncertainty of information content (energy).

• Contrast 0-to-One on a binary scale, one-bit of an 8-bit Byte, 1:210 , 1:1024

• Frequency-period, substance, time, space, energy.

• Substance, hartree, molecular radiation/absorption, energy (mass, qm),

• Avogadro’s Number N = 6.022169(40) 1023 mole-1

08 - 24 - 2015 22

Page 55: Associate Research Professor / Senior Research Scientist

Statistical Calibration

Relative to the Meter and the Triple

Point of Water

Supplement

08 - 24 - 2015 23

Page 56: Associate Research Professor / Senior Research Scientist

Units SI and derived

08 - 24 - 2015 24

C0-Data 2014

Normal Value Standard Uncertainty Relative Std Unc, Sci Concise Reciprocal Std Unc, Fraction

J m mol-1, NA hc = 0.119626566 0.000 000 000 084 1.00E-10 0.119 626 565 779(84) 8 1/3

m s-1, c, c0 = 2.99792E-08 exact exact 2.99792E-08 33356409 1/2

Ω, Z 0 = 376.7303135 exact exact 376.7303135 0

1 / 6, TP / σ = 2.49866E-25 1.67E+00 4002146336230170000000000

c0 / Ω Z0 = 7.95775E-11 Exact 12566370614 1/3

W m-2 K-4, σ = 5.67037E-08 0.000 021 x 10E(-8) 3.60E-06 5.670 373(21) x 10(-8) 17635524 1/7

K, TP = 1.41683E-32 0.000 085 x 10E(32) 6.00E-06 1.416 833(85) x 10(32) 70579948377825800000000000000000

m K , c2 = 0.01438777 0.000 0013 x 10E(-2) 9.10E-07 1.438 7770(13) x 10(-2) 69 1/2

m-1 k -1, k / h c = 69.503476 0.000 063 9.10E-07 69.503 476(63) 0

Hz K-1, k / h = 20836618000 0.000 0019 x 10E(10) 9.10E-07 2.083 6618(19) x 10E(10) 0

J K-1, k = 1.38065E-23 0.000 0013 x 10E(-23) 9.10E-07 1.380 6488(13) x 10(-23) 72429715652525100000000

J s, h = 6.62607E-34 0.000 000 29 x 10(-34)4.40E-08

6.626 069 57(29) x 10E(-34) 1509190311746150000000000000000000

W m2 sr-1, c1L = 1.19104E-16 0.000 000 053 x 10E(-16)4.40E-08

1.191 042 869(53) x 10(-16) 8396003418748480

J - s, h-bar = 1.05457E-34 0.000 000 047 x 10E-(34)4.40E-08 1.054 571 726(47) x 10(-34)

9482522386533240000000000000000000

J, eV = 1.60218E-19

0.000 000 035 x 10E(-19)2.20E-08 1.602 176 565(35) x 10(-19)

6241509343260180000

A J-1, e / h = 2.41799E+14 0.000 000 053 x 10(14) 2.20E-08 2.417 989 348(53) x 10(14) 0

Other Ratios

m k , hc / k = 0.01438777 1.59E+04 1.10E+06 1.438776948E-10 69 1/2

K-1, TP-1 = 7.05799E+31 5.26316E-05 1.67E+05 7.05799E-33 0

J-1 s-1 , h-1 = 1.50919E+33 3.44828E-28 2.27E+07 6.62607E-34 0

J, 8 π hc = 4.99248E-40 4.992 482 532 (25)E-40 π 2.00301E+39 2003011514892740000000000000000000000000

m2 s, c / λ2 = 2.99792E-10 1.00E+01 3335640952 3335640952

J sr-1 s-1, 16 hc / 2π = 5.05844E-41 1 / π 1.97689E+40 19768931262818000000000000000000000000000

3 m k , hc / k = 0.043163309 3.00E+00 23.16782533 23 1/6

1, h c / λ k TP = 2.77391E+32 1.00E+00 3.60502E-33 0

4 J m Hz-1, hc = 7.94578E-41 4.00E+01 1.25853E+40 12585292520485600000000000000000000000000

2 T(0) - σ, K-8 = 546.3181178 2.00E+00 0.001830435 0

2 T(0), K = 546.320002 2.00E+00 0.001830429 0

Δ K, = 0.001884198 Δ.00E+00 530.7297013 530 3/4

http://us.wow.com/wiki/Triple_point?s_chn=11&s_pt=source2&type=content&v_t=content

http://www.bipm.org/en/measurement-units/base-units.html

The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.

