2 random variables - kahrbjy.files.wordpress.com · ee360 random signal analysis chapter 2: random...

55
EE360 Random Signal analysis Chapter 2: Random Variables 1 E E 3 6 0 - R a n d o m S i g n a l A n a l y s i s - E l e c t r i c a l E n g i n e e r i n g D e p a r t m e n t - JU S T . E E 3 6 0 - R a n d o m S i gna l A n a l ys i s - E l ec tr i c a l E n g i n e e ri ng D e p a rt m e n t - J U S T . E E 3 6 0 - R a n d o m S i g n a l An a l y s i s - E le c tri c a l E n gi n e e r i n g D e p a r t m e n t - J US T . E E 3 6 0 - E l e c t r i ca l E n g i n e e r i n g D e p a r t m e n t -J U S T 2 Random Variables 2.1 The Random Variable Concept A real r.v. is a real function of the elements of a sample space S . (Random variable=chance variable=stochastic variable) (Chung page 75) A r.v. is numerically valued function X of ω with domain Ω. ω Ω: ω X (ω ) is called a r.v. on Ω. Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Upload: others

Post on 02-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 1'

&

$

%

EE360-RandomSignalA

nalys

is-E

lect

rical

Engi

neering Department - JUST.

EE360-RandomSignalAnalysis-

Ele

ctr ical Engineering Department - JUST.

EE360-RandomSignal

Anal

ysis

-Ele

ctric

alEn

gine

ering Department - JUST.

EE360-Electrica

lEng

inee

ring

Depa

rtment - JUST

2 Random Variables

2.1 The Random Variable Concept

A real r.v. is a real function of the elements of a sample space S.

(Random variable=chance variable=stochastic variable)

(Chung page 75) A r.v. is numerically valued function X of ω with domain Ω.

ω ∈ Ω : ω → X(ω) is called a r.v. on Ω.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 2: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 2'

&

$

%

Ex. 2.1-1

Flip a coin, roll a die. H → 1, T → (-2). Outcome of the experiment number from die

× value of H/T.

Example 2.1.1: A random variable mapping of a sample space

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 3: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 3'

&

$

%

Ex. 2.1-2

Spin a wheel having marks 1 to 12. Sample space S = 0 < s ≤ 12.

Define a r.v. X = X(S) = s2. This maps elements in S onto the real line as the

set 0 < x ≤ 144

Fig. 2.1-2 Mapping applicable to Example 2.1.2

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 4: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 4'

&

$

%

Conditions for a function to be a r.v.:

1. every point in S must correspond to only one value of a r.v.

2. set X ≤ x shall be an event for any real number x.

PX ≤ x=sum of the probs. of all elementary events corresponding to

X ≤ x.

3. PX = −∞ = PX = ∞ = 0

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 5: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 5'

&

$

%

y = f(v)

• v: domain of a function = set of values the argument v may take.

• y: range of a function = set of corresponding values of the function.

X=r.v.

• domain of X is S.

• range of X is infinite (−∞ < x < ∞)

P = probability measure

• domain of P is all subsets defined on S.

• range of P is 0 ≤ P ≤ 1

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 6: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 6'

&

$

%

Discrete and Continuous Random Variables

• Discrete r.v. can take discrete values.

Sample space for a discrete r.v. can be discrete, continuous, or mixed.

• Cont. r.v. is one having a cont. range of values.

Sample space for cont. r.v. can’t be discrete.

• Mixed r.v. is one for which some of its values are discrete and some are

continuous.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 7: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 7'

&

$

%

Ex. 2.1-3

S = 1, 2, 3, 4 and a r.v. X = X(s) = s3. Elements in S map to discrete

points x in the set 1, 8, 27, 64.

