€¦ · 2 3 department of stress and developmental biology 46 professor dierk scheel molecular...

51
2015-2016 Scientific Report Leibniz Institute of Plant Biochemistry

Upload: others

Post on 05-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

2015-2016

Scientific ReportLeibniz Institute of Plant Biochemistry

Page 2: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

32

Department of Stress and Developmental Biology 46Professor Dierk Scheel

Molecular Communication in Plant-Pathogen Interactions 48Wolfgang Knogge

Cellular Signaling 50Dierk Scheel & Justin Lee

Induced Pathogen Defense 52Sabine Rosahl & Dierk Scheel

Bioinformatics & Mass Spectrometry 54Steffen Neumann

Metabolomics 56Dierk Scheel

Publications and other Activities of the Department Stress and Developmental Biology 58

Department of Cell and Metabolic Biology 60Professor Alain Tissier

Glandular Trichomes and Isoprenoid Synthesis 62Alain Tissier

Jasmonate Function & Mycorrhiza 64Bettina Hause

Phenylpropanoid Metabolism & Protein Biochemistry 66Thomas Vogt

Synthetic Biology 68Sylvestre Marillonnet

Publications and other Activities of the Department Cell and Metabolic Biology 70

Independent Junior Research GroupsUbiquitination in Immunity 72Marco Trujillo

Protein Recognition and Degradation 74Nico Dissmeyer

Bioorganic Chemistry 76Martin Weissenborn

Interdepartmental Research GroupProteome Analytics 78Wolfgang Hoehenwarter

Publications and other Activities of the Junior Research Groups 80Publications and other Activities of the Interdepartmental Research Group 81

Abteilung Administration und Infrastruktur 82Leiterin: Christiane Cyron

Mitarbeiter der Abteilung Administration und Infrastruktur 2015 und 2016 86Personalübersicht des IPB 2015 und 2016 87Budget 2015 und 2016 88Drittmittel 2015 und 2016 89

Presse- und Öffentlichkeitsarbeit 90Sylvia Pieplow

Artikel und Printprodukte des IPB 93

Impressum 100

A Word from the Managing Director 4Grußwort des Geschäftsführenden Direktors 5Organigramm 7Leitung und Gremien des Instituts 8

Department of Molecular Signal Processing 10Professor Steffen Abel

Nutrient Sensing 12Steffen Abel

Regulatory RNAs 14Selma Gago Zachert

Signal Integration 16Luz Irina A. Calderón Villalobos

Cellular Coordination 18Katharina Bürstenbinder & Steffen Abel

Jasmonate Signaling 20Debora Gasperini

Publications and other Activities of the Department Molecular Signal Processing 22

Department of Bioorganic Chemistry 24Professor Ludger Wessjohann

Phytoeffectors 25Ludger Wessjohann & Andrej Frolov

Metabolomics & Spectroscopy 26Andrea Porzel, Jürgen Schmidt & Andrej Frolov

Neurologically Active Natural Products 27Katrin Franke & Ludger Wessjohann

Natural Fungicides 28Norbert Arnold & Bernhard Westermann

Antiinfectives 29Ludger Wessjohann & Katrin Franke

Isoprenoids 30Ludger Wessjohann & Wolfgang Brandt

Phenylpropanoids 31Danilo Meyer, Martin Dippe & Ludger Wessjohann

Anticancer Agents & Targeting 32Goran Kaluderovic & Ludger Wessjohann

Phytoeffectors 33Ludger Wessjohann, Wolfgang Brandt & Andrej Frolov

Multicomponent Reactions & Peptide Mimetics 34Ludger Wessjohann & Bernhard Westermann

Chemical Probes 35Bernhard Westermann & Ludger Wessjohann

Cooperative Modeling & Bioinformatics 36Wolfgang Brandt

Method Development 37Wolfgang Brandt

Chemoinformatics of Natural Compounds 38Wolfgang Brandt & Ludger Wessjohann

Data Management & Screening 39Andrea Porzel & Frank Broda

Publications and other Activities of the Department Bioorganic Chemistry 40

Table of Contents

Page 3: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

tasks as they help to attract top scientists and are the basis for

effective scientific work, respectively. For this reason, I am par-

ticularly pleased that the IPB has a very high appeal to inter -

nationally established plant biochemists and has further ad-

vanced its scientific position with many, often high-ranking

publications. It has become a leading institution for meta bol -

omics research in plant secondary metabolism. It was a gift

and pleasure to work with great colleagues, and above all to

observe the successful steps of our postgraduate and postdoc-

toral coworkers into their future working life, often hired before

their IPB period ended. The attractiveness of our graduates for

others, and scientific findings that exhibit long term relevance

will continue to be the true benchmarks for our performance.

Scientifically yours,

Liebe Leser!Das Leibniz-Institut für Pflanzenbiochemie, kurz IPB, präsen-

tiert Ihnen mit diesem Zweijahresbericht wieder das gesamte

Spektrum biochemischer Forschung an Pflanzen und Pilzen,

von den Genen und deren Regulation über Proteine bis zu ihren

chemischen Bestandteilen und deren Anwendung. Wichtig ist

uns dabei immer, wie sich die Umwelt, sei es z.B. durch Trocken-

heit, Nährstoffverfügbarkeit, Nützlinge oder Schädlinge, auf

die Pflanzen auswirkt und wie diese dann auf molekularer

Ebene reagieren. Das klingt kompliziert und ist es auch. Statt

der Betrachtung isolierter Aspekte wird die Erforschung und

das Verständnis komplexer Zusammenhänge in unserer For -

schung immer wichtiger, nicht nur in der Analyse biologischer

oder chemischer Komponenten, sondern auch in der Synthese

oder beim Modellieren am Computer. Das IPB mit seinem brei -

ten Spektrum an Experten und Methoden auf engem Raum ist

dafür ein idealer Platz. Hier können Biologen, Chemiker und In-

formatiker integriert arbeiten; und im Rahmen des Wissen -

schaftsCampus Halle kommen gelegentlich noch Soziö kono -

men, Züchter oder Mediziner hinzu. Das ist immer wieder eine

Herausforderung, vor allem für neue Mitarbeiter, die aus dem

Reinraum ihrer universitären Fachbereiche zu uns stoßen. Es

ist vor allem aber eine große Inspiration, etwas aus dem eige-

nen Bereich Bekanntes in einem neuem Umfeld aus zupro -

bieren. Entdecken Sie solche Interaktionen im Bericht, wenn

Biologen bei der biokatalytischen Synthese von Wirkstoffen

helfen, Informatiker der Naturstoffanalytik Struktur geben,

oder Chemiker Pflanzenzüchter bei Schädlingsresistenz unter-

stützen. Der Bericht kann nur einen groben Überblick und eini -

ge ausgewählte Projekte anreißen. Wenn Sie ergänzend zum

Rückblick mehr über Details oder zukünftige Entwicklungen

erfahren möchten, scheuen Sie sich nicht, unsere Forscher

anzusprechen.

Einige wichtige Änderungen der Berichtsjahre beinhalten

die regelmäßig jährliche Ausrichtung des Leibniz Pflanzen-

biochemie Symposium ab 2015,

die erstmalige Einrichtung einer gemeinsamen Juniorpro-

fessur (W1) mit der Universität Halle, Institut für Chemie, für

die Ende 2016 Herr Dr. Weissenborn gewonnen wurde.

Insgesamt 1,6 Mio. Euro wurden für die Forschung an neuro-

aktiven Substanzen aus Pflanzen, vor allem aus verschiede-

nen Johannis krau t-Arten, eingeworben. Gleichhoch ist der

Anteil des IPB am Leibniz Research Cluster, einer Initiative

mehrerer Leibniz-Institute für zellfreie Biotechnologie.

In der Abteilung Natur- und Wirkstoffchemie wurde die an

Tätigkeiten orientierte Arbeitsgruppenstruktur (z.B. AG Syn-

these, AG Naturstoffanalytik) durch eine inhaltlich definierte

Projektgruppen-Struktur ersetzt, welche die bearbeiteten

Themen deutlich herausstellt, z.B. PG Biofungizide, in der

al le analytischen, synthetischen und theoretischen Arbei -

ten zum Thema zusammengeführt wurden.

Das IPB ist führend aktiv bei Nachhaltigkeit in Wissenschafts-

organisationen. Umfassende Maßnahmen zur Energie ein-

sparung wurden erfolgreich implementiert.

Zum Schluß möchte ich noch ein paar Worte in eigener Sache

verlieren. Im August 2017 habe ich den Staffelstab des Ge-

5

Dear Reader!The Leibniz Institute of Plant Biochemistry, or IPB, in this bian-

nual report presents to you our entire spectrum of biochemical

research on plants and fungi, from the genes and their regula-

tion to proteins and the chemical constituents, and eventually

their application. We study how the changing environment,

e.g. dryness, nutrient availability, symbiotic or pathogenic or-

ganisms affect plants, and how these react to these changes

at the molecular level. That sounds complicated and it is. In-

stead of looking at isolated aspects, the research and under-

standing of complexity is becoming increasingly important in

our research, not only in the analysis of biological or chemical

components, but also in synthesis or modeling systems on the

computer. The IPB with its wide range of experts and methods

within one facility is ideally suited for such tasks. Here, biolo-

gists, chemists and applied computer scientists can work to-

gether, and within the framework of the ScienceCampus Halle,

socio-economists, breeders or physicians are occasionally

added too. This living interdisciplinarity is always a challenge,

especially for new students and employees who come to us

from the pure fields of their university departments. But even-

tually and above all, it is a great inspiration to try something

out of your own field in a new environment. You as reader can

discover such interactions in some of the reports, when biolo-

gists support the biocatalytic synthesis of chemicals, infor-

maticians give structure to analytical chemistry tasks, or when

chemists support breeding for pest resistance. This report,

however, can only provide a rough overview and a few selected

projects. If you would like to learn more detail or like to discuss

future developments in addition to the retrospective, do not

hesitate to contact our researchers.

Some important events in the reporting years include:

the start of a yearly Leibniz Plant Biochemistry Symposium

series from 2015

the first-time establishment of a joint junior professorship

(W1) with the University of Halle, Department of Chemistry,

for which Dr. Weissenborn was appointed end of 2016

a total of € 1.6 million has been granted to IPB for research

on neuroactive substances from plants, especially St. Johns

Worts. The same amount was won for IPBs participation in

the Leibniz Research Cluster, an initiative of several Leibniz

institutes for cell-free biotechnology.

In the Bioorganic Chemistry Department, the workgroup

structure (for example AG Synthesis) was replaced by a

project group structure, which more clearly reflects the

topics researched, e.g. PG Biofungicides with all analytical,

synthetic and theoretical work on the subject brought to-

gether.

The IPB is a leading promotor of sustainability in German

science organizations; and as an example it implemented

comprehensive energy saving measures and biodiversity

gardening.

Finally, a few personal words. In August 2017, after seven years,

I have passed on the Executive Directorship to Professor Stef-

fen Abel. I am grateful to all colleagues and supporters of the

IPB, who have helped me to push many positive things for the

institute and the campus in these years. For the first time, we

were able to set up three independent junior research groups,

one of them as a junior professorship. Three new departmental

divisions were integrated, and extramural funding was almost

doubled. The founding and financing of important alliances has

been successful, above all the ScienceCampus Halle Plant-

Based Bio economy, the Leibniz Research Alliance Bioactive

Compounds & Biotechnology and the Leibniz Research Cluster.

Starting in 2017, a new emergency power supply and a new

buil ding with S2 and class 6 toxin laboratories will keep the IPB

future-proof even with stricter regulation. But I could also ob-

serve less positive developments in my time: the evaluitis and

the application, reporting and reviewing system are becoming

ever more time intensive, and devour a lot of time and money.