Page 57: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 25

-100

0

100

200

300

400

500

600

123456789101112131415161718192021

RE

LA

TIV

E I

NT

EN

SIT

Y,

C /

2 Λ

COLOR X, Y, Z,

Relative Intensity, CIE Color

∆Counts - 2 [ Peak - ( Counts - 1 ) ] / 2

Page 58: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 26

0.0

0.4

0.8

1.2

1.6

2.0

-100 -80 -60 -40 -20 0 20 40 60 80 100

Qu

antu

um

rat

e, n

q(t

)

Bndwidth x, #

Complex auto-correlated Contrast

2 [ Bessel J0 ( x / 2 ) ]^2 ( Bandwidth, x / 2 ) / 2 ( Bandwidth, x )

( Bandwidth, 2 x ) / 2 ( Bandwidth 4 x ) ( Bandwidth 3 x )

Page 59: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 27

-1, -5060532.623 1, -5060532.623

-1, 5060533.6225 1, 5060533.6225

-30 -20 -10 0 10 20 30

-1,000,000.0

0.0

1,000,000.0

2,000,000.0

3,000,000.0

4,000,000.0

5,000,000.0

6,000,000.0

-6,000,000

-5,000,000

-4,000,000

-3,000,000

-2,000,000

-1,000,000

0

1,000,000

-30 -20 -10 0 10 20 30

Space-Time Estimate, #

Co

mp

lex

Co

rrel

ated

Sp

ectr

al R

adia

nce

, J

-s

-m

Co

mp

lex

Co

rela

ted I

nte

nsi

ty, m

-s

/ sr

Peak Intensity, ν( t ) = c / λ

Periodic Information, N

Spatial Period Spatial -Temporal Period 2 [ Bessel J0 (x) ]^ 2 Temporal Period

Page 60: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 28

-2, 0.6652

0, 0.0000

2, 0.6652

0, 1.0000

0.00

0.20

0.40

0.60

0.80

1.00

1.20

-60 -40 -20 0 20 40 60

Inte

nsi

ty A

mp

litu

de,

I (

t )

Period ( x ), m - s

Relative Intensity

[ Bessel J1 (x) ]^2 [ Bessel J0 (x) ]^2

Page 61: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 29

0, 0.00E+00

2, -0.1535-2, -0.1535

-50 -30 -10 10 30 50

-2.0E+89

0.0E+00

2.0E+89

4.0E+89

6.0E+89

8.0E+89

1.0E+90

1.2E+90

1.4E+90

1.6E+90

1.8E+90

2.0E+90-2.0E+00

-1.5E+00

-1.0E+00

-5.0E-01

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

-50 -30 -10 10 30 50

Period, 1 / N

Fre

qu

ency

, 1

/ N

Fre

qu

ency

, N

Period, N

Periodic Rate of Closure, N x m / s

Position error Two-body Separation Cos( J1( x ) ) - 2 J1 ( x )

Two-body Separation Abs ( Cos( J1 ( x ) ) + 2 J1 ( x ) Two-body Separation + ( x / 2 + Cos( x ) )

