5b. orbital maneuvers - uliege motivation coplanar transfers have wide applicability (e.g., phasing...

51
Gaëtan Kerschen Space Structures & Systems Lab (S3L) 5B. Orbital Maneuvers Astrodynamics (AERO0024)

Upload: vanquynh

Post on 12-Jul-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

Gaëtan Kerschen

Space Structures &

Systems Lab (S3L)

5B. Orbital Maneuvers

Astrodynamics (AERO0024)

2

Previous Lecture: Coplanar Maneuvers

5.1 INTRODUCTION

5.1.1 Why ?

5.1.2 How ?

5.1.3 How much ?

5.1.4 When ?

5.2 COPLANAR MANEUVERS

5.2.1 One-impulse transfer

5.2.2 Two-impulse transfer

5.2.3 Three-impulse transfer

5.2.4 Nontangential burns

5.2.5 Phasing maneuvers

3

Motivation

Coplanar transfers have wide applicability (e.g., phasing

maneuvers and orbit raising). They alter 4 orbital elements:

1. Semi-major axis.

2. Eccentricity.

3. True anaomaly.

4. Argument of perigee.

Noncoplanar transfers requires applying v out of the orbit

plane and can therefore alter the last two elements:

1. Inclination.

2. RAAN.

4

5. Orbital Maneuvers

5.3 Noncoplanar transfers

5.4 Rendez-vous

5

5. Orbital Maneuvers

5.3 Noncoplanar transfers

5.3.1 Inclination change

5.3.2 RAAN change

6

Gaussian VOP (Lecture 4)

2

2cos(1 )

1 cos

Na ei

e

2

2sin(1 )

sin 1 cos

Na e

i e

ˆ ˆ ˆR R T NT N F e e e

2

5.3.1 Inclination change

7

Where ?

Cranking maneuver: with a single v maneuver, one

wants to change only the inclination of the orbit plane.

Where should we apply this maneuver ?

5.3.1 Inclination change

8

Where ? At an Equator Crossing

The two orbit planes intersect in the equatorial plane. We

can therefore change the inclination at an equator

crossing, by a simple rotation of the velocity vector.

vrv

v

View down the line of intersection

of the two orbital planes

5.3.1 Inclination change

9

ΔV Computation for a Circular Orbit

2 1 2 1 2 2 1 1ˆ ˆ ˆ

r r rv v v v v v v u u u

22 2 2

2 1 1 2 1 12 cosr rv v v v v v v

1 2 1 2,r rv v v v

2 sin2

v v

5.3.1 Inclination change

10

Inclination Changes Are Very Expensive

0 10 20 30 40 50 60 70 80 900

0.5

1

1.5

, degrees

v

(%

of

v)

(24º , 41.6%)

(60º , 100%)

5.3.1 Inclination change

How to minimize ΔV ?

Is this cranking maneuver

the minimum-fuel transfer ?

11

Real-Life Examples: Space Shuttle and Hubble

The Space Shuttle is capable of a plane change in orbit of

only about 3º, a maneuver which would exhaust its entire

fuel capacity.

What is Hubble space telescope’s inclination ?

28.46 (HST) vs. 28.35 (KSC)…

5.3.1 Inclination change

12

What’s Unique with this Picture ?

5.3.1 Inclination change

Too costly ! Instead, NASA has

chosen to have another shuttle

ready to lift off to retrieve the

astronauts if needed.

13

Minimizing ΔV

1. Do not modify the radial velocity.

2. The maneuver should occur where the azimuth

component is smallest, which is at apogee.

5.3.1 Inclination change

14

Minimum-Fuel Transfer: Bi-Elliptic Transfer

5.3.1 Inclination change

One can always save fuel over a one-impulse maneuver by

using three-impulses: noncoplanar bi-elliptic transfer.

J.E. Prussing, B.A. Conway, Orbital Mechanics, Oxford University Press

15

Motivation for RAAN Change

5.3.2 RAAN change

Constraints on the line of nodes may be imposed to a

spacecraft (e.g., for rendez-vous):

Launch window to match up the line of nodes.