On average, every piece of science leaving my group has been

evaluated approximately nine times in its lifetime from the pro-

posal to the Leibniz evaluation. Good infrastructure and extra-

mural funding, or simple publication index numbers are, for

me, only moderately suitable formal parameters for the evalu-

ation of institutes or individual scientists. Extramural funding

is input to science, not an output; and really new science is - at

least initially - less cited than scientific mainstream or current

hot topics. But on the other hand, providing excellent infra-

structure and extramural funding are important management

4

A Word from the Managing Director Grußwort des Geschäftsführenden Direktors

Page 4: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

76

Grußwort des Geschäftsführenden Direktors

MolecularSignal Processing

Prof. Steffen Abel

Bioorganic Chemistry

Prof. Ludger Wessjohann

Stress andDevelopmental Biology

Prof. Dierk Scheel

Cell and Metabolic Biology

Prof. Alain Tissier

Independent Research Groups

Metabolomics &SpectroscopyAndrea Porzel & Ludger Wessjohann

CNS-active Natu-ral ProductsKatrin Franke & Ludger Wessjohann

Molecular Commu ni- cation in Plant-Patho-gen InteractionsWolfgang Knogge

Ubiquitination in ImmunityMarco Trujillo

Protein Recognition and DegradationNico Dissmeyer

Bioorganic ChemistryMartin Weissenborn

Proteome AnalyticsWolfgang Hoehenwarter

Glandular Trichomeand Isoprenoid Bio-synthesisAlain Tissier

JasmonateFunction & MycorrhizaBettina Hause

Phenylpropanoid Metabolism & Protein BiochemistryThomas Vogt

Synthetic BiologySylvestre Marillonnet

Cellular SignalingDierk Scheel & Justin Lee

Induced Pathogen DefenseDierk Scheel & Sabine Rosahl

Bioinformatics & Mass Spectrome-trySteffen Neumann

Metabolite ProfilingDierk Scheel

Chemoinformaticsof Natural CompoundsLudger Wessjohann &Wolfgang Brandt

Natural FungicidesNorbert Arnold & Bernhard Westermann

Nutrient SensingSteffen Abel

Regulatory RNAsSelma Gago Zachert

Signal Integration Luz Irina C. Villalobos

AntiinfectivesLudger Wessjohann &Katrin Franke

IsoprenoidsLudger Wessjohann &Wolfgang Brandt

Chemical ProbesBernhard Westermann& Ludger Wessjohann

Cooperative Modeling & BioinformaticsWolfgang Brandt

Method Development Wolfgang Brandt

Data Management& ScreeningAndrea Porzel & Frank Broda

PhenylpropanoidsDanilo Meyer &Ludger Wessjohann

Anticancer Agents& TargetingGoran Kaluderovic &Ludger Wessjohann

PhytoeffectorsLudger Wessjohann &Andrej Frolov

MulticomponentReactions & Peptide MimeticsLudger Wessjohann &Bernhard Westermann

Cellular CoordinationK. Bürstenbinder& Steffen Abel

Jasmonate SignalingDebora Gasperini

Stand: 31.12.2016Änderungen vorbehalten

Research Groups

Research Groups

Research Groups

Research Groups

Project Groups

Foundation CouncilMinisterialrat Thomas Reitmann

Senior Superior Counsellor

Dr. Klaus-Peter MichelSuperior Counsellor

Scientific Advisory BoardProf. Norbert Sewald

Chairman

Prof. Andrea PolleVice-ChairmanBoard of Directors

Prof. Ludger WessjohannManaging Director

Christiane CyronHead of Administration

Prof. Steffen AbelProf. Dierk ScheelProf. Alain Tissier

Public RelationsSylvia Pieplow

Personal Assistant to the Managing Director

Administration and InfrastructureChristiane Cyron

Funding and Cooperation

Dr. Angela Gierlich

Human ResourcesFinance and AccountingPurchasingInformation and Documentation

Chemical StoreTechnical Equipment and IT SupportGardening ServicesBuildings and Facility Management

Das Direktorium des IPB in seiner aktuellen Zusammensetzung: Prof. Steffen Abel, Christiane Cyron, Prof. Dierk Scheel, Prof. Alain Tissier,und Prof. Ludger Wessjohann (v.l.n.r.).

schäftsführenden Direktors nach sieben Jahren an Professor

Steffen Abel weitergegeben. Ich bin allen Kollegen und Unter-

stützern des IPB dankbar, die mir geholfen haben, viele posi-

tive Dinge für das IPB voranzutreiben. Wir konnten erstmals

drei unabhängige Nachwuchsgruppen einrichten, davon eine

als Juniorprofessur. Drei neue Abteilungsleitungen wurden in-

tegriert, die Drittmittel fast verdoppelt. Die Gründung und Fi-

nanzierung von wichtigen Allianzen ist gelungen, allen voran

des Wissen schaftsCampus Halle Pflanzenbasierte Bioökono -

mie, des Leibniz-Verbundes Wirkstoffe und Biotechnologie und

des Leibniz Research Clusters. Ab 2017 werden eine neue Not-

stromversorgung und ein Neubau mit S2- und Hochtox-La-

boren das IPB auch bei verschärfter Regulierung zukunftsfähig

halten. Aber es gibt auch weniger positive Entwicklungen in

meiner Zeit: Die Evaluitis und das Antrags-, Berichts- und Be -

gutachtungs wesen werden immer aufwändiger, verschlingen

viel Zeit und Geld. Im Schnitt ist jedes Stück Wissenschaft,

welches meine Gruppe verläßt, vom Antrag bis zur Leibniz-Eva -

luierung etwa neunmal begutachet worden. Gute Infrastruktur

und Drittmittel oder einfache Publikationsindexzahlen sind für

mich zudem allenfalls mäßig gute formale Parameter für die

Bewertung von Instituten oder gar einzelnen Wissenschaftlern.

Oft wird ver kannt: Drittmittel sind Input für die Wissenschaft,

kein Output; und wirklich Neues wird – zumindest anfänglich

– weniger zitiert als wissenschaftliche Massenware. Aber es

gilt auch: Infrastruktur und Drittmittel sind eine wichtige Lei -

tungsaufgabe, da sie das Lockmittel für gute Wissenschaftler

und die Basis für effektives wissenschaftliches Arbeiten sind.

Daher freut mich besonders, dass das IPB sogar für interna-

tional etablierte Pflanzenwissenschaftler eine sehr hohe At-

traktivität ausstrahlt und seine wissenschaftliche Stellung mit

vielen, häufig hoch rangigen Publikationen weiter vorantreiben

konnte, u.a. als führende Einrichtung für die Metabolomics-

Forschung im pflanzlichen Sekundärstoffwechsel. Das machte

mir Freude, ebenso wie die vielen tollen Mitarbeiter und vor

allem der erfolgreiche, oft sogar vorzeitige Übergang unserer

Doktoranden und Postdoktoranden in das zukünftige Arbeit-

sleben. Die Attraktivität unserer Abgänger für Andere und die

langfristig relevanten wissenschaftlichen Erkenntnisse des IPB

sind auch in Zukunft der wahre Maßstab für unsere Leistung.

Ihr

Page 5: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

98

Leitung und Gremien des Instituts

Wissenschaftlicher Beirat 2015 - 2016

Prof. Tina RomeisVorsitzende des Wissenschaftlichen Beirats (bis Juni 2016)Freie Universität Berlin

Prof. Norbert SewaldVorsitzender des Wissenschaftlichen BeiratsUniversität Bielefeld

Prof. Andrea PolleStellvertretende Vorsitzende des Wissenschaftlichen BeiratsUniversität Göttingen

Prof. Axel BrakhageLeibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.V. Hans-Knöll-Institut (HKI), Jena

Prof. François BuscotHelmholtz-Zentrum für Umweltforschung GmbH (UFZ) Halle

Prof. Katayoon DeheshUC Riverside, Institute for Integrative Genome Biology

Prof. Bernhard HauerUniversität Stuttgart

Prof. Thisbe LindhorstUniversität Kiel

Prof. Michael MetzlaffBayer AG, Leverkusen

Prof. Thomas SchmüllingFreie Universität Berlin

Prof. Michael SpitellerTechnische Universität Dortmund

Prof. Dorothea ThollVirginia Tech, Blacksburg, USA

Prof. Nicolaus von WirénLeibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben

Geschäftsleitung und DirektoriumProf. Ludger WessjohannGeschäftsführender DirektorLeiter der Abteilung Natur- und Wirkstoffchemie

Christiane CyronAdministrative LeiterinLeiterin der Abteilung Administration und Infrastruktur

Prof. Steffen AbelLeiter der Abteilung Molekulare Signalverarbeitung

Prof. Dierk ScheelLeiter der Abteilung Stress- und Entwicklungsbiologie

Prof. Alain TissierLeiter der Abteilung Stoffwechsel- und Zellbiologie

Stiftungsrat

Ministerialrat Thomas ReitmannVorsitzender des StiftungsratsMinisterium für Wissenschaft und Wirtschaft des Landes Sachsen-Anhalt

Dr. Henk van Liempt (bis 11/2015), Dr. Ramón Kucharzak (bis 9/2016), Dr. Klaus-Peter MichelStellvertretende Vorsitzende und Vertreter des BundesBundesministerium für Bildung und Forschung

Gisela LiepeltMinisterium für Wissenschaft und Wirtschaft des Landes Sachsen-Anhalt

Prof. Birgit Dräger (bis 6/2015), Prof. Elmar Wahle (bis 6/2016), Prof. Wolfgang BinderVertreter des Rektors der Martin-Luther-Universität Halle-Wittenberg

Prof. Tina Romeis (bis 6/2016), Prof. Norbert SewaldVorsitzende des Wissenschaftlichen Beirats

Prof. Andrea PolleStellvertretende Vorsitzende des Wissenschaftlichen Beirats

Prof. Andreas SchallerVertreter des wissenschaftlichen Lebens

Prof. Lutz HeideVertreter des wissenschaftlichen Lebens

Page 6: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

1110

Die übergreifende Forschungsthematik unserer Abteilungwidmet sich dem Verständnis darüber, wie sich Pflanzenan schwan kende oder sich langfristig ändernde Umwelt -

bedingungen erfolgreich anpassen. Diese aktuelle Thematik stehtnicht nur im Fokus der biologischen Grundlagenforschung son-dern ist auch von hoher Relevanz für die angewandten Pflanzen -wissen schaf ten. Als Konsequenz ihrer sessilen Lebensweise ha -ben sich Pflanzen evolutiv zu Spezialisten der Anpassungs- undWiderstandsfä higkeit entwickelt. So reagieren Pflanzen auf lokaleVeränderungen mit gerichtetem Organwachstum, um günstigereAreale zu erreichen oder unvorteilhafte Bedingungen zu vermei-den. Da rü ber hinaus reagieren Pflanzen mit einer profunden Än-derung ih res Stoffwechsels, um chemisch effizienter zu kommu-nizieren und sich wirksamer gegen Fraßfeinde oder Krankheitser-reger zu schützen. Pflanzliche Reaktionen auf die Umwelt werdenoft über die Einbindung hormonaler Netzwerke der Signaltrans-duktion gesteuert und auf zellulärer und organismischer Ebenerealisiert. Das Hauptinteresse der Abteilung besteht in der prin -zipiellen Fra gestellung, wie Pflanzen ausgewählte abiotische undbiotische Parameter wahrnehmen, den Informationsgehalt dieserinterpre tieren und über biochemische Signalwege prozessieren,um folg lich adäquat auf Habitatveränderungen mit spezifischerUmprogrammierung ihres Stoffwechsels und Wachstumsverhal-tens zu re agieren. Diese Forschungsziele wurden während dervergangenen zwei Jahre in vier Arbeitsgruppen und in zusätzlichassoziierten Projektgruppen interaktiv verfolgt. Besondere Schwer -punkte bildeten hierbei Untersuchungen zu Mechanismen derPerzeption von abiotischen Faktoren, wie Nährstoffverfügbarkeitoder Erhöhung der Umgebungstemperatur, zur Signal integrationin der pflanzlichen Hormonwirkung, als auch zur Koordinationzellulärer Prozesse, wie die Regulation der Genexpression oderZelldifferenzierung. Chemische Wechselwirkungen zwi schenWurzelsystem und Rhizosphäre bildeten einen weiteren Fokus.