Two-body Period

Page 62: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 30

0.09, 3.45E-24

0.10, 2.26E-24

0.20, 1.41E-25

0.30, 2.79E-26

0.09, 3.45E-24

0.10, 2.26E-24

0.20, 1.41E-25

1/10 1/10 3/10 5/10124

-5.00E-25

0.00E+00

5.00E-25

1.00E-24

1.50E-24

2.00E-24

2.50E-24

3.00E-24

3.50E-24

4.00E-24

-5.E-25

0.E+00

5.E-25

1.E-24

2.E-24

2.E-24

3.E-24

3.E-24

4.E-24

4.E-24

1/10 1/10 3/10 5/10 1 2 4

Cut-off Wavelength Fraction ( 3 / 10 }, λc μm

Po

wer

, W

-cm

2-

um

-sr

Po

wer

, W

-cm

2-

μm

-sr

Cut-off Wavelength Fraction ( 3 / 10 }, λc μm

Blackbody, Spatial-Spectral Radiance

Specific Density re: tpw + / - 0.01K, μm

tpw ( 0 ) 0.00E+00 273.16 K 1.00E-04 273.17 K -1.00E-04 273.15 K

Page 63: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 31

-3E+136

-2E+136

-1E+136

0

1E+136

2E+136

3E+136

1

18

35

52

69

86

10

3

12

0

13

7

15

4

17

1

18

8

20

5

22

2

23

9

25

6

27

3

29

0

30

7

30

6

28

9

27

2

25

5

23

8

22

1

20

4

18

7

17

0

15

3

13

6

11

9

10

2

85

68

51

34

17

Am

pli

tud

e, #

Period Δn ( c / λ ), # m - s

Periodic Energy Frequency, x ( c / λ )x Exp -( x + 1 ) / n -x Exp ( x - 1 ) / n

Page 64: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 32

-0.600000

-0.400000

-0.200000

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1.200000

1

12

23

34

45

56

67

78

89

10

0

11

1

12

2

13

3

14

4

15

5

16

6

17

7

18

8

19

9

21

0

22

1

23

2

24

3

25

4

26

5

27

6

28

7

29

8

Dif

fere

nti

al J

( x

) /

x

0 d

ba,

ev

Radar Harmonic ReturnsSpectral Intensity, W / sr

-0.600000--0.400000 -0.400000--0.200000 -0.200000-0.000000

0.000000-0.200000 0.200000-0.400000 0.400000-0.600000

0.600000-0.800000 0.800000-1.000000 1.000000-1.200000

Page 65: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 33

-5.00000

-4.00000

-3.00000

-2.00000

-1.00000

0.00000

1.00000

2.00000

3.00000

4.00000

5.00000

123

45

67

89

11

113

315

517

719

922

124

326

528

730

933

135

337

539

738

336

133

931

729

527

325

122

920

718

516

314

111

997

75

53

31 9

Am

pli

tud

e, D

egre

es

Period, Radians

4.5 Cos x, Degrees

4.5 Cos x, Degrees

Page 66: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 34

-6.00000

-4.00000

-2.00000

0.00000

2.00000

4.00000

6.00000

-7

-5

-3

-1

1

3

5

71

13

25

37

49

61

73

85

97

10

912

113

314

515

716

918

119

320

521

722

924

125

326

527

728

930

131

330

529

328

126

925

724

523

3

n S

in x

n C

os

x

Number, n

Space-Time Bandwidth, Constant n (hc/λkT = 0) Sin x 1.5 Sin x 2 Sin x 3 Sin x 4 Sin x 5 Sin x 6 Sin x

Cos x 2 Cos x 2.25 Cos x 4.5 Cos x 4 Cos x 5 Cos x 15 Cos x

Page 67: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 35

-5

-4

-3

-2

-1

0

1

2

3

4

5

0.0

5236

0.5

2094

0.9

7670

1.4

0841

1.8

0545

2.1

5802

2.4

5746

2.6

9638

2.8

6891

2.9

7080

2.9

9954

2.9

5442

2.8

3656

2.6

4884

2.3

9591

2.0

8398

1.7

2073

1.3

1511

0.8

7712

0.4

1752

-0.0

5236

-0.5

20

94

-0.9

7670

-1.4

0841

-1.8

0545

-2.1

5802

-2.4

5746

-2.6

9638

-2.8

6891

-2.9

7080

-2.9

9954

-2.9

5442

-2.8

3656

-2.6

4884

-2.3

9591

-2.1

5802

-2.4

5746

-2.6

9638

-2.8

6891

-2.9

7080

-2.9

9954

-2.9

5442

-2.8

3656

-2.6

4884

-2.3

9591

Rad

ian

s

Radians

2-Dimension ( x, y ) Ellipsoid Amplitude and Periodicity

4.5 Cos x 1.5 Sin x

Page 68: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 36

n Cos ( x ) / 4

-100

-80

-60

-40

-20

0

20

40

60

0

1.0

48

328

214

3.9

34

584

331

8.3

56

238

926

13

.84

301

551

19

.79

348

492

25

.52

230

677

30

.31

485

509

33

.48

542

864

34

.43

495

612

32

.70

408

181

28

.01

776

369

20

.31

801

868

9.7

82

180

675

-3.1

750

480

12

-17

.916

428

13

-33

.613

467

-49

.292

621

34

-63

.893

859

45

-76

.338

137

36

-85

.599

656

18

-90

.778

328

57

-91

.167

720

07

-86

.313

865

24

-76

.060

784

97

-83

.732

794

83

-90

.246

107

89

-91

.434

751

68

-87

.665

133

43

-79

.571

728

53

-68

.001

939

19

Dep

th, 1

Am

pli

tude,

A (

x, y,

z )