If the probabilities of the elements of S are

P (1) = 424 , P (2) = 3

24 , P (3) = 724 , P (4) = 10

24 , then

the probabilities of the r.v.’s values become

P (X = 1) = 424 , P (X = 8) = 3

24 , P (X = 27) = 724 , P (X = 64) = 10

24 ,

this is so because of the one-to-one mapping.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 8: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 8'

&

$

%

Ex. 2.1-4

Prob. of occurrence of any discrete value of a continuous r.v. = 0

If the continuous r.v. T can take the values from -60 to 120, then the probability that

this r.v. fall in a small region dt centered at t in the given range will have a

probability = dt120−(−60) = dt

180 .

To get the probability that the r.v. = t we take the limit when dt → 0 and hence the

prob. =0

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 9: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 9'

&

$

%

2.2 Distribution Function

Cumulative probability distribution function (CPDF) defined as

PX ≤ x = probability of the event X ≤ x = function of x

= FX(x) with (−∞ ≤ x ≤ ∞)

Since FX(x) is a probability measure, then the following properties hold:

1. FX(−∞) = 0

2. FX(+∞) = 1

3. 0 ≤ FX(x) ≤ 1

4. FX(x1) ≤ FX(x2) if x1 < x2

5. Px1 < X ≤ x2 = FX(x2) − FX(x1)

6. FX(x+) = FX(x) function continuous from the right

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 10: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 10'

&

$

%

For the discrete case, one can write CPDF as follows

FX(x) =

N∑

i=1

PX = xiu(x − xi) with u(x) =

1, x ≥ 0

0, x < 0

or

FX(x) =

N∑

i=1

P (xi)u(x − xi)

Note that P (X = xi) = P (xi) is a shorthand notation.

Properties 1,2, 4, and 6 used to verify if GX(x) is a valid distribution function.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 11: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 11'

&

$

%

Example 2.2-1

Let X have the discrete values in the set −1,−0.5, 0.7, 1.5, 3. The

corresponding probabilities are assumed to be 0.1, 0.2, 0.1, 0.4, 0.2.

Now PX < −1 = 0 because there are no sample space points in the set

X < −1. Only when X = −1 do we obtain one outcome.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 12: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 12'

&

$

%Example 2.2.1: Discrete distribution and density functions

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 13: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 13'

&

$

%

Example 2.2-2

Let X have the continuous values in the set 0 < X ≤ 12 with FX(X) = 112X .

Example 2.2.2: Continuous (Uniform) distribution and density functions

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 14: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 14'

&

$

%

Density Function

Probability Density Function (pdf) is defined as

fX(x) =dFX(x)

dx

and for the discrete case

fX(x) =

N∑

i=1

P (X = xi)δ(x − xi)

• Existence If the derivative of FX(x) exists, then fX(x) exists. Note the

following:

φ(x0) =

∫ x0

−∞

φ(x)δ(x − x0)dx

δ(x) =du(x)

dx

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 15: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 15'

&

$

%

u(x) =

∫ x

−∞

δ(ξ)dξ

From the above, for the discrete case

fX(x) =

N∑

i=1

P (xi)δ(x − xi)

• Properties of Probability Density Functions (pdf)

1. 0 ≤ fX(x),∀x

2.∫

−∞fX(x)dx = 1

3. FX(x) =∫ x

−∞fX(ξ)dξ

4. Px1 < X ≤ x2 =∫ x2

x1fX(x)dx = FX(x2) − FX(x1)

Properties (1) and (2) must be satisfied for a function to be pdf.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 16: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 16'

&

$

%

Example 2.3-1

Let us test the function gX(s) shown in Figure 2.3-la to see if it can be a valid

density function. It obviously satisfies property 1 since it is nonnegative. Its area is

aα = 1, (must equal unity to satisfy property 2). Therefore, a = 1/α is necessary

if gX(x) is to be a density. Suppose a = 1/α. To find the applicable distribution

function we first write

gX(x) =

0 x0 − α > x ≥ x0 + α

1α2 (x − x0 + α) x0 − α ≤ x < x0

1α − 1

α2 (x − x0) x0 ≤ x < x0 + α

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 17: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 17'