If we wait too long for such a window, the satellite can be launched

sooner and thrust can be applied to change the line of nodes.

16

Why is RAAN Change Complicated ?

A change in the node affects the argument of perigee

(except for circular and polar orbits) !

5.3.2 RAAN change

3

22 Resin 1 cos

1

aa T e

e

2(1 )

sin cos cosa e

e R T E

2

2cos(1 )

1 cos

Na ei

e

2 sin 2 cos1 (1 )cos cos

1 cos

T ea ei R

e e

2 2(1 ) 2 cos cos sin 2 cos, with

1 cos

e R e e T eaM nt

e e

2

2sin(1 )

sin 1 cos

Na e

i e

17

RAAN Change: Circular Orbits

One-burn is sufficient. But where ?

Applying a change in velocity at any other points than the

common points of intersection of the orbital planes will

change both inclination and RAAN.

5.3.2 RAAN change

18

5. Orbital Maneuvers

5.4 Rendez-vous

5.4.1 Hill – Clohessy – Wiltshire equations

5.4.2 Gemini and Space Shuttle

19

Rendez-vous: Two Successive Phases

1. Long-distance navigation: basic maneuvers bring the

spacecraft in a vicinity (<100 km) of the target in the

same orbit plane.

2. Terminal rendez-vous: the interest is in the relative

motion, i.e. the motion of the maneuvering spacecraft in

relation to the target (spacecraft or neighboring orbit).

Focus of the present discussion.

5.4.1 H-C-W equations

Rescue of Intelsat-6: new

perigee kick motor (STS-49)

ISS & ATV

STS & HST

21

Basic Assumption

The rendez-vous can be solved using the “classical” 2-

body problem. But nonlinear equations of motion have to

be solved and one should resort to numerical methods

(e.g., Lambert’s problem).

Can we use approximate equations considering that

distances are small relative to the dimensions of the orbit ?

Yes ! Use linearization procedures.

5.4.1 H-C-W equations

22

Problem Statement

0r

r

0

0

, 1r

r

r r r

target

(known

orbit)

What is the equation governing the relative motion r ?

A rendez-vous occurs when r =0.

r

chase

5.4.1 H-C-W equations

23

Mathematical Developments

3r

rr

0 r r r

00 3r

r rr r

?

2 2 2

0 0 0 0( ).( ) 2 .r r r r r r r r r

3

23 3 0

0 2

0

2 .1r r

r

r r

Binomial

theorem

3 3 00 2

0

3 .1r r

r

r r

Relative

motion as

well !

5.4.1 H-C-W equations

24

Mathematical Developments

00 03 5

0 0

3 .1

r r

r rr r r r

0 00 03 3 2

0 0 0

3 .

r r r

r r rr r r r

Higher-order terms

neglected

00 3r

r

r

003 2

0 0

3 .

r r

r rr r r

Linear ODE.

Observer in an

inertial frame

5.4.1 H-C-W equations

25

Co-Moving Frame & Circular Orbit

0r

r

r

i

jk

0 02 rel rel

d

dt

Ωr r r Ω Ω r Ω v a r r

2. 2 rel rel r Ω Ω r r Ω v a

Local vertical

coordinate

frame

Our focus is on a

rotating observer in

the local frame (e.g.,

an ISS astronaut

watching the ATV)

5.4.1 H-C-W equations

26

Co-Moving Frame & Circular Orbit

2. 2 rel rel r Ω Ω r r Ω v a

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

rel

rel

x y z

x y z

x y z

n

r i j k

v i j k

a i j k

Ω k

Centrifugal Coriolis

2 2ˆ ˆ ˆ( 2 ) ( 2 )n x n y x n y n x y z r i j k

Interpretation

of the terms ?