Der Berichtszeitraum war durch strategische personelle Verän-derungen auf AG-Leiterebene geprägt, welche der Förderungdes wissenschaftlichen Nachwuchses dienen und insbesonderejunge Wissenschaftlerinnen in Leitungspositionen unterstützen.So nahm Dr. Marcel Quint (Leiter der AG Auxin-Signaltransduk-tion) einen Ruf an die Martin-Luther-Universität Halle-Wittenbergals Universitäts-Professor (W3) an. Im Sommer 2015 verließ dieAG Quint nach 8-jähriger, überaus erfolgreicher Forschungs tä -tig keit am IPB unsere Abteilung. Als Nachfolgerin konnten wir Dr.Debora Gasperini von der Universität Lausanne (Schweiz) gewin-nen, die im Februar 2016 ihre Tätigkeit als Leiterin der neuen AGJasmonat-Signaltransduktion begann. Die neue AG stärkt nichtnur die For schung unserer Abteilung auf dem Gebiet der pflanz -lichen Hormonwirkung, sondern setzt auch die langjährige Tra-dition der Jasmonat-Forschung am IPB (ehemals Prof. Claus Was -

ternack), zusammen mit der AG von Prof. Bettina Hause (Ab tei -lung SZB), fort. Im Januar 2016 wurde die erfolgreiche Projekt-gruppe Kalziumperzeption aus der AG Nährstoffperzeption ausge -gliedert und als eigenständige AG Zelluläre Koordination unterLeitung von Dr. Katharina Bürstenbinder (Teilnehmerin des Leib-niz-Mentoring Programms 2015/2016 für junge Wissenschaftlerin-nen) etabliert.

Die wichtigsten Fragestellungen der Forschungsgruppen sind:Die AG Nährstoffperzeption untersucht, wie Makronährstoffe (N,P, S) die Wurzelentwicklung und den Stoffwechsel beeinflussen.Im Fokus steht die Frage, wie begrenzte P-Verfügbarkeit, die durchantagonistische Wechselwirkungen mit Metallkationen verschärftwird, das Wurzelwachstum über eine veränderte Meristemaktivi -tät reguliert und die Verfügbarkeit von Phosphat über die Abgabevon niedermolekularen Substanzen in die Rhizosphäre erhöht.

Die AG Zelluläre Koordination bearbeitet die wahrscheinlich um-fangreichste Familie Kalzium-/Calmodulin-bindender Proteine inPflanzen, welche im Zellkern, am Zytoskelett und in Mikrodomä-nen von Membranen lokalisiert vorliegen. Die sogenannte IQD-Familie stellt wahrscheinlich Scaffold-Proteine für die Assem-blierung von Multiproteinkomplexen bereit, die multiple Signal-wege integrieren und verschiedene zelluläre Prozesse koordi nie -ren.

Die AG Regulatorische RNAs klärt die molekularen Funktionenvon sogenannten natural antisense long-noncoding RNAs (NAT-lncRNAs) für die Regulation der Expression ausgewählter Multi-genfamilien auf und untersucht deren Bedeutung für die Anpas-sung der pflanzlichen Entwicklung und des spezialisierten Stoff -wechsels.

Die AG Signalintegration untersucht die Mechanismen der Per -zeption kleiner Moleküle über die Bildung ternärer Ligand-Kore -zep tor-Komplexe. Die Assemblierung solcher Komplexe wirdüber verschiedene Signalwege gesteuert und resultiert in diekontrollierte, ubiquitinabhängige Proteolyse spezifischer Zielpro-teine, die oft als Regulatoren der Genexpression wirken. Einewichtige Frage ist, unter welchen Bedingungen be stimmte E3-Ubiquitin-Ligasen als Rezeptoren und Signalintegratoren fun -gieren.

Die AG Jasmonat-Signaltransduktion geht der Frage nach, wieZel len innerhalb eines Gewebes extrazelluläre Signale an derPlasmamembran wahrnehmen und wie die nachfolgenden intra -zellulären Prozesse der Signaltransduktion die Biosynthese vonJas monat in den Plastiden auslöst. Als Experimentalsystem dientdie Primärwurzel von Arabidopsis thaliana.

The unifying theme of our department is to understand howplants perceive and respond to environmental change, atopic of heightened importance for basic and translational

plant research. As a consequence of their sessile lifestyle, plantsevolved to masters of resilience which implement unique adap-tive strategies for survival. Plants respond to local challenge oropportunity with directional growth for stress evasion or habitatexploration, and with the synthesis of bioactive chemicals forcommunication and self-defense. An array of chemical mediatorsand their processing networks govern post-embryonic plant de-velopment and fine-tune plant growth and metabolism as in-formed by local cues. We are interested in exploring how plantsmonitor and perceive external parameters, transmit and integrateinformation about their surroundings, and deploy appropriatemetabolic as well as developmental responses to shifting abioticconditions and co-evolving biotic stressors for optimal growth.During the past two years, we pursued this common goal in fourresearch groups and associated project groups. Major directionsof research comprised three integrated program areas: (i) per-ception of environmental parameters such as nutrient availabilityor temperature differentials; (ii) reprogramming of metabolism inresponse to biotic challenge; and (iii) signal integration duringthe perception of small molecules, with an emphasis on plant-rhizosphere interactions.

During the reporting period, the department experienced majorstrategic adjustments in personnel, which foster career devel-opment of junior group leaders and support leadership roles offemale scientists. Dr. Marcel Quint (head of the research groupAuxin Signaling) accepted the position of University Professor(W3) at the Martin Luther University Halle-Wittenberg. Aftereight years of extraordinary research at the IPB, he left the de-partment in summer 2015 and relocated his group to the neigh-boring university campus. We were fortunate to attract Dr. De -bora Gasperini from the University Lausanne (Switzerland) whomoved to the IPB in February 2016 to establish her new researchgroup Jasmonate Signaling. Her group will strengthen the re-search profile of our department in the area of hormone actionand will continue, together with the group of Prof. Bettina Hause(Department of Cell and Metabolic Biology), the long traditionat the IPB of jasmonate research (former group of Prof. Waster-nack). In January 2016, the prospering project group CalciumSignaling was separated from the Nutrient Sensing group andreestablished as the research group Cellular Coordination un-der the leadership of Dr. Katharina Bürstenbinder who was aparticipant of the Leibniz Mentoring Program for young femalescientists in 2015/2016.

An overview of the major research topic of each group follows: The Nutrient Sensing group investigates how mineral macronu-trients (N, P, S) impact adaptive root development and metabo-lism. A major question is how phosphate limitation, which is main -ly a consequence of antagonistic interactions between metalcations and phosphate, alters root meristem activity to adjustroot growth, and chemically modifies the rhizosphere to enhancephosphate bioavailability in soil.

The Cellular Coordination group studies the possibly largest fam-ily of calcium/calmodulin-binding proteins in plants. The so-called IQD proteins function at membrane microdomains, the cy-toskeleton, and in the cell nucleus. The IQD family is thought toprovide an assortment of scaffold proteins for the assembly ofmacromolecular complexes, which integrate multiple signalingpathways to coordinate various processes important for cellgrowth and cell function.

The group Regulatory RNAs focuses on RNA-mediated controlof gene expression by so-called natural antisense long-noncodingRNAs (NAT-lncRNAs). The group aims to understand the role ofNAT-lncRNAs on the regulation of expression of multigene fami-lies in Arabidopsis with functions in plant development and spe-cialized metabolism, to define the molecular processes in whichthey are involved, and to decipher the regulatory networks sub-jacent to their action.

The Signal Integration group studies how small signaling mole-cules are perceived via the assembly of ternary ligand co-recep-tor complexes. The formation of such complexes integrates mul-tiple signaling inputs and subsequently controls ubiquitin-medi-ated degradation of select target proteins, which often are keyregulators of primary gene expression. Specifically, the groupaims to understand how and when certain E3-ubiquitin ligasesact as small molecule receptors and signal integrators.

The Jasmonate Signaling group investigates how cells within tis-sues perceive chemical and mechanical stress signals at theplasma membrane to initiate intracellular processes. Althoughmany aspects of jasmonate biosynthesis and perception are wellcharacterized, it is still unclear how extracellular stimuli triggerand modulate jasmonate production and how a single hormoneinduces so many different downstream responses. Primary rootsof Arabidopsis are the experimental system to address these im-portant questions.

Department of Molecular Signal ProcessingHead: Professor Steffen AbelSecretary: Alexandra Herrmann

Abteilung Molekulare SignalverarbeitungLeiter: Professor Steffen AbelSekretariat: Alexandra Herrmann

Page 7: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

key determinant of local Pi sensing, PDR2(the single, orphan P5-type ATPase) re-stricts LPR1 function. In low Pi, the cell type-specific LPR1 expression domain deter-mines the sites of apoplastic Fe3+ accumu-lation in the RAM and transition zone,which correlate with the sites of ROS gen-eration, callose production, and inhibitionof cell-to-cell communication. While LPR1and PDR2 expression is not responsive to

external Pi, LPR1 ferroxidase activity seemsto be controlled by Fe2+ availability. The re-dox activity of LPR1 reactants likely de-pends on apoplast chemistry and pres-ence of Fe ligands, such as carboxylates,phenolic compounds (e.g., coumarines),or Pi itself. Antagonistic Fe-Pi interactionsin the apoplast may determine LPR1-de-pendent Fe redox cycling, ROS formation,callose deposition, and symplastic con-

nectivity as a means to adjust root cellelongation and RAM activity in responseto external Pi status (Fig. 2).

Expression ProfilingA comparative transcriptome and prote -ome profiling study, conducted in collab-oration with the research groups Prote -ome Analytics and Bioinformatics & MassSpectrometry, revealed that syste mic Pistarvation responses and associatedchan ges in Fe homeostasis are similar be-tween wild-type, pdr2, and lpr1lpr2 roots.However, expression of many genes andproteins rela ted to extracellular ROS for-mation and cell wall remodelling (e.g.,peroxidases, pectin synthesis/modifica-tion) correlated with genotype-specificsensitivities of the root response to lowPi. The da ta support the hypothesis thatdynamic changes in pectin compositionand peroxidase activity regulate apoplas-tic Fe binding/Pi mobilization and accel-erated cell differentiation/ lignification,respectively.

Metabolite ProfilingFe solubilization and uptake depend onthe exudation and accumulation of coum -arins, whose synthesis is induced under Fedeficiency. Our work within the collabora-tive network Chemical Communication inthe Rhizosphere revealed decreased levelsof certain coumarins after Pi starvation,suggesting a role of specific coumarinprofiles in the Fe-dependent process of Pideficiency-induced root growth inhibition.Using a series of mutants, we are currentlyexploring the regulatory factors involvedin the partially antagonistic effect of Feand Pi deficiencies on coumarin profiles.First results show that the establishmentof coumarin profiles is determined bycomplex interactions of regulators in-volved in Pi starvation as well as Fe defi-ciency responses.