&

$

%

GX(x) =

0 x0 − α > x∫

x

x0−αgX(ξ)dξ = 1

2α2 (x − x0 + α)2 x0 − α ≤ x < x0

1

2+

x

x0gX(ξ)dξ = 1

2+ 1

α(x − x0) − 1

2α2 (x − x0)2 x0 ≤ x < x0 + α

1 x0 + α ≤ x

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 18: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 18'

&

$

%Example 2.3.1: A possible pdf and Cpdf

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 19: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 19'

&

$

%

Example 2.3-2

Suppose a r.v. is known to have the triangular pdf of the preceding example with

x0 = 8, α = 5, a = 1α = 1

5 . From previous example formulas:

fX(x) =

0 3 > x ≥ 13

(x − 3)/25 3 ≤ x < 8

0.2 − (x − 8)/25 8 ≤ x < 13

P4.5 < X ≤ 6.7 =

∫ 6.7

4.5

[(x − 3)/25]dx =1

25[x2

2− 3x]|6.7

4.5 = 0.2288

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 20: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 20'

&

$

%

Example 2.3.3

Given

FX(x) = u(x)[1 − e−x2

b ], b > 0 is a constant

its density function

fX(x) =dFX(x)

dx= u(x)

d

dx[1 − e−x2/b] + [1 − e−x2/b]

du(x)

dx

= (1 − e−x2/b)δ(x) + u(x)2x

be−x2/b = u(x)

2x

be−x2/b

since at x = 0, (1 − e−x2/b) = 0.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 21: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 21'

&

$

%

The Gaussian Random Variable

gaussian r.v. has the density function

fX(x) =1

2πσ2X

e−

(x−aX )2

2σ2X

and CPDF

FX(x) =1

2πσ2X

∫ x

−∞

e−

(ξ−aX )2

2σ2X dξ

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 22: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 22'

&

$

%

The Normalized Gaussian Random Variable

The normalized gaussian r.v. has mean=0 and unit variance, aX = 0, σX = 1 and

the density function

f(x) =1√2π

e−x2

2

and CPDF

F (x) =1√2π

∫ x

−∞

e−(ξ)2

2 dξ

F (−x) = 1 − F (x)

From general gaussian to normalized we subtract the mean and divide by standard

deviation:

FX(x) = F (x − aX

σX)

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 23: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 23'

&

$

%pdf and cpdf of a gaussian r.v.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 24: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 24'

&

$

%

%plot Gaussian density function, mean=3, stdev (sigma)=1

ax=3; sigma=1; %range for x from -3 to +3

x=-1:0.1:7;

y=1/sqrt(2 * pi * sigmaˆ2) * exp(-(x-ax).ˆ2/(2 * sigmaˆ2));

plot(x,y); ylabel(’Gaussian pdf’);

xlabel(’mean=3, sigma=1’); grid;

print -deps pdfgaussian.eps

−4 −2 0 2 4 6 8 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Gau

ssia

n pd

f

mean=3, sigma=1

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 25: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 25'

&

$

%

Example 2.4.1

Find PX ≤ 5.5 for a gaussian r.v. having aX = 3 and σX = 2.

First normalize your data using the relation

FX(x) = F (x − aX

σX) =

∫ x

−∞

fX(ξ)dξ

, here (x − aX)/σX = (5.5 − 3)/2 = 1.25 and hence

PX ≤ 5.5 = FX(5.5) = F (1.25) and using table in appendix B we get

F (1.25) = 0.8944

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 26: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 26'

&

$

%

Example 2.4.2

X = Height of a cloud is gaussian r.v., aX = 1830m, σX = 460m.

Find PX > 2750m?

PX > 2750m = 1 − PX ≤ 2750m = 1 − FX(2750) =

1 − F ( 2750−1830460 ) = 1 − F (2.0) = 1 − 0.9772 = 0.0228

Example 2.4.3

gaussian r.v., aX = 7, σX = 0.5, find P (X ≤ 7.3) =?