Incrmental Period, n Sin ( x ) / 3

3-Dimensionsal ( x, y, z ) Surfaces of Constant Period ( Projected Area )

-100--80 -80--60 -60--40 -40--20 -20-0 0-20 20-40 40-60

Page 69: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 37

-50

-40

-30

-20

-10

0

10

20

30

40

50

111

21

31

41

51

61

71

81

91

10

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

130

929

928

927

926

925

924

923

9

Am

pli

tud

e, L

og

2

Period, Radians

Constant Bandwidth, n Cos x

Amplitude n, Period Cos x

15 Cos x 5 Cos x 4.5 Cos x 4 Cos x 3 Cos x 2.25 Cos x 2 Cos x 1.5 Cos x

Page 70: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 38

0.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000000.0000000010.0000000070.0000000600.0000004770.0000038150.0000305180.0002441410.0019531250.0156250000.1250000001.0000000008.000000000

64.000000000512.000000000

4,096.00000000032,768.000000000

262,144.0000000002,097,152.000000000

16,777,216.000000000134,217,728.000000000

1,073,741,824.0000000008,589,934,592.000000000

68,719,476,736.000000000549,755,813,888.000000000

4,398,046,511,104.00000000035,184,372,088,832.000000000

281,474,976,710,656.0000000002,251,799,813,685,250.000000000

18,014,398,509,482,000.000000000

1

13

25

37

49

61

73

85

97

109

121

133

145

157

169

181

193

205

217

229

241

253

265

277

289

301

313

305

293

281

269

257

245

233

Tan

gen

t, L

og

2 (

n T

an x

)

Angle x, n radians

Periodic Information Stacked Area, radians

Tan x Sin x Cos x

Page 71: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 39

y = 2E-15x6 - 3E-12x5 + 2E-09x4 - 6E-07x3 + 9E-05x2 - 0.0052x + 0.4

R² = -1.25

-1.20E+00

-1.00E+00

-8.00E-01

-6.00E-01

-4.00E-01

-2.00E-01

0.00E+00

2.00E-01

4.00E-01

6.00E-01

-99.000 1.000 101.000 201.000 301.000 401.000 501.000

Co

ntr

ast

dT

Temperature, K

Incremental Contrast, Delta 500K

Contrast, Delta T Poly. (Contrast, Delta T)

CIE Luminance, Binary 3-Vector

Red 187, 000, 000

Green 000, 224, 000

Blue 000, 000, 227

Page 72: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 40

λ

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1

14

27

40

53

66

79

92

10

5

11

8

13

1

14

4

15

7

17

0

18

3

19

6

20

9

22

2

23

5

24

8

26

1

27

4

28

7

30

0

31

3

32

6

33

9

35

2

36

5

37

8

39

1

Sp

ectr

al R

adia

nt

Inte

nsi

ty, W

-m

2-μ

m -

sr-1

+ / - 2 / 3 ( J1 TPW )2, μm-1

Polychromatic Surface, 1E-8, 0.001μm, Δλ / λ

0.00-5.00 5.00-10.00 10.00-15.00 15.00-20.00

20.00-25.00 25.00-30.00 30.00-35.00 35.00-40.00

Page 73: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 41

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

177

153

229

305

381

457

533

609

685

761

837

913

989

1065

1141

1217

1293

1369

1445

1521

1597

1673

1749

1825

1901

1977

2053

2129

2205

2281

2357

No

rmal

-S

pec

tral

Rad

ian

t In

ten

sity

, W

-m

2-

μm

-sr

Period ( 0.9 … 240.0 ) λ, μm

Normal Stefan-Boltzmann, 240 Periods

0.00E+00-5.00E+01 5.00E+01-1.00E+02 1.00E+02-1.50E+02

1.50E+02-2.00E+02 2.00E+02-2.50E+02

Page 74: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 42

0 20 40 60 80 100

0.000

50.000

100.000

150.000

200.000

250.000-30000.00

-25000.00

-20000.00

-15000.00

-10000.00

-5000.00

0.00

0 20 40 60 80 100

Number ( N π / 2 ), 1

Am

pli

tud

e A

, #

Rel

ati

ve

T,

K

Relative Temperature, Period NR ( K ) = - ( 1 + N T ( Sin^2 Nx + Cos^2 Nx ) )