Die physiko-chemischen Eigenschaften von Phosphat (Pi) schränken dessen biologische Verfügbarkeit, insbesondere inder Wechselwirkung mit Metallkationen, für Pflanzen im Boden erheblich ein. Pflanzen reagieren auf Pi-Mangel mit einerUmprogrammierung des Stoffwechsels und Anpassung der Wurzelsystemarchitektur, um Pi-Ressourcen effizienter zu

erschliessen. Wir untersuchten die ersten molekularen Komponenten eines Pi-abhängigen Signalweges in Arabidopsis, welcherdie Wurzelmeristemaktivität an die lokale Pi-Verfügbarkeit anpasst. Ein wichtiger Faktor in diesem Prozess ist eine zellwandlo-kalisierte Ferroxidase, deren Funktion von einer ER-ständigen P5-Typ ATPase kontrolliert wird. Das komplexe Zusammenspielvon zelltypspezifischer Expression dieser Ferroxidase mit im Apoplasten vorliegenden Fe Liganden, wie z.B. Pi oder Coumarinen,bestimmt die Redoxaktivität des Eisens, die ROS- und Callosebildung, die interzelluläre Kommunikation im Wurzelmeristem undsomit das Wurzelwachstum.

13

Plant responses to phosphate (Pi) insuffi-ciency are a major focus of our research.Unique chemical properties enable Pi, to-gether with its conjugate esters and anhy-drides, to assume dominant roles in bioen-ergetics and metabolism, which also ren-der the mineral macronutrient a most lim-iting factor of primary production (toge -ther with N). Most Pi salts are notoriouslyinsoluble and Pi limitation is often aggra-vated by complex soil chemistries involv-ing antagonistic interactions between Piand the two most abundant metals in thelithosphere, Al and Fe.

To cope with Pi limitation, plants activatea set of coordinated biochemical and de-velopmental responses that reprioritize in-ternal Pi allocation and maximize externalPi interception. In most dicotyledonousplants, including non-mycorrhizal Arabi -dopsis thaliana, Pi limitation promotes de-velopment of a shallow root system andexpansion of root surface area by attenu-ating primary root extension, increasingla teral root branching, and intensifyingroot hair formation, adaptive growth re-sponses thought to facilitate Pi foraging intopsoil layers. Remodeling of root systemarchitecture is coordinated with physio-logical processes that mobilize Pi from ex-ternal sources and enhance its uptake.These include secretion of various P-hy-drolases to utilize complex P-containingorganic substrates, exudation of carboxy-lates, such as citrate and malate, to releasemineral-bound Pi by chelation of metalliccations, and induction of high-affinity Pi

uptake systems to import the rescued Pi.We and others showed that Pi in the rhi-zosphere acts as a short-range nutritionalsignal that is perceived by the root apex tolocally inform root development. Pi depri-vation attenua tes primary root growth viarapid cessation of cell elongation (<2 h) inthe transition zone and progressive inhibi-tion of cell division (<2 d) in the root apicalme ristem (RAM). Continued Pi limitationultimately results in primary root growtharrest (Fig. 1).

Genetic DissectionWhile systemic responses to Pi limitationare relatively well understood, the sensorymechanisms monitoring external Pi statusare beginning to emerge and highlight the

importance of complex interactions be-tween Pi and metallic cations in the growthmedium. To elucidate local Pi sensing, wehave taken genetic approaches and arestudying a set of Arabidopsis mutants andaccessions with strikingly different, butspecifically altered sensitivities to the pri-mary root growth inhibitory effect of Pi de -privation. We have characterized severalPHOSPHATE DEFICIENCY RESPONSE(PDR) and LOW PHOSPHATE ROOT (LPR)genes that code for proteins localized todifferent compartments in cells of the RAM,including the nucleus (PDR3), endoplas-mic reticulum (PDR2), endosomes (PDR4),plastids (PDR1), and cell walls (LPR1, LPR2).

Cell BiologyOur published work focused on two func-tionally interacting genes, PDR2 and LPR1.A framework of PDR2-LPR1 function in lo-cal Pi sensing emerged by comparativestudy at the cellular level of various Ara-bidopsis lines displaying hypersensitive(pdr2-like) and insensitive (lpr1-like) rootgrowth inhibition on low Pi. We showedthat the response to low Pi depends on,and is modified by external Fe availability,which suggests indirect monitoring of Pivia Fe interactions. While LPR1 (a multicop-per oxidase with ferroxidase activity) is a

12

Nutrient SensingHead: Steffen Abel

Ranju ChutiaPhD Student, Schol-arship Holder

Kristin EismannTechnical Assistant

Marcus HeistersPhD Student

Jens MüllerPostdoctoral Scien-tist

Christin NaumannPostdoctoral Scien-tist

Birgit OrtelTechnical Assistant

Ahmed RomelPhD Student, Schol-arship Holder

Pascal RudewigTechnical Assistant

Domenika ThiemeTechnical Assistant

Theresa ToevPhD Student

Jörg ZieglerPostdoctoral Scien-tist

Juliane ZieglerTechnical Assistant

Group Members

Fig. 1: Root responses of Arabidopsis thaliana to phosphate (Pi) limitation.

Fig. 2: Model of local Pi sensing in the Arabidopsis root meristem. The PDR2-LPR1 moduleregulates Pi- and Fe-dependent ROS formation and callose deposition in the stem cellniche, which impacts symplastic communication (e.g., SHR movement).

CollaboratorsGeert De JaegerVIB-University of Ghent, Belgium

Thierry Desnos, Laurent NussaumeCEA Cadarache, France

Gerd HauseUniversity of Halle, Germany

Katie MoonOxford University, UK

Yves PoirierUniversity of Lausanne, Switzerland

Page 8: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

With the advances of next generation se-quencing methods it became evident thatmost of the genome is transcribed but on -ly a small fraction of the transcribed RNAscorrespond to messenger RNAs (mRNAs)coding for proteins. There are several non-protein-coding RNAs (ncRNAs) that exerttheir function in different cellular pro ces -ses, including mRNA maturation, proteinsynthesis, plant defense, and gene expres-sion regulation. ncRNAs are classifiedbased on their length in small (21-24 nt)and long (> 200 nt) non-coding RNAs. Inour group, we are interested in under-standing the biological role of natural an-tisense long non-coding RNAs (NAT-lncR-NAs), a particular class of lncRNAs that aretranscribed from the DNA strand oppositeto protein-coding genes (Fig. 1 a). The pro-duction of complementary RNAs duringthe transcription of opposite genes canproduce dsRNA that induces the silencingmachinery and the production of smallRNAs derived from the overlapping re-gions (nat-siRNAs). nat-siRNAs derivedfrom complementary protein-coding tran-scripts are involved in salt-stress respon -ses, defense against bac teria, hormoneregulation and plant reproduction, but thismechanism of gene regulation has notbeen reported so far for gene pairs involv-ing mRNAs and NAT-lnc-RNAs. We identi-fied several NAT-lncRNA encoding genesthat overlap with members of Arabidopsismultigene families, and we are currentlyfocusing on the characterization of NAT-lncRNAs present in the uridine di phos -phate (UDP) glycosyltransferases (UGTs)superfamily and the family of AUX/IAA

proteins. Given the sequence conserva-tion among family members, we hypo -thesize that NAT-lncRNAs may regulate, ina mechanism mediated by nat-siRNAs, notonly the expression of overlapping genes(primary targets) but also the expressionof closely related genes (secondary tar-gets). Additionally, NAT-lncRNAs may con-trol gene expression by direct interactionwith factors involved in chromatin modifi-cations and epigenetic silencing, by mod-ulating the expression of the complemen-tary gene in cis, by regulating the transla-tion of the complementary RNA or by se-questering proteins or microRNAs.

To obtain information about spatio-tempo-ral expression patterns, we generated

transgenic Arabidopsis lines harboringNAT-lncRNAs promoter::GUS reporter con -structs and compared their patterns of ex-pression with the ones of the potential pri-mary and secondary target genes. Our re-sults indicate that NAT-lncRNA promotersare functional, allowing the expression ofthe NAT-lncRNAs autonomously of theprotein-coding gene (Fig. 1 b, c and d),and that they are developmentally regu-lated and able to respond to different sig-nals, including plant hormones, light andabiotic stresses, such as phosphate star-vation and cold. The analysis of the ex-pression pattern allows also the identifica-tion of organs and tissues in which NAT-lnc-RNAs and their potential targets areco-expressed.

Our initial studies via transient expressionassays in tobacco leaves indicate that theco-expression of NAT-lncRNA constructsand target genes induces down-regula-tion of the primary targets, results that weextended for highly similar secondary tar-get genes. To obtain information aboutthe cellular processes that are regulatedby NAT-lncRNAs, we established stable Ara-bidopsis lines to study the phenotypic ef-fects of NAT-lncRNAs overexpression un-

der the control of the CaMV 35S promo -ter, or down-regulation by artificial micro -RNAs (amiRNAs) that specifically targetthe selected NAT-lncRNAs. Results of thephenotypic analysis of these lines indicatethat alterations in NAT-lncRNAs levels pro-duces morphological changes, as for ex-ample modifications in leaf area, affectingthe rosette size (Fig. 2 a and b). These re-sults suggest that the expression of thesemolecules must be tightly regulated. Sur-prisingly, expression analysis of the poten-tial targets in these plants revealed that, incontrast with the results obtained by tran-sient expression in tobacco, its expression

is not significantly affected. These resultssuggest that the observed phenotypescan be a consequence of alterations of thetarget genes at the protein level or that theanalyzed NAT-lncRNAs could modulatethe expression of other genes. Comple-mentation assays of the amiRNAs-express-ing lines to restore the endogenous NAT-lncRNAs levels are currently in progressand will provide additional confirmationabout the link between NAT-lncRNA down-regulation and the observed phenotype.

Several lncRNAs achieve their function viainteraction with proteins and the identifi-

cation of those is central to infer in whichbiological processes are the lncRNAs in-volved. In order to identify proteins that in-teract with NAT-lncRNAs, we developedan RNA-centric method that allows theidentification of unknown proteins usingas baits selected NAT-lncRNAs. Taking ad-vantage of an aptameric sequence that isable to bind to streptavidin we generatedtagged RNA molecules that we subse-quently used to identify plant interactingproteins in vitro. In order to avoid unspeci -fic interactions that are prone to be pro-duced during the in vitro assay we also es-tablished an in vivo approach in which theinteractions that occur in the plant cell arefixed via crosslinking. The identification ofthe interacting proteins is performed bymass-spectrometry in collaboration withDr. Wolfgang Hoehenwarter.

We are collaborating with the group ofProf. Behrens (University of Halle) to inves-tigate the mechanisms of NAT-lncRNA me-diated regulation of gene expression. Wewill use the recently established experi-mental system of cytoplasmic extracts ofevacuolated tobacco BY2 protoplasts toidentify siRNAs that mediate efficient tar-get down-regulation. Our findings will bevalidated in vivo using silencing mutantsof A. thaliana.

Combining several approaches we aim tounderstand the role of NAT-lncRNAs in thecontext of multigene families of A. thalianaand to define the processes in which theyare involved.