P (X ≤ 7.3) = FX(7.3) = F ( 7.3−70.5 ) = F (0.6) = 0.7257

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 27: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360 Random Signal analysis

Chapter2:RandomVariables27

'

&

$

%

0.00.5000

0.50400.5080

0.51200.5160

0.51990.5239

0.52790.5319

0.5359

0.10.5398

0.54380.5478

0.55170.5557

0.55960.5636

0.56750.5714

0.5753

0.20.5793

0.58320.5871

0.59100.5948

0.59870.6026

0.60640.6103

0.6141

0.30.6179

0.62170.6255

0.62930.6331

0.63680.6406

0.64430.6480

0.6517

0.40.6554

0.65910.6628

0.66640.6700

0.67360.6772

0.68080.6844

0.6879

0.50.6915

0.69500.6985

0.70190.7054

0.70880.7123

0.71570.7190

0.7224

0.60.7257

0.72910.7324

0.73570.7389

0.74220.7454

0.74860.7517

0.7549

0.70.7580

0.76110.7642

0.76730.7704

0.77340.7764

0.77940.7823

0.7852

0.80.7881

0.79100.7939

0.79670.7995

0.80230.8051

0.80780.8106

0.8133

0.90.8159

0.81860.8212

0.82380.8264

0.82890.8315

0.83400.8365

0.8389

1.00.8413

0.84380.8461

0.84850.8508

0.85310.8554

0.85770.8599

0.8621

1.10.8643

0.86650.8686

0.87080.8729

0.87490.8770

0.87900.8810

0.8830

1.20.8849

0.88690.8888

0.89070.8925

0.89440.8962

0.89800.8997

0.9015

1.30.9032

0.90490.9066

0.90820.9099

0.91150.9131

0.91470.9162

0.9177

1.40.9192

0.92070.9222

0.92360.9251

0.92650.9279

0.92920.9306

0.9319

1.50.9332

0.93450.9357

0.93700.9382

0.93940.9406

0.94180.9429

0.9441

1.60.9452

0.94630.9474

0.94840.9495

0.95050.9515

0.95250.9535

0.9545

1.70.9554

0.95640.9573

0.95820.9591

0.95990.9608

0.96160.9625

0.9633

1.80.9641

0.96490.9656

0.96640.9671

0.96780.9686

0.96930.9699

0.9706

1.90.9713

0.97190.9726

0.97320.9738

0.97440.9750

0.97560.9761

0.9767

2.00.9773

0.97780.9783

0.97880.9793

0.97980.9803

0.98080.9812

0.9817

2.10.9821

0.98260.9830

0.98340.9838

0.98420.9846

0.98500.9854

0.9857

2.20.9861

0.98640.9868

0.98710.9875

0.98780.9881

0.98840.9887

0.9890

2.30.9893

0.98960.9898

0.99010.9904

0.99060.9909

0.99110.9913

0.9916

2.40.9918

0.99200.9922

0.99250.9927

0.99290.9931

0.99320.9934

0.9936

2.50.9938

0.99400.9941

0.99430.9945

0.99460.9948

0.99490.9951

0.9952

2.60.9953

0.99550.9956

0.99570.9959

0.99600.9961

0.99620.9963

0.9964

2.70.9965

0.99660.9967

0.99680.9969

0.99700.9971

0.99720.9973

0.9974

2.80.9974

0.99750.9976

0.99770.9977

0.99780.9979

0.99790.9980

0.9981

2.90.9981

0.99820.9982

0.99830.9984

0.99840.9985

0.99850.9986

0.9986

3.00.9987

0.99870.9987

0.99880.9988

0.99890.9989

0.99890.9990

0.9990

3.10.9990

0.99910.9991

0.99910.9992

0.99920.9992

0.99920.9993

0.9993

3.20.9993

0.99930.9994

0.99940.9994

0.99940.9994

0.99950.9995

0.9995

3.30.9995

0.99950.9996

0.99960.9996

0.99960.9996

0.99960.9996

0.9997

3.40.9997

0.99970.9997

0.99970.9997

0.99970.9997

0.99970.9998

0.9998

3.50.9998

0.99980.9998

0.99980.9998

0.99980.9998

0.99980.9998

0.9998

3.60.9998

0.99990.9999

0.99990.9999

0.99990.9999

0.99990.9999

0.9999

3.70.9999

0.99990.9999

0.99990.9999

0.99990.9999

0.99990.9999

0.9999

3.80.9999

0.99990.9999

0.99990.9999

0.99990.9999

1.00001.0000

1.0000

Gaussian

Distribution

Function:

FX

(x)

=∫

x−∞

fX

(ξ)dξ

=F

(

x−

ax

σX

)

Norm

alizedgaussian

r.v:V

aluesofF

(x)

for

0≤

x≤

3.8

9in

stepsof0.01

JordanUniversityofScienceandTechnology-ElectricalEngineeringAbdel-RahmanJaradat