CIE Luminance, Binary 3-Vector

Red 187, 000, 000

Green 000, 224, 000

Blue 000, 000, 227

Page 75: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 43

0 20 40 60 80 100 120 140 160

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 20 40 60 80 100 120 140 160

N S

in N

x, ra

d

Co

s 2

Nx

, ra

d

Spatial Period, N x = N ( π / 2 ), rad

Uniform Temperature Distribution, 4 π sr

Peak Temperature ( K ) = Cos 4 N x Spatial Temperature T = N Sin N x

CIE Luminance, Binary 3-Vector

Red 187, 000, 000

Green 000, 224, 000

Blue 000, 000, 227

Page 76: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 44

y = -6E-28x6 + 9E-23x5 - 5E-18x4 + 8E-14x3 + 7E-11x2 - 1E-05x + 1

R² = 0.0021

y = 2E-27x6 - 5E-22x5 + 4E-17x4 - 2E-12x3 + 3E-08x2 - 0.0002x + 0.5

R² = -0.06

0 50 100 150 200 250

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0 50 100 150 200 250

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

2 x / N π, Degrees

Min

imu

m, T

= T

( S

in π

x /

2 N

),K

2 x / N π, Degrees

Tem

per

atu

re A

mp

litu

de,

T =

T (

Co

s π

x /

2 N

), K

3-Color, Continuous Contrast, ΔTPeak Temperature Contrast = T [ 1+ ( Cos^2 - Sin^2 ) / ( Cos^2 + Sin^2 ) ] Minimum Temperature = T Sin x / 2 N

Mean Temperature = T Cos x / N Poly. (Peak Temperature Contrast = T [ 1+ ( Cos^2 - Sin^2 ) / ( Cos^2 + Sin^2 ) ])

Poly. (Mean Temperature = T Cos x / N)

CIE Luminance, Binary 3-Vector

Red 187, 000, 000

Green 000, 224, 000

Blue 000, 000, 227

Page 77: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 45

050100150200250300

0.000

100.000

200.000

300.000

400.000

500.000

600.000-100.000

0.000

100.000

200.000

300.000

400.000

500.000

600.000

0 50 100 150 200 250 300

Peak Temperature Specific Density, K

Tem

per

atu

re S

pec

ific

, K

Max

imu

m S

pec

ific

Tem

per

atu

re D

ensi

ty, K

Minimum Temperature Specific Density, K

Correlated Specific Temperature Density, 300K

Minimum Temperature Specific Density = 2 A Sin^2 ( N π A / 2 ) Contrast, Delta T Peak Temperature Specific Density = 1 + 2 Cos^2 ( N π A / 4 )

Page 78: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 46

0

50

100

150

200

250

300

350

400

450

500

-1.8E+05

-1.6E+05

-1.4E+05

-1.2E+05

-1.0E+05

-8.0E+04

-6.0E+04

-4.0E+04

-2.0E+04

0.0E+00

2.0E+04

0 50 100 150 200 250

Pea

k T

emp

erat

ure

Sp

ecif

ic D

ensi

ty E

stim

ate

N, K

/ r

Sam

ple

Per

iod

, m

/ s

Area Sample Surface Normal / sr , N π / 2, m2

Constant Hemisphere Temperature Surface, N π / 2, r

Probability T > T (Min) R ( K ) = - ( 1 + N T ( Sin^2 Nx + Cos^2 Nx ) ) Minimum Temperature Specific Density = 2 A Sin^2 ( N π A / 2 )

Peak Temperature Specific Density = 1 + 2 Cos^2 ( N π A / 4 )

CIE Luminance, Binary 3-Vector

Red 187, 000, 000

Green 000, 224, 000

Blue 000, 000, 227

Page 79: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 47

-1.00E+01

-8.00E+00

-6.00E+00

-4.00E+00

-2.00E+00

0.00E+00

2.00E+00

1 3 9 27 81

Sp

ectr

al T

emp

erat

ure

, W

–μ

m-1

sr-1

Log3 W - m-3 Fraction ( 3 / 10 )

Stefan-Boltzmann, εW - m-3 – K-4

σ K^4 / π λ K = 1 σ K^4 / π λ K = 1.1 σ K^4 / π λ K = 1.2 σ K^4 / π / λ, K = 1.3

Page 80: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 48

1.11416E-06, 1.11416E-06

1.80E+06, 1.80E+06

1.1, 1.97E+06

1.2, 2.15E+06

1.3, 2.33E+06

0

500000

1000000

1500000

2000000

2500000

0.0

00

00E

+0

0

2.0

00

00E

+0

5

4.0

00

00E

+0

5

6.0

00

00E

+0

5

8.0

00

00E

+0

5

1.0

00

00E

+0

6

1.2

00

00E

+0

6

1.4

00

00E

+0

6

1.6

00

00E

+0

6

1.8

00

00E

+0

6

2.0

00

00E

+0

6

Rel

ativ

e F

ract

ion

, (

4 /

8 )