Unsere Gruppe ist an einer bestimmten Klasse von langen nicht-kodierenden RNAs (lncRNA) interessiert, die vom ge-genüberliegenden DNA-Strang eines kodierenden Gens transkribiert werden (natural antisense long non-coding RNAsoder NAT-IncRNAs). Wir haben uns auf eine Reihe von NAT-lncRNAs aus Arabidopsis thaliana fokussiert, die mit Pro-

tein-kodierenden Genen von zwei Multigenfamilien überlappen: der Uridindiphosphat-Glycosyltransferase-Superfamilie undder Auxin/Indol-3-essigsäure-Proteinfamilie. Unsere Ergebnisse zeigen, dass die Expression der NAT-IncRNAs durch entwick-lunsphysiologische Prozesse und andere Faktoren wie Pflanzenhormone, Licht und abiotischen Stress (z. Bsp. Kälte und Phos-phatmangel) reguliert wird. Die Änderung der NAT-lncRNA Expression führt zu phenotypischen Veränderungen, die durchdie transkriptionelle Regulierung des komplementären Genes, posttranskriptionelle Regulierung der komplementären mRNAoder anderen ähnlichen bzw. nahe verwandten Genen oder durch den Einfluss auf die Proteinexpression oder –stabilität ver-ursacht werden können. Zurzeit analysieren wir diese Prozesse, um die Funktion der untersuchten NAT-lncRNAs zu bestim-men. Ein weiterer Aspekt für eine mögliche Funktionsweise von NAT-lncRNAs ist deren Interaktion mit Proteinen. Zur Identi-fizierung möglicher Protein-Interaktoren wurden verschiedene in vitro- und in vivo-Methoden in unserem Labor etabliert.

1514

Regulatory RNAsHead: Selma Gago Zachert

Katja Baumann-KaschigTechnical Assistant

Julia BeimdiekBachelor Student

Tebbe de VriesMaster Student

Michael André FritzMaster Student

Susanne HöpfnerPhD Student, Scholarship Holder

Ammar JaberPhD Student, Scholarship Holder

Shiv Kumar MeenaPhD Student, Scholarship Holder

Maria PogodaMaster Student

Melvin SchubertMaster Student

Mathias SchuppeMaster Student

Group Members

Fig. 1: Expression analysis of two NAT-lncRNAs that overlap the UGT73C6 gene of Arabi-dopsis thaliana. (a) Schematic representation of genes encoding UGT73C6, NAT1- andNAT2-UGT73C6. Thick and thin bars represent exons and introns, respectively. Untrans-lated regions of UGT73C6 are indicated in light blue. Antisense lncRNAs are depicted inviolet. (b) Histochemical analysis of GUS expression in seven day old seedlings of A. tha-liana expressing NAT1-UGT73C6prom::GUS (left), NAT2-UGT73C6prom::GUS (middle)and UGT73C6prom::GUS (right). Details of the main root and the shoot are shown in theinsets of left and middle pictures, respectively. Bars represent 1 mm.

Fig. 2: Phenotypic effects of NAT-lncRNAs overexpression and down-regulation. (a) Effectsof NAT1-UGT-73C6 overexpression. Box plots showing total rosette leaf area measurements(left) and pictures of representative plants (right). Four independent homozygous linesoverexpressing NAT1-UGT73C6 (NAT-UGT-73C6ox, dark green), plants transformed withthe vector (empty vector control, E, red) and overexpressing UGT73C6 (C6ox, violet) wereincluded. (b) Effects of NATs-UGT73C6 down-regulation. Box plots showing total rosetteleaf area measurements (left) and pictures from representative plants (right). Five inde-pendent homozygous lines overexpressing artificial microRNAs targeting both NAT1- andNAT2-UGT73C6 (amiRNA lines 1, 2 and 3, in dark, light and olive green, respectively) andplants transformed with the vector (empty vector control, E, red) were included. Leaf areavalues, expressed in cm2, and pictures correspond to 25 d old A. thaliana plants grown inthe greenhouse. Asterisks indicate data significantly different from the correspondingempty vector control (* p <0.05 (one way Anova). 19 plants from each line were includedin the measurements.

Collaborators

Sven BehrensUniversity of Halle, Germany

María Laura GarcíaUniversity of La Plata, Argentina

Dorothee StaigerUniversity of Bielefeld, Germany

Page 9: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

ous auxin sensors differentially perceptiveto auxin. Interestingly, sensing mecha-nisms of other phytohormones such asjasmonates, gibberellins, salicylates, kar-rikins, etc. require the activity of SCFs, andtheir perception - with some variations -resemble auxin sensing.

An FBP-target module for perception ofsmall molecules has a tremendous impacton our understanding of how to modulateprotein-protein interactions. The fact thatFBPs can respond to signals to recruit tar-gets, specifically through a combinationof degrons and non-peptide hormones orsmall molecules is fascinating and its po-tential has yet to be fully realized.

Our general research plan is designed tocharacterize small molecule perceptionthrough protein stability mechanisms,and, in the long term, to uncover roles forsmall molecule interactions in specificplant responses and developmental

events. To evaluate the mechanisms ofFBP-target systems, we are deepening ourbiochemical studies of the auxin receptor.Specifically, we are combining proteomicswith biophysics, protein biochemistry to-gether with structure-function analyses toelucidate the dynamics of receptor as-sembly and ubiquitylation of targets. Thus,we have recently identified key features inthe degradation targets that modulate thesensing properties of the hormone co-re-ceptors. By reconstituting SCF-dependentubiquitylation of targets, we are also inte-grating information on protein-small mol-ecule binding, complex formation dynam-ics and turnover of targets to rebuild theinitial steps of the auxin signaling cascade.Hereby, we are also gaining understandingof how regulators for SCF assembly influ-ence target recruitment and ubiquitylationin response to small molecules (Fig. 3).

With our research on small molecule co-receptors in plant biology, we envision

moving from a reductionist approach toestablishing a platform for a systematicanalysis of how intracellular signals areperceived and processed by the UPS.Thereby, we have extended our interna-tional and local cooperation network, andare part of the European COST Proteosta-sis Initiative. Additionally, we collaboratesuccessfully with the proteomics plat-form, and chemical and physics groups atthe IPB and MLU to address small mole-cule –mediated ubiquitylation.

ReferencesSixma, T., Mattiroli, F. (2014) Nat. Struct. &Mol. Biol. 21(4) 308-316.Skaar J.R. et al. (2013) Nat. Rev. Mol. CellBiol. Jun. 14(6): 10.1038/nrm3582.Calderón Villalobos L.I.A. et al. (2012) Nat.Chem. Biol. 8(5) 477-85Komander D., Rape M. (2012) Annu. Rev.Bio chem. 81: 203–229Sheard L.B. et al. (2010) Nature 468, 400-405, doi:10.1038/nature09430.Ikeda F., Dikic I. (2008) EMBO Rep. 9: 536–542Tan X. et al. (2007) Nature 446, 640-645.Petroski M.D., Deshaies R.J. (2005) NatureRev. Mo. Cell Bio. 6: 9–20Hershko A., Ciechanover A. (1998) Annu.Rev. Biochem. 67: 425–479

Der Ubiquitin (Ub)-vermittelte Proteinabbau ist eine essentielle regulatorische Strategie, die unter anderem die Stabilitätvon Proteinen und Peptiden zu einem spezifischen Zeitpunkt an einem zellulären Ort bestimmt. Unsere Haupt-Prä-misse ist, dass Protein-Protein-Interaktionen, die zum Proteinabbau führen, auf chemische Signale, wie Phytohormone

(z.B. Auxin, Jasmonat) reagieren. Die wissenschaftliche Arbeit umfasst Fragestellungen zum durch Phytohormone ausgelöstenProteinabbau durch E3-Ub-Ligasen. Dabei kommen molekularbiologische, biochemische und biophysikalische Ansätze zurAnwendung. Darüber hinaus führen wir Struktur-Funktionsanalysen an Hormon-Rezeptor-Systemen durch. Wir erforschenweiterhin die Kontrollmechanismen der Proteinubiquitylierung sowie E3-Protein-Interaktionen und Interaktionen von E3s desSCF-Typs mit niedermolekularen Liganden und ihren Interaktionsnetzwerken. Ein tieferes Verständnis der Rolle des Ubiqui-tin-vermittelten Proteinabbaus in physiologischen Prozessen und in der pflanzlichen Entwicklung soll daraus resultieren.

17

The Signal Integration Group is interestedin the mechanism of small molecule per-ception in plants that depends on signal-mediated interactions followed by ubi-quitin-mediated protein degradation.

An ultimate cellular switching on/off mech-anism comprises the irreversible ubiquitin-mediated proteolysis of proteins, whichguides numerous unidirectionally pro ces -ses, such as hormone signaling, cell cycleor circadian rhythm. An E1-E2-E3 enzyma -tic cascade called the Ubiquitin Protea-some System (UPS) (Fig. 1), mediates theformation of ubiquitin chains covalentlyattached to targets for degradation. Ubiq-uitin chains of four or more moieties,linked through either Lys48 or Lys11 ofubiquitin, or mixed-ubiquitin chains, usu-ally direct protein targets to the protea-some, in which degradation of ubiquity-lated proteins takes place. Multiple mono -ubiquitins and other, non-Lys-linked ubi-quitin chains have also been impli cat ed inprotein degradation, and the stu dy of al-ternative degradation signals is a rapidlyadvancing field. It is estimated that >80%of cellular proteins undergo ubiquitin-me-diated proteolysis, and the specific selec-tion of targets by E3 ubiquitin ligases in re-sponse to specific stimuli is a crucial fac-tor in cell regulation. Modular E3s from theCullin– RING ligase (CRL) type (Fig. 1), spe -cifically SCFs, carry an interchangeable F-Box protein (FBP) subunit that preciselyand directly interacts with the target fordegradation. SCFs complex assembly issubject to specific and global regulation,which adds on to their critical tuning atthe level of target recruitment.

In plants, every single hormone signalingpathway has been shown to be controlledby the UPS to some extend. Auxin is a mor-phogen in plants, and auxin perceptionand signaling are absolutely dependenton ubiquitin-mediated proteolysis. SCFTIR1/AFB1-5 ligases catalyze the turnover ofAUX/IAAs in response to auxin. Most AUX/IAAs carry an auxin-interacting degron do-main (Fig. 2), that is a destabilizing signal,

which is recognized by TIR1/AFBs. Oncebound to the SCFTIR1/AFB1-5, it mediatesAUX/IAA ubiquitylation probably along anubiquitylation zone. As AUX/IAAs directlyrepress transcription factors, auxin-de-pendent degradation of AUX/IAAs allowstranscriptional activation of auxin respon-sive genes. Groundbreaking findings

around the mechanism for TIR1-AUX/IAAinteraction constitute the basis for the Sig-nal Integration Group. TIR1/AFB1-5 FBPsand their AUX/IAA targets associate andsense variations in the concentrations ofauxin in the nucleus. Since they belong tomulti-protein families, distinct TIR1/AFB-AUX/IAA co-receptor pairs can form vari-

16

Signal IntegrationHead: Luz Irina A. Calderón Villalobos

Fig. 1: An E1-E2-E3 enzymatic cascade orchestrates the transfer of ubiquitin(black) moieties to target proteins (yellow) changing thereby their fate. Depend -ing on the topology of the ubiquitin chains, ubiquitylation affects target function,localization or stability. E3 ubiquitin ligases ensure target selectivity, and the vastmajority of SCF-type E3 ligases (a type of Cullin-RING E3 ligases (CRLs)), lead toproteasomal degradation by formation of K48- and K11-linked ubiquitin chains onthe targets. Thus, target ubiquitylation can be enhanced by small molecules suchas auxin, indicating that SCF-E3 ligases have the potential to act as phytohor-mone sensors together with their turnover targets.