Page 28: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 28'

&

$

%

Other Distribution and Density Examples: Binomial

Let 0 < p < 1, N = 1, 2, · · · , then the function

fX(x) =N

k=0

(

N

k

)

pk(1 − p)N−kδ(x − k)

is called the binomial density function. The quantity(

Nk

)

is the binomial coefficient(

Nk

)

= N !k!(N−k)! and the binomial cpdf is given by

FX(x) =N

k=0

(

N

k

)

pk(1 − p)N−ku(x − k)

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 29: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 29'

&

$

%Binomial pdf and cpdf: N = 6, p = 0.25

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 30: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 30'

&

$

%

%binomial density function

N=6; p=0.25; q=1-p; y=[];cy=[];

for k=0:1:N

t=pˆk * qˆ(N-k) * prod(N:-1:N-k+1)/prod(1:1:k);

y=[y t]; cy=[cy sum(y)];

end

plot([0:1:N],y,’ * ’, [0:1:N],cy,’o’);

ylabel(’ * =PMF and o=CPDF for Binomial’);

xlabel(’Binomial N=6, p=0.25’); grid;

print -deps pmfbinomial.eps

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 31: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 31'

&

$

%0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

*=P

MF

and

o=

CP

DF

for

Bin

omia

l

Binomial N=6, p=0.25

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 32: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 32'

&

$

%

Other Distribution and Density Examples: Poisson

the Poisson r.v. X has a pdf and cpdf given by

fX(x) = e−b∞∑

k=0

bk

k!δ(x − k)

PX = k = e−b bk

k!

FX(x) = e−b∞∑

k=0

bk

k!u(x − k)

with b > 0 is a real constant b = λT where λ = average rate and T is the time

interval of interest.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 33: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 33'

&

$

%

Example 2.5.1

Cars arrive at the rate of 50 cars per hour (5060 per minute). If service time = 1

minute, what is the probability of forming a queue?

Here PX = k = e−b bk

k! . T = 1 minute, b = λT = 56 × 1 = 5

6 Probability of

a waiting line = probability of two or more cars arrive in 1 minute interval= 1-

probability of 0 or 1 cars arrive in 1 minute interval =

1 − PX = 0 − PX = 1 = 1 − e−56 (1 + 5

6 ) = 0.2032

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 34: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 34'

&

$

%

Other Distribution and Density Examples: Uniform

The uniform pdf and cpdf are defined by:

fX(x) =

1b−a a ≤ x ≤ b

0 elsewhere

FX(x) =

0 x < a

x−ab−a a ≤ x < b

1 b ≤ x

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 35: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 35'

&

$

%

Uniform pdf and cpdf

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 36: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 36'

&

$

%

Other Distribution and Density Examples: Exponential

The exponential pdf and cpdf are given by:

fX(x) =

1b e−(x−a)/b x > a

0 x < a

FX(x) =

1 − e−(x−a)/b x > a

0 x < a

for real numbers −∞ < a < ∞ and b > 0.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 37: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 37'

&

$

%Exponential pdf and cpdf

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 38: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 38'

&

$

%

Example 2.5.2

Given fP (p) = 1P0

e−p

P0 u(p).