, W

/ m

/ K

/ s

/ s

r /

4

Wavelength 0.09 μm, K / sr

Normal Boltzmann Statistics Specific Spatial Density, 0.09μm, T(peak)

5.67037E-08 = σ / ( 2 π λ^2 ) 1 = 2 ε / σ - 1 1.1 = 2 ε / σ - 1 1.2 = 2 ε / σ - 1 1.3 = 2 ε / σ - 1

Page 81: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 49

5.67000E-08,

5.67000E-08

4.81E-01, 4.81E-01

1.1, 2.39E-01

1.2, -7.71E-02

1.3, -4.84E-01

-6.00000E-01

-4.00000E-01

-2.00000E-01

0.00000E+00

2.00000E-01

4.00000E-01

6.00000E-01

W /

m2

/ K

/ s

/ s

r

Temperature, K / sr

Boltzmann Statistics (peak)

σ = 5.67000E-08 σ / λ / 2 / π σ K^4 / π λ K = 1 σ K^4 / π λ K = 1.1 σ K^4 / π λ K = 1.2 σ K^4 / π / λ, K = 1.3

Page 82: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 50

1, -1

315, -7.3583E+138

1, 0

315, -2.336E+136

0 50 100 150 200 250 300 350

-2.50E+136

-2.00E+136

-1.50E+136

-1.00E+136

-5.00E+135

0.00E+00-8.00E+138

-7.00E+138

-6.00E+138

-5.00E+138

-4.00E+138

-3.00E+138

-2.00E+138

-1.00E+138

0.00E+00

0 50 100 150 200 250 300 350

- x ( c / λ / n ), Integer #

-x E

xp

( x

-1

), V

alu

e #

-x E

xp

-(

x +

1 )

, V

alu

e #

- x ( c / λ ), Integer #

Exponential Information, Period x ( c / λ )

-x Exp ( x - 1 ) -x Exp ( x - 1 ) / n

Page 83: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 51

1.00, 0.35

0.71

1.411.77

2.83

5.66

11.31

22.63

99.00, 35.00

1.00, 1.09E+01

10.00, 3.29E+02

101.00, 2.77E+04

1.00, 1.00

100.00, 100.00

1.0E+00 1.0E+01 1.0E+02 1.0E+03

1

3

9

27

81

243

729

2,187

6,561

19,683

59,049

1/4

1/2

1

2

4

8

16

32

64

1 2 4 8 16 32 64 128

Log10 Energy, J ( m - s )

Lo

g3

Mea

n E

ner

gy D

ensi

ty, J

/ (

m -

s )

Lo

g2

MS

En

erg

y, F

ract

ion

1 /

4 (

J /

s )

x 2

Log2, Fraction 1 / 4 ( J / s )

Lambertian Source ( T ), KMean Energy 0-to-101, Joules / m

dν / ν = J / s, r m s λ / (dλ) = ν exp (1 - c / λ^2), J / ( m - s ) Mean Energy, ν(t) J / s

Page 84: Associate Research Professor / Senior Research Scientist

08 - 24 - 2015 52

4, 1.09E+01

10201, 2.77E+04

2

6

18

54

162

486

1458

4374

13122

39366

1 4 16 64 256 1024 4096 16384Lo

g3

En

erg

y D

ensi

ty R

elat

ive

to t

he

Kel

vin

,, F

ract

ion 1

/4 J

/ (

m -

s )

Log 2 λ, Fraction 1/4 ( m2 )

Spectral Radiant Power Density1 K, 1 Hz, 1 m ( Bandwidth )

λ / (dλ) = ν exp (1 - c / λ^2), J / ( m - s )

Page 85: Associate Research Professor / Senior Research Scientist

Conclusion

100 % Energy Estimate is Uncertain!

An Accuracy Statement Answers

THE Question?

What is the Relative Fraction Energy

Reflected, Transmitted, Absorbed

R + T – α E-αt / 2 = 2(u)

when propagated a length c, m – s.

08 - 24 - 2015 53