Fig 3: Events that lead to target recognition and ubiquitylation are tightly regula-ted through protein-protein interactions that contribute to cullin-mediated CRLassembly. Structural and biochemical analyses will reveal how precisely targetubiquitylation in response to phytohormones is paced.

Fig. 2: Short sequences on targets called degrons (yellow) mediate the interactionwith F-box proteins (magenta) on SCF-type E3 ligases. AUX/IAA and JAZ degrons(WebLogo) occur on transcriptional repressors that undergo auxin- and Ile-JA-mediated target degradation, respectively. Even though canonical degrons ontarget proteins are essential for their recognition, flexible degron flanking regionslikely influence SCF-target associations, hormone sensing, ubiquitylation and tar-get processing.

CollaboratorsMark EstelleUniversity of California, USA

Ingo Heilmann, Dariush Hinderberger, MarcelQuint, Andrea SinzUniversity of Halle, Germany

Jennifer NemhauserUniversity of Washington,Seattle, USA

Matias ZurbriggenUniversity of Düsseldorf,Germany

Gideon ChristMaster Student, ResearchAssistant

Dinesh D. Chandrasekaran PhD Student

Sandra EhrenbergResearch Student

Antje HellmuthPhD Student

Katrin HoffmannResearch Student

Martin KordtsGuest Scientist

Esmeralda Martí SanchezResearch Associate

Michael NiemeyerPhD Student

Katja L. K. PetersGuest Scientist

Verona WildeTechnical Assistant

Group Members

Page 10: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

IQDs on the microtubule cytoskeleton, weinitiated a collaboration with Birgit Möller(Bioinformatics department, University ofHalle) and developed a tool for (semi-)au-tomatic microtubule pattern analysis. Wegenerated a similarity matrix based onpairwise distances between individualIQDs, followed by a network analysis. Weapplied this tool in a first proof-of-conceptstudy and confirmed differential functionsof elevated IQD protein abundance on mi-crotubule organization, cell shape, andplant growth in transgenic Arabidopsisplants, as shown for plants overexpressingIQD11, IQD16 or IQD14 when compared tothe wild-type reference.

To obtain information about spatio-tempo-ral expression patterns and endogenoussites of IQD protein action, we establishedtransgenic Arabidopsis lines harboring pro-moter-IQD:GFP-GUS reporter constructsand generated a cellular expression mapof the IQD family. Informed by the expres-sion analysis, we performed systematicphenotyping of iqd null mutants and iden-

tified plant lines with altered leaf epider-mis cell shapes (cell shape defective, csd),or defects in the positioning of the cell di-vision plane (spatial control of cytokinesis,spoc) (Fig. 3). Analysis of GFP fusions ex-pressed under the native promoters re-vealed accumulation of green fluores-

cence at cortical microtubules of leaf epi-dermis cells and at phragmoplast micro-tubule arrays during cell division in trans-genic promoter-CSD:CSD-GFP and Pro -SPOC:SPOC-GFP lines, respectively. To-gether, our results suggest important rolesfor IQD proteins in integration of Ca2+ sig-naling into regulation of microtubule orga -nization during cell division and cell ex-pansion. A detailed analysis of iqdmutantswill allow us to position IQD proteins withinknown signaling pathways, e.g. hormonalsignaling, and to elucidate networks shap-ing plant growth.

Wir befassen uns mit der Frage, wie Wachstum und zelluläre Spezialisierung während der Entwicklung von Pflanzenkoordiniert werden. Wir interessieren uns besonders für Kalzium (Ca2+)-vermittelte Signalwege, die die Organisationund Dynamik des Zytoskeletts regulieren. In Vorarbeiten haben wir IQD-Proteine als eine neue, pflanzenspezifische

Familie identifiziert, deren Mitglieder Ca2+-Calmodulin-Signalmodule an das Mikrotubuli-Zytoskelett rekrutieren. Über eine Kom-bination von genetischen, molekular- und zellbiologischen Methoden haben wir uns der funktionalen Charakterisierung derIQD-Familie im Modellorganismus Arabidopsis thalianagewidmet. Unsere Arbeiten identifizierten IQD-Proteine als wichtige Re-gulatoren von Zellteilungs- und Zelldifferenzierungsprozessen in Pflanzen. Im aktuellen Fokus steht die Identifizierung beteiligterSignalkomponenten, um die molekularen Mechanismen IQD-vermittelter Prozesse aufzuklären und so zu einem besseren Ver-ständnis pflanzlicher Entwicklung beizutragen.

19

The Cellular Coordination group was es-tablished in October 2015. Research in ourgroup centers on understanding howplant growth and development are coor-dinated at the cellular level. We aim to in-vestigate the molecular mechanisms thatshape cells, tissues, and organs using acombination of genetics, molecular biol-ogy, and cell biology approaches.

Plant growth is determined by cell divisionand cell expansion, followed by cell differ-entiation, which leads to the formation ofspecialized cell types that are the buildingblocks of tissues and organs. Growth anddevelopment are regulated by complex in-teractions among several endogenousand environmental signals. Intricate cellu-lar networks translate and integrate infor-mation from multiple independent inputsinto the coherent biological response. In-tracellular calcium (Ca2+) is a universal sec-ond messenger that plays central roles incellular signaling and affects nearly everyaspect of cellular life. Ca2+ binding pro-teins, such as calmodulins (CaM), act asCa2+ sensors and differentially bind to hun-dreds of diverse target proteins to altertheir function and to regulate plant devel-opment and stress responses. Understand-ing of Ca2+ signaling and the underlyingprocesses is thus an area of critical impor-tance for plant research.

We previously identified a novel plant-spe-cific class of CaM targets, termed aftertheir conserved and name-giving IQ67-do-main (IQD), which are required and suffi-cient for CaM binding. Genome-wide ana -ly ses of IQD families in nine angiosperms,

including tomato, maize, rice, and the mo -del plant Arabidopsis thaliana, revealedthat IQDs are encoded by large multigenefamilies of 23 to 67 members, and consti-tute the largest known class of CaM tar-gets in plants. First experimental data pointto important roles of IQD proteins in plantdefense and development, as indicated byincreased resistance against herbivory inArabidopsis lines overexpressing IQD1, andby altered fruit morphology in tomatoplants with increased expression of IQD12/SUN. So far, however, phenotypes are on -ly reported in plants with elevated levelsof IQD expression, and the molecularmechanisms of IQD function are largelyelusive.

To address the role of IQD proteins in plan -ta we initiated a comprehensive analysisof the 33 Arabidopsis family members,with a focus on the founding member IQD1.We found that GFP-fused IQD1 associateswith microtubules and localizes to the nu-cleolus in tobacco and in Arabidopsis.When co-expressed with RFP-fused CaM2in transient expression assays in tobaccoleaves, GFP-IQD1 recruits CaM Ca2+ sen-sors to its distinct subcellular sites (i.e., nu-cleolus and microtubules). IQD1-mediatedrecruitment of CaM to microtubules raisedour particular interest because severalstudies implicated Ca2+ signaling in thecontrol of the microtubule cytoskeleton;the molecular mechanisms, however, arelargely elusive. We thus extended the anal -ysis to all 33 Arabidopsis IQD proteins andanalyzed the subcellular localization ofGFP-fused variants in transient expressionassays in tobacco. Our analysis revealed

that most IQD proteins associate with mi-crotubules and that about half of the fam-ily members localize to the nucleus. In ad-dition, many IQD proteins localize to theplasma membrane, and often display dualor even triple localization to membranes,microtubules and the cell nucleus. We ob-served similar localization patterns for se-lect IQD members in transgenic Arabidop-sis plants, which suggests that IQDs arenovel microtubule-associated proteinswith potential roles in orchestration of sig-naling from membranes to the nucleus(Fig. 1).

Interestingly, microtubule arrays in tobac -co are sensitive to transient overexpres-sion of individual IQDs, as indicated by dif-ferences in the organization of GFP-IQD la-beled microtubule arrays (Fig. 2). To quan-titatively assess the impact of individual

18

Cellular CoordinationHeads: Katharina Bürstenbinder & Steffen Abel

Pratibha KumariPhD Student & ScholarshipHolder

Dipannita MitraPhD Student & ScholarshipHolder

Paul PflugPhD Student

Romina PlötnerMaster Student

Jakob QuegwerPhD Student

Gina StammTechnical Assistant

Barbara von HippelResearch Assistant

Group Members

Fig. 1: Proposed model of IQD proteinsignaling. IQD proteins constitute thelargest known class of CaM bindingproteins in plants, and link calcium-CaM signaling to membranes, the mi-crotubule cytoskeleton and the nu-cleus. Investigating the role of IQDfunction in regulation of microtubuleorganization and plant growth and cellshape establishment is the major focusof experimental work in our lab.

Fig. 2: Quantifica-tion of microtubulepatterns, networkanalysis and appli-cation to in plantafunctional studies.

Fig. 3: IQD proteins shape plantgrowth and development. Null mu-tants of IQD genes display morpholo-gical phenotypes compared to wild-type (WT), as shown for two examplesthat cause (a) leaf epidermis cellshape defects (csd) and (b) alteredspatial control of cytokinesis (spoc).GFP-fluorescence is detected forProCSD:CSD-GFP at cortical microtu-bules and for ProSPOC:SPOC-GFP atmicrotubules of the expanding phrag-moplast.

Collaborators

Gerd Hause, Birgit Möller, JohannesStuttmann, Marcel QuintUniversity of Halle, Germany

Sabine MüllerUniversity of Tübingen, Germany

Robert SablowskiJohn Innes Centre, Norwich, UK

Page 11: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

biosynthetic enzymes is still completelymissing. We have previously identified aset of mutants exhibiting constitutive ex-pression of JA marker genes (Fig. 3), andmapped their causative mutations togenes involved in cell wall biosynthesis.As plant cell walls constitute the first lineof defense against many biotic and abi-otic stresses, we are analysing those cellwall mutants to identify signaling path-ways that lead from altered cell walls tothe initiation of hormone biosynthesis inplastids. In collaboration with our depart-ment’s analytics expert, Jörg Ziegler, weare currently establishing cell wall com-position analysis methods to reliablyquantitate cell wall constituents and linkthem to JA biology. Our efforts are aimed

at enhancing the basic knowledge of howplants perceive, transmit and integrateinformation about their environment toprompt adaptive metabolic and growth

responses. Furthermore, our research willallow a better comparison of the strate-gies used by plant and animal cells to de-code extracellular stimuli.

In unserer Arbeitsgruppe untersuchen wir, wie Zellen und Gewebe mechanischen Stress wahrnehmen und diese äußerenSignale an der Plasmamembran in intrazellulare Reaktionen umwandeln. Pflanzen müssen sich ständig an sich änderndeBedingungen in ihrer Umgebung anpassen und haben daher ausgeprägte sensorische Mechanismen entwickelt, die es

erlauben auf äußere Reize zu reagieren und diese in ihr internes Entwicklungsprogramm zu integrieren. Eine dieser pflanzli-chen Reaktionen auf Verwundung, z.B. durch Insektenfraß, ist die Produktion des Phytohormons Jasmonat (JA). Jasmonat in-duziert die Transkription von Genen, die bei der Aktivierung der Abwehrmechanismen aber auch bei Prozessen der Wachs-tumsregulation eine Rolle spielen. Unser Ziel ist es, herauszufinden, wie diese extrazellulären Stimuli die JA-Produktion akti-vieren und wie ein einziges Hormon so viele verschiedene physiologische Reaktionen in der Pflanze auslösen kann.

2120

Jasmonate SignalingHead: Debora Gasperini

Our group was established at the IPB inFebruary 2016. We investigate how cellswithin tissues perceive chemical or me-chanical stress signals at the plasmamembrane to initiate intracellular re-sponses. In order to adapt to environmen-tal fluctuations, plants have developedelaborate sensing mechanisms that re-spond to external cues and incorporatethem in basal development. One suchplant response to wounding or herbivoryis the production of the phytohormonejasmonate (JA) that induces transcrip-tional changes required to promote plantfitness (Fig. 1). Although important as-pects of JA biology are well characterized,it is still unclear how extracellular stimulitrigger and modulate JA production andhow can a single hormone induce theobserved vast array of downstream re-sponses. By using Arabidopsis thaliana asa model system and forefront genetic, im-aging and analytical approaches, we aimto identify novel signaling pathways lead-ing to JA biosynthesis and unveil the cel-lular specificities of JA responses.

Throughout the entire life cycle of higherplants, the jasmonate pathway regulatesa large heterogeneity of physiologicalevents, ranging from growth and defenseto reproductive development. For exam-ple, while activation of JA responses inthe root restricts organ growth by inhibit-

ing cell elongation and proliferation (Fig.2A-B), induced JA signaling in flowerspromotes stamen filament elongation toensure successful pollination (Fig. 2C).Nonetheless, our understanding on howa single molecule, JA-Ile, regulates suchapparently opposing events (i.e. inhibi-tion and promotion of cell elongation) re-mains limited. Part of the specificity in JAresponses may be provided by precise in-teractions between transcriptional re-pressors and transcription factors regu-lating downstream signaling cascades. Infact, our recent findings indicate thatspe cificity is achieved by discrete spa-tiotemporal expression of specific signal-ing components. In contrast to thebroadly expressed co-repressor of JA sig-naling NINJA, the TFs mediating JA-de-pendent transcriptional reprogrammingdisplay cell-specific localizations andform, in some cases, mutually exclusiveregions (Fig. 2D). These three MYC TFscan form homo- and heterodimers in vivoto regulate gene expression, howevertheir differential protein expression pat-terns indicate that specific combinationsinteract in precise cell types to modulatethe downstream transcriptional and phys -iological responses. Moreover, the pres-ence of 13 repressors of JA responses(JAZs) in Arabidopsis further suggeststhat there is large diversity in small mole-cule recognition and signaling in differ-

ent tissues and cell-types. However, thespecificities of JAZ proteins remain poor -ly understood and often considered assimple redundancy. To explore whethertissue-specific deviations in JA signalingare also mediated by spatial variations inthe expression of the 13 JAZ genes, weare performing transcriptional and trans-lational reporter analysis and are uncov-ering that many JAZ repressors exhibittissue- and cell-specific expression pat-terns. This initial analysis confirms a sce-nario in which some players of the canon-ical MYC-JAZ complex are tissue- andcell-specific, and suggests that JAZ re-pressor functions are not simply redun-dant. This molecular modularity could en-able a single bioactive hormone to spe -cifically modulate multiple JA-outputs inresponse to different environmental anddevelopmental cues.

Although key steps in JA biosynthesis andsignaling are well characterized, it is stillunclear how extracellular stimuli triggerbiosynthetic enzymes to initiate JA pro-duction. JA biosynthesis begins in plas-tids where poly-unsaturated fatty acids(chiefly a-linolenic acid) are oxygenatedby 13-LIPOXYGENASES (13-LOXs) to pro-duce jasmonic acid intermediates. How-ever, knowledge on how are damage sig-nals perceived at the plasma membraneand transmitted to plastids to activate JA

Fig. 1: Upon a stimulus such as herbivory, the bioactive conjugate of JA (JA-Ile) accumulates and induces vast transcrip-tional reprogramming as visualized by the blue staining of a JA-responsive reporter line (JAZ10p:GUS). The transcriptionalreprogramming occurs both at the site of damage (orange asterisk) and in distal, undamaged tissues to prompt a me-tabolic shift in the entire plant that mounts defense responses at the expense of growth.

Fig. 2: JA regulates a myriad of physiologi-cal responses. (A) JA treatment affects rootlength by (B) reducing cell elongation. Yel-low bars indicate cortex cell length in rootsof representative plants. (C) JA is also es-sential to promote successful pollination asJA deficient mutants (aos) result in male ste-rility (image from Caldelari et al 2011, PlantMol. Biol. 75: 25-33). Some of this specificityis achieved through discrete spatiotempo-ral expression of specific genetic compo-nents. (D) Spatial localization of the co-re-pressor NINJA and transcription factors me-diating JA-dependent responses (MYC2,MYC3 and MYC4) in the primary root meri-stem visualized by transcriptional VENUSreporters. Confocal microscopy images re-present merged overlays of the fluorescentreporter signal (yellow) and propidium io-dide (red) stained roots. Scale bar = 50 µm.

CollaboratorsAlain GoossensUniversity of Gent, Belgium

Antia Rodriguez VillalonETH Zurich, Switzerland

Richard O´ConnelINRA-AgroParisTech, Thiverval-Grignon, France

Group MembersStefan MielkePhD Student

Marlene ZimmerTechnical Assistant

Fig. 3: Mutants defective incell wall biosynthesis showactivation of JA signaling.The JA reporter JAZ10p:GUSis expressed very low in (A)WT seedlings, but is upregu-lated in specific tissues of(B-D) three different cell wallmutants.

Page 12: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

23

Hoehenwarter, W., Mönchgesang, S., Neumann,S., Majovsky, P., Abel, S. & Müller, J. Comparativeexpression profiling reveals a role of the rootapoplast in local phosphate response. BMCPlant Biol. 16, 106.

Kowalski,A. M., Gooding, M., Ferrante,A., Slafer,G. A., Orford, S., Gasperini, D. & Griffiths, S.Agro-nomic assessment of the wheat semi-dwarfinggene Rht8 in contrasting nitrogen treatmentsand water regimes. Field Crops Research 191,150-160.

López-Carrasco,A., Gago-Zachert, S., Mileti, G.,Minoia, S., Flores, R. & Delgado, S. The transcrip-tion initiation sites of eggplant latent viroidstrands map within distinct motifs in their in vi -vo RNA conformations. RNA Biology 13, 83-97.

Otto, M., Naumann, C., Brandt,W., Wasternack,C. & Hause, B. Activity regulation by heteromer-ization of Arabidopsis allene oxide cyclase familymembers. Plants 5, 3.

Quint, M., Delker, C., Franklin, K. A., Wigge, P. A.,Halliday, K. J. & van Zanten, M. Molecular and ge-netic control of plant thermomorphogenesis.Nat. Plants 2: 15190.

Strehmel, N., Mönchgesang, S., Herklotz, S., Krü -ger, S., Ziegler, J. & Scheel, D. Piriformospora in-

dica stimulates root metabolism of Arabidopsisthaliana. Int. J. Mol. Sci. 17: 1091.

Trenner, J., Poeschl, Y., Grau, J., Gogol-Döring,A.,Quint, M. & Delker, C. Auxin-induced expres-sion divergence between Arabidopsis speciesmay originate within the TIR1/AFB–AUX/IAA–ARF module J. Exp. Bot. doi:10.1093/jxb/erw457.

Wasternack, C. & Hause, B. OPDA-Ile – a newJA-Ile-independent signal? Plant Signaling & Be-havior, 11(11): e1253646.

Wasternack, C. & Song, S. Jasmonates: biosyn-thesis, metabolism, and signaling by proteins ac-tivating and repressing transciption. J. Exp. Bot.doi:10.1093/jxb/erw443.

Book Chapters 2016Hellmuth,A. & Calderón Villalobos, L. I. A. Radio -ligand binding assays for determining dissocia-tion constants of phytohormone receptors. In:Plant Proteostasis Meth. Mol. Biol. 1450 (L. M.Lois & R. Matthiesen, eds.) Springer Verlag NewYork, S. 23-34. ISBN: 978-1-4939-3757-8.

Wasternack, C. Jasmonates: synthesis, metabo-lism, signal transduction and action. In: eLS. Chi -chester Wiley ISBN 978-0-4700-1590-2.

Bachelor Thesis 2016Beimdiek, Julia: Analysis of the responses of thenatural antisense long non-coding RNA enco -ded by the Arabidopsis thaliana At4g14548 geneto abiotic stress conditions. Martin-Luther-Uni-versität Halle-Wittenberg, Fachbereich Bio-chemie, 19.08.2016

Master Theses 2016Christ, Gideon: Investigating the mechanisms ofALF4-SCFTIR1-E3 ligase interaction for auxin sig-naling. Martin-Luther-Universität Halle-Witten-berg, Fachbereich Biologie, 14.10.2016

de Vries, Tebbe: Analysis of long non-codingRNAs and their interacting proteins. Martin-Luther-Universität Halle-Wittenberg, Fachbe -reich Biologie, 26.10.2016

Doctoral Thesis 2016Ramamoorthy, Kalidoss: Identification and char-acterization of gcc8, a glucosinolate-related mu-tation of Arabidopsis thaliana. Martin-Luther-Universität Halle-Wittenberg, Fachbereich Bio-chemie, 18.03.2016

22

Publications 2015Bochnia, M., Ziegler, J., Sander, J., Uhlig,A., Schae-fer, S., Vollstedt, S., Glatter, M.,Abel, S., Recknagel,S., Schusser, G. F., Wensch-Dorendorf, M., Zeyner,A. Hypoglycin A content in blood and urine dis-criminates horses with atypical myopathy fromclinically normal horses grazing on the samepasture. PLoS ONE 10: e0136785.

Buhtz,A., Witzel, K., Strehmel, N., Ziegler, J., Abel,S. & Grosch, R. Perturbations in the primary me-tabolism of tomato and Arabidopsis thalianaplants infected with the soil-borne fungus Ver-ticillium dahliae. PLoS ONE 10: e0138242.

Dinesh, D. C., Kovermann, M., Gopalswamy, M.,Hellmuth,A., Calderón Villalobos, L. I. A., Lilie, H.,Balbach, J. & Abel, S. Solution structure of thePsIAA4 oligomerization domain reveals interac-tion modes for transcription factors in early au -xin response PNAS 112, 6230-6235.

Dinesh, D. C., Calderón Villalobos, L. I. A. & Abel,S. Structural biology of nuclear auxin action.Trends Plant Sci. 21(2016) 302-316.

Drost, H.-G., Gabel,A., Grosse, I. & Quint, M. Ev-idence for active maintenance of phylotranscrip-tomic hourglass patterns in animal and plantembryogenesis. Mol. Biol. Evol. 32, 1221-1231.

Floková, K., Feussner, K., Herrfurth, C., Miersch,O., Mik, V., Tarkowská, D., Strnad, M., Feussner, I.,Wasternack, C. & Novák, O. A previously unde-scribed jasmonate compound in flowering Ara-bidopsis thaliana – The identification of cis-(+)-OPDA-Ile. Phytochemistry 122 (2016) 230-237.

Gago-Zachert, S. Viroids, infectious long non-coding RNAs with autonomous replication.Virus Res. 212 (2016) 12-24.

Guseman, J. M., Hellmuth, A., Lanctot, A., Feld-man, T. P., Moss, B. L., Klavins, E., Calderón Villalo-bos, L. I. A. & Nemhauser, J.L. Auxin-induceddegradation dynamics set the pace for lateralroot development. Development 142, 1-5.

Liu, S., Kracher, B., Ziegler, J., Birkenbihl, R. P. &Somssich, I. E. Negative regulation of ABA sig-naling by WRKY33 is critical for Arabidopsis im-munity towards Botrytis cinerea 2100. eLife,e07295.

Moss, B. L., Mao, H., Guseman, J. M., Hinds, T. R.,Hellmuth, A., Kovenock, M., Noorassa, A., Lanc-tot, A., Calderón Villalobos, L. I. A., Zheng, N. &Nemhauser, J. Rate motifs tune Aux/IAA degra-dation dynamics. Plant Physiol. 169, 803-813.

Müller, J., Toev, T., Heisters, M., Teller, J., Moore, K.L., Hause, G., Dinesh, D. C., Bürstenbinder, K. & Abel, S. Iron-dependent callose deposition ad-

justs root meristem maintenance to phosphateavailability. Developmental Cell 33, 216–230.

Raschke, A., Ibañez, C., Ullrich, K., Anwer, M., Be-c ker, S., Glöckner,A., Trenner, J., Denk, K., Saal, B.,Sun, X., Ni, M., Davis, S., Delker, C. & Quint, M.Natural variants of ELF3 affect thermomorpho-genesis by transcriptionally modulating PIF4-de-pendent auxin response genes. BMC Plant Biol.15: 197.

Ryan, P. T., Ó’Maoiléidigh, D. S., Drost, H.-G.,Kwaśniewska, D., Gabel, A., Grosse, I., Graciet,E., Quint, M. & Wellmer, F. Patterns of gene ex-pression during Arabidopsis flower develop-ment from the time of initiation to maturation.BMC Genomics 16: 488.

Wasternack, C. How jasmonates earned theirlaurels: past and present. J. Plant Growth Regul.34, 761-794.

Wasternack, C. Strnad, M. Jasmonate signaling inplant stress responses and development – activeand inactive compounds. New Biotchnol. 33B(2016) 604-613.

Ziegler, J., Schmidt, S., Chutia, R., Müller, J., Bött -cher, C., Strehmel, N., Scheel, D., Abel, S. Non-targeted profiling of semi-polar metabolites inArabidopsis root exudates uncovers a role forcoumarin secretion and lignification during thelocal response to phosphate limitation. J. Exp.Bot. 67 (2016) 1421-1432.

Master Theses 2015Fritz, Michael André: Analysis of the role of thenatural antisense long non-coding RNAs com-plementary to UGT73C6 in gene expressionregulation of the UGT73C subfamily. Martin-Luther-Universität Halle-Wittenberg, Fachbe -reich Biochemie, 17.06.2015

Khatri, Anshu: Interaction studies and structurefunction relationship of IQ67 domain proteins.Martin-Luther-Universität Halle-Wittenberg,Fachbereich Pharmazeutische Biotechnologie,30.01.2015

Plötner, Romina: Function studies and expres-sion analysis of IQ67-DOMAIN genes in Ara-bidopsis thaliana. Martin-Luther-Universität Hal -le-Wittenberg, Fachbereich Biologie, 21.10.2015

Pogoda, Maria: Analysis of the role of the naturalantisense long non-coding RNA encoded by theAt4g14548 gene from Arabidopsis thaliana. Mar-tin-Luther-Universität Halle-Wittenberg, Fach-bereich Biochemie, 18.09.2015

Schubert, Melvin: Optimization of an RNA‐cen-tric method for the detection of protein inter-actors of plant lncRNAs. Martin-Luther-Univer-sität Halle-Wittenberg, Fachbereich Biochemie,07.10.2015

Schuppe, Mathias: Initial steps of identification ofplant long non-coding RNAs interacting pro-teins. Martin-Luther-Universität Halle-Witten-berg, Fachbereich Biochemie, 01.04.2015

Doctoral Theses 2015Ahmed, Romel: Molecular identification andcharacterization of the PHOSPHATE DEFI-CIENCY RESPONSE related genes, PRT1 (ATP-PHOSPHORIBOSYL TRANSFER ASE 1) andALMT1 (ALUMINIUM-ACTIVA TED MA LATETRANSPORTER 1) Martin-Lu t her-UniversitätHalle-Wittenberg, Fachbereich Biochemie,28.09.2015

Dhurvas Chandrasekaran, Dinesh: High-resolu-tion NMR structure and functional studies ofthe oligomerization domain of PsIAA4, an auxin-inducible transcriptional repressor from pea (Pi -sum sativum) Martin-Luther-Universität Hal le-Wittenberg, Fachbereich Biochemie, 21.12.2015

Publications 2016Arnold, M. D., Gruber, C., Floková, K., Miersch,O., Strnad, M., Novák, O., Wasternack, C. & Hau -se, B. The recently identified isoleucine conjugateof cis-12-Oxo-Phytodienoic acid is partially ac-tive in cis-12-Oxo-Phytodienoic acid-specificgene expression of Arabidopsis thaliana. PLoSONE, 11(9): e0162829.

Bochnia, M., Scheidemann, W., Ziegler, J., Sander,J., Vollstedt, S., Glatter, M., Janzen, N., Terhardt, M.& Zeyner,A. Predictive value of hypoglycin A andmethylencyclopropylacetic acid conjugates in ahorse with atypical myopathy in comparison toits cograzing partners. Equine Veterinary Educ.doi:10.1111/eve.12596.

Drost, H.-G., Bellstädt, J., Ó'Maoiléidigh, D. S., Sil -va, A. T., Gabel, A., Weinholdt, C., Ryan, P. T., Dek -kers, B. J. W., Bentsink, L., Hilhorst, H. W. M., Lig-terink, W., Wellmer, F., Grosse, I. & Quint, M. Post-embryonic hourglass patterns mark ontogenetictransitions in plant development. Mol. Biol. Evol.33, 1158-1163.

Gasperini, D., Acosta, I. F. & Farmer, E. E. Cotyle-don wounding of Arabidopsis seedlings. bio-pro-tocol 6(2), e1712. doi:10.21769/BioProtoc.1712.

Publications and other Activities

of the Department Molecular Signal Processing

Page 13: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

Our research focuses on the identification, understand-ing and production of small molecules and the studyof their effects within biological systems. This in-

cludes the application of chemical compounds to probe andmodify biological systems. Three main lines of research are fol-lowed to achieve this:

(1.) We try to learn from nature's chemistry through both elucida-tion of natural structures as well as understanding basic princi-ples of nature's application of chemistry in a biological context.

(2.) We use synthetic chemistry andbiology to provide access to naturalproducts and derivatives for applica-tions in biology, medicine, nutritionand agrochemistry.

(3.) We try to increase our understand-ing of molecular interaction processesand develop new tools, probes and re -cognition compounds to study these.

The analysis, isolation, characteriza-tion, and modification of secondarymetabolites and enzymes from plantsand fungi is the basis of our efforts tounderstand the properties of thesecompounds or to disclose their func-tion in nature, and finally to exploretheir use in chemistry and biology.The development of analytical tools, e.g. for metabolic profiling,and their computational analysis often is at the start of a project.Applications are driven by the discovered properties of chemi-cal constituents and include such diverse areas as agrochemi-cals, lead structures for medicinal chemistry or novel food in-gredients, biological research tools, or the utilization of en-zymes as biocatalysts.

In the past two years, we considerably expanded our metabolicprofiling to use it for biodiversity and bioactives screening in-cluding the development of advanced NMR methods. Progressin this area was boosted by large funding programs such as Bio-health (BMBF Biodiversity & Health Indonesia) or Hypericumagainst Alzheimerand PhytAD as basic science (Leibniz-Wettbe-werb) and applied project, respectively. The biocatalysis activi-ties were continued on a high level and the new project Dulces-terol was started with partners from the science campus HallePlant-based Bioeconomy (www.sciencecampus-halle.de). Most

important is the start of Junior Professor Martin Weissenborn,who took over the lead of our project part in the Leibniz Re-search Cluster Bio/synthetic multifunctional micro productionunits (www.leibniz-research-cluster.de)

The focus of our search for and synthesis of biologically activecompounds is on phytoeffectors, food-flavor-fragrance andanti biotic compounds, in the latter case especially on antifun-gals, antibacterials and nematocides. Here we participate in thelarge consortia InfectControl2020: DrugBioTune and Biodiver-

sity & Health (see above), but alsohave bilateral projects e.g. withChile and African Countries. Our re-cently started intensification intoCNS-active compounds, which isdri ven by the neurological expertiseconcentra ted in Magdeburg (OvGU,LIN, DZNE), and a collaboration withthe Hoch schule Anhalt furnishedfirst results and patents, and an in-novation prize of the state of Sax-ony-Anhalt. Synthe tically we pro-ducted new phytoeffectors againstdrought stress. Our expertise inmulticomponent reactions was di-rected toward the control of cycliza-tion and secondary structures inpeptides. Such a control is impor-tant to engrave the right conforma-tion and thus binding properties

into functional peptides, which are important in all types of ac-tivity and regulation in cells.

The scientific work of the past biannual period led to over 80articles published. The cooperation with Indonesia, Colombiaand Chile was intensified, and an African project was initiated.The department (co-)organized several meetings and in addi-tion to the above mentioned consortia it is actively involved inthe Leibniz Research Clusters Bioactive Compounds and Bio -technology (Speaker) and Biodiversity, in the Agrochemical In-stitute Piesteritz, and in the German Biodiversity Centre iDiv. Ofspecial importance is our participation in the metabolomics,proteomics and IT competence platforms of the institute andthe formation of a screening platform and bioactives cloud.

In the following, the scientific project groups of the departmentwill highlight some of the most relevant results and develop-ments.

25

PhytoeffectorsProject Leaders: Ludger Wessjohann & Andrej Frolov

25

Der Fokus unserer Arbeiten liegt auf der Entdeckung, Ent -wicklung und Herstellung niedermolekularer Wirkstoffe,begleitet von einem Verständnis ihrer Bedeutung und

ihrer Wirkung auf biologische Systeme. Dabei folgen wir dreiLinien:

(1.) Lernen von der Natur: Wir versuchen sowohl die strukturellenAspekte als auch die Prinzipien der Entstehung und Bedeutungnatürlicher Wirkstoffe zu ermitteln und zu verstehen.

(2.) Effiziente Herstellung: Die chemische und zunehmend diebiotechnologische Synthese von Naturstoffen und Derivaten er-möglicht die Aufklärung von Struktur-Wirkungsbeziehungen undeine Nutzung der Substanzen in Biologie, Medizin, Ernährung undAgrochemie.

(3.) Interaktionen verstehen: Das Studium von (molekularen)Wechselwirkungsprozessen wird ermöglicht durch die Entwick-lung und Anwendung selektiver Sonden und Binder, analytischer,biochemischer und molekularbiologischer Verfahren sowie theo -retischer Methoden.

Die Analyse, Isolierung, Struktur -aufklärung und Modifizierung vonNaturstoffen des Sekundär stoff -wechsels von Pflanzen und Pilzenist die Grundlage, um die Bedeu-tung dieser Substanzen in der Na -tur zu erkennen und eine mög licheAnwendung zu er schlie ßen. DieVerwertung der gewonnenen Er -kenntnisse rich tet sich nach den er-mittelten Ei genschaften der Sub-stanzen und kann sich auf unter -schied liche Gebiete erstrecken, indenen Wirkstoffe zum Einsatz kom-men, wie Agrochemikalien, Leit-strukturen für pharmazeutischePro dukte, Zusatz stoffe der Nah -rungs mittelindustrie, oder auch fürneue chemische Werkzeuge in derErforschung biologischer Fra ge stel -lungen. Die von uns ent wickeltenVerfahren sind oft ge nereller Naturund vielfältig nutz bar, z.B. neueReagenzien, Mehr komponen ten -pro zes se, Sonden oder Bio ka ta ly sa -toren.

2015/2016 wurden vor allem große Projekte in der