5.4.1 H-C-W equations

27

Co-Moving Frame & Circular Orbit

2 2ˆ ˆ ˆ( 2 ) ( 2 )n x n y x n y n x y z r i j k

20 00 03 2 2

0 0 0

3 . 3 .ˆ ˆ ˆˆ r xn x y z r

r r r

r rr r r i j k i

2

2

3 2 0

2 0

0

x n x n y

y n x

z n z

Hill – Clohessy – Wiltshire

equations: acceleration relative

to a rotating observer fixed in

the moving frame.

5.4.1 H-C-W equations

28

An Obvious Solution

2

2

3 2 0

2 0

0

x n x n y

y n x

z n z

?

?

?

x

y

z

x=0, y=constant.

z=harmonic motion (the out-of plane motion is

decoupled from the in-plane motion).

Physical interpretation ?

Two spacecraft on the same orbit.

5.4.1 H-C-W equations

29

In Matrix Form

2

2

0 2 0 3 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0

x n x n x

y n y y

z z n z

Linear ODEs with constant coefficient: we can solve them !

Gyroscopic damping:

imposes a rotation if

there is a relative velocity

Centrifugal +

gravitational terms: move

away from the target if

not on the same orbit

5.4.1 H-C-W equations

30

Interpretation

Impulse to the left

rotation due to

Coriolis

Forward impulse

backward

motion !

Backward

impulse

forward motion !

5.4.1 H-C-W equations

31

Solution

0 02 0 2 2y n x y n x Cte y n x

2 2 2

0 03 2 0 2 4x n x n y x n x n y n x

0 0

2sin cos 4x A nt B nt y x

n

5.4.1 H-C-W equations

32

Solution: Overall

H. Curtis, Orbital Mechanics for Engineering Students, Elsevier.

0 0

0 0

0 0

2 1 cossin0

4 3cos 0 02 cos 1 4sin 3

6 sin 1 0 0

0 0 cossin

0 0

ntnt

n nx nt x x

nt nt nty nt nt y y

n nz nt z z

nt

n

0 0

0 0

0 0

3 sin 0 0 cos 2sin 0

6 cos 1 0 0 2sin 4cos 3 0

0 0 sin 0 0 cos

x n nt x nt nt x

y n nt y nt nt y

z n nt z nt z

( )rr tΦ ( )rv tΦ

( )vr tΦ ( )vv tΦ

( )tr 0 ( )tr 0 ( )t v

( )t v 0 ( )tr 0 ( )t v

5.4.1 H-C-W equations

33

Key Feature ?

0 0

0 0

0 0

2 1 cossin0

4 3cos 0 02 cos 1 4sin 3

6 sin 1 0 0

0 0 cossin

0 0

ntnt

n nx nt x x

nt nt nty nt nt y y

n nz nt z z

nt

n

Secular terms ! What do they mean ?

5.4.1 H-C-W equations

34

Example: HST and STS

The HST is released from the Space Shuttle, which is in a

circular orbit of 590 km altitude. The relative velocity of

ejection is 0.1 m/s down, 0.04 m/s backwards and 0.02 m/s

to the right. Find the position of HST after 5,10,20 minutes.

0 0

0 0

0 0

2 1 cossin0

4 3cos 0 02 cos 1 4sin 3

6 sin 1 0 0

0 0 cossin

0 0

ntnt

n nx nt x x

nt nt nty nt nt y y

n nz nt z z

nt

n

(-0.1;-0.04;-0.02)T

3

3986000.0011 rad/s

6968n

5.4.1 H-C-W equations

35

Example: HST and STS

5 minutes: (-33.345 ; -1.473 ; -5.894)T

10 minutes: (-70.933 ; 20.357 ; -11.170)T

20 minutes: (-143.000 ; 137.279 ; -17.766)T

5.4.1 H-C-W equations

36

Example: HST and STS

-200 -150 -100 -50 0 50-500

0

500

1000

1500

2000

2500

3000

x (m)

y

(m

)

5.4.1 H-C-W equations

37

Further Reading on the Web Site

They use Hill – Clohessy –

Wiltshire equations !