PP > P0 = 1 − PP ≤ P0 = 1 − FP (P0) = 1 − (1 − e−P0/P0) =

e−1 = 0.368

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 39: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 39'

&

$

%

Other Distribution and Density Examples: Rayleigh

The Rayleigh pdf and cpdf are:

fX(x) =

2b (x − a)e−(x−a)2/b x ≥ a

0 x < a

FX(x) =

1 − e−(x−a)2/b x ≥ a

0 x < a

for real numbers −∞ < a < ∞ and b > 0.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 40: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 40'

&

$

%

Ray

leig

hpd

fand

cpdf

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 41: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 41'

&

$

%

Example 2.5.3

Find the value x = x0 of a Rayleigh r.v. for which

PX ≤ x0 = PX > x0 = FX(x0) = 0.5. This value is called the median

of the r.v.

FX(x0) = 1 − e−(x0−a)2/b = 0.5, hence x0 = a +√

b ln(2).

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 42: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 42'

&

$

%

Conditional Distribution and Density Functions

P (A|B) =P (A ∩ B)

P (B)

Conditional Distribution: Let A be an event X ≤ x for a r.v. X . The conditional

distribution function of X which is denoted by

FX(x|B) = PX ≤ x|B =PX ≤ x ∩ B

P (B)

the joint event consists of all outcomes s such that

X(s) ≤ x, and s ∈ B

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 43: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 42-1

Properties of Conditional Distribution

1. FX(−∞|B) = 0

2. FX(∞|B) = 1

3. 0 ≤ FX(x|B) ≤ 1

4. FX(x1|B) ≤ FX(x2|B) if x1 < x2

5. Px1 < X ≤ x2|B = FX(x2|B) − FX(x1|B)

6. FX(x+|B) = FX(x|B)

Page 44: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 43'

&

$

%

Conditional Density:

fX(x|B) =dFX(x|B)

dx

Properties of Conditional Density:

1. fX(x|B) ≥ 0

2.∫

−∞fX(x|B)dx = 1

3. FX(x|B) =∫ x

−∞fX(ξ|B)dξ

4. Px1 < X ≤ x2|B =∫ x2

x1fX(x|B)dx

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 45: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 44'

&

$

%

Example 2.6.1

Two boxes have red, green, and blue balls in them.

xi Ball Color Box 1 Box 2 Total

1 Red 5 80 85

2 Green 35 60 95

3 Blue 60 10 70

Totals 100 150 250

Table 1: Numbers of colored balls in two boxes

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 46: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 45'

&

$

%

Let the event B1 select box 1, P (B1) = 0.2, while the event B2 select box 2,

P (B2) = 0.8. B1, B2 are mutually exclusive events with

P (B1 ∪ B2) = P (B1) + P (B2) = 1.0

Define X a r.v. to have the values 1, 2, 3 if a red, green, blue ball is selected.

Let B be the event of selecting a box B1 or B2.

P (X = 1|B = B1) = 5100 , P (X = 1|B = B2) = 80

150

P (X = 2|B = B1) = 35100 , P (X = 2|B = B2) = 60

150

P (X = 3|B = B1) = 60100 , P (X = 3|B = B2) = 10

150

Table 2: Conditional probabilities: example 2.6.1

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 47: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 46'

&

$

%

the conditional pdf fX(x|B1) = 5100δ(x − 1) + 35

100δ(x − 2) + 60100δ(x − 3)

and by integration we get the conditional cpdf:

FX(x|B1) = 5100u(x − 1) + 35

100u(x − 2) + 60100u(x − 3)

Compute

P (X = 1) = P (X = 1|B1)P (B1) + P (X = 1|B2)P (B2)

=5

100× 2

10+

80

150× 8

10= 0.437

P (X = 2) =35

100× 2

10+

60

150× 8

10= 0.390

P (X = 3) =60

100× 2

10+

10

150× 8

10= 0.173

from which fX(x) = 0.437δ(x − 1) + 0.390δ(x − 2) + 0.173δ(x − 3)

and FX(x) = 0.437u(x − 1) + 0.390u(x − 2) + 0.173u(x − 3)

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 48: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 47'

&

$

%

Dis

trib

utio

nsan

dde

nsiti

esfo

rE

xam

ple

2.6.

1

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 49: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 48'

&

$

%

Methods of Defining Conditioning Event

1. Event B may depend on some r.v. other than X (Chapter 4).

2. Event B is defined in terms of the r.v. X : let B = X ≤ b where b real

number −∞ < b < ∞.

Substituting we get

FX(x|X ≤ b) = PX ≤ x|X ≤ b =PX ≤ x ∩ X ≤ b

PX ≤ bfor all events X ≤ b for which PX ≤ b 6= 0

Two cases

(a) b ≤ x: here the event X ≤ b is a subset of the event X ≤ x, so

X ≤ x ∩ X ≤ b = X ≤ b and

FX(x|X ≤ b) = PX ≤ x|X ≤ b =PX ≤ bPX ≤ b = 1, b ≤ x

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 50: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 49'

&

$

%

(b) x < b: the event X ≤ x is a subset of the event X ≤ b, so

X ≤ x ∩ X ≤ b = X ≤ x and

FX(x|X ≤ b) = PX ≤ x|X ≤ b =PX ≤ x ∩ X ≤ b

PX ≤ b

=PX ≤ xPX ≤ b =

FX(x)

FX(b), x < b

combining the last two expressions we get

FX(x|X ≤ b) =

FX(x)FX(b) x < b

1 b ≤ x

fX(x|X ≤ b) =

fX(x)FX(b) = fX(x)

b

−∞

fX(x)dxx < b

0 b ≤ x

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 51: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 50'

&

$

%

Note that

FX(x|X ≤ b) ≥ FX(x) and fX(x|X ≤ b) ≥ fX(x), x < b

the main result can be extended to the case B = a < X ≤ b see problem

2.6.2

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 52: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 51'

&

$

%Dis

trib

utio

nsan

dde

nsiti

esap

plic

able

toa

cond

ition

ing

even

tB=

X≤

b

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 53: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 52

FX(x|X ≤ b) =

FX(x)FX(b)

x < b

1 b ≤ x

1.0

b x

FX(x|X ≤ b)

FX(x)

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 54: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 53

Example 2.6.2

Target is a circle of 50 m radius. Landing point measured from target center is

Rayleigh distributed r.v. with b = 800 and a = 0. Find the probability that landing

occurs at 10m from the center of target?

FX(x) = [1 − e−x2/800]u(x)

P (within 10m|on target) =FX(10)

FX(50)=

1 − e−100/800

1 − e−2500/800= 0.1229

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat

Page 55: 2 Random Variables - kahrbjy.files.wordpress.com · EE360 Random Signal analysis Chapter 2: Random Variables 3 Ex. 2.1-2 Spin a wheel having marks 1 to 12. Sample space S = {0 < s

EE360RandomSignalanalysis

Chapter 2: Random Variables 54

SUMMARY

This chapter is concerned with two things:

(1) the definition of a random variable; it is always a numerical quantity, regardless

of the random experiment from which it derives; and

(2) the various functions that describe the probabilistic behavior of a random

variable.

The various types of random variables (discrete, continuous, mixed) were defined.

The concepts of probability density and cumulative probability distribution functions

were introduced to define the probabilistic behavior of a random variable.

The important gaussian random variable was discussed in detail, while others

(binomial, Poisson, etc.) were defined.

Finally, conditional distribution and density functions were discussed to demonstrate

how probabilities that are associated with a random variable can depend on some

random event.

Jordan University of Science and Technology - Electrical Engineering Abdel-Rahman Jaradat