5.4.1 H-C-W equations

38

Solution: Overall

0 0

0 0

( ) ( ) ( )

( ) ( ) ( )

rr rv

vr vv

t t t

t t t

r Φ r Φ v

v Φ r Φ v

Assumptions:

1. The two satellites are within a few kms of each other.

2. The target is in a circular orbit.

3. There are no external forces on the interceptor.

Starting from t=0, how to exploit these equations for

rendez-vous after a time tf ?

Linear analog of

Kepler’s equation

5.4.1 H-C-W equations

39

Two-Impulse Rendez-vous Maneuvers

0 00 , and knownt r v

0 00 ( ) ( )rr f rv ft t Φ r Φ v

0Compute for rendez-vous in a time f

t v

1

0 0( ) ( )rv f rr ft t v Φ Φ r

0 0

1

0 0

Compute ( ) ( )

( ) ( ) ( ) ( )

f vr f vv f

vr f vv f rv f rr f

t t

t t t t

v Φ r Φ v

Φ r Φ Φ Φ r

Impose 0f v f f v v

0 0 0 v v v

5.4.1 H-C-W equations

40

Physical Interpretation

The initial velocity change places the vehicle on a

trajectory which will intercept the origin at time tf.

The final velocity change cancels the arrival velocity of

the vehicle at the origin and completes the rendez-vous.

5.4.1 H-C-W equations

41

Example: HST and STS

After 10 minutes, the STS astronauts want to retrieve HST.

Compute the v0+ to rendez-vous in 5 and 15 minutes.

5 minutes: (0.2742 ; 0.0135 ; 0.0359)T

15 minutes: (0.1356 ; 0.0753 ; 0.0082)T

5.4.1 H-C-W equations

42

Real Data: Gemini 10 and Agena 8

A 4-orbit rendez-vous plan similar to that of Gemini 6-7:

O1: no maneuvers to allow spacecraft checkout.

O2: height adjustment at perigee (0.2 m/s for orbital decay)

phase adjustment maneuver at apogee (17 m/s).

O3: switch to a circular orbit in the same plane as Agena

(16 m/s).

O4: terminal phase initiation (10 m/s)

velocity matching (13 m/s)

Total: 56 m/s

NH

NCI

NSR

TPI

TPF

5.4.2 Gemini and Space Shuttle

Nc: nominal corrective burn

Nh: nominal height adjust burn

5.4.2 Gemini and Space Shuttle

44

Real Data: Gemini 10 and Agena 8

5.4.2 Gemini and Space Shuttle

45

Real Data: Gemini 10 and Agena 8

5.4.2 Gemini and Space Shuttle

46

Real Data: Gemini 10 and Agena 8

47

Date Time UTC Name Impulsion Orbite

(m/s) (km x km)

23 15:46:44 MECO ---- 229 x 56

23 16:16:38 OMS-2 70,74 296 x 229

23 18:32:45 NC1 26,06 319 x 296

24 08:50:56 NC2 6,13 319 x 316

24 19:27:09 NC3 0,91 319 x 317

25 07:30:35 NH 7,01 344 x 319

25 08:24:45 NC4 2,74 345 x 327

25 09:55:43 Ti 2,71 347 x 332

25 11:12:45 MC1 0,64 347 x 334

25 11:26:20 MC2 0,64 348 x 334

STS-120 (Rendez-vous with ISS, Oct. 07)

Pour STS123: http://www.obsat.com/sts123tle.htm 5.4.2 Gemini and Space Shuttle

48

STS-120 (Rendez-vous with ISS, Oct. 07)

5.4.2 Gemini and Space Shuttle

49

Maneuvers can find many practical applications and may

drive spacecraft design (fuel consumption).

Focus on impulsive maneuvers (chemical propulsion).

Most important maneuvers in Earth’s orbit have been

described (plane change, circularization, phasing, rendez-

vous).

In Summary

50

Combined maneuvers (e.g., circularization and inclination

change for a GEO satellite).

Fixed V maneuvers.

Other maneuvers

Gaëtan Kerschen

Space Structures &

Systems Lab (S3L)

5. Orbital Maneuvers

Astrodynamics (AERO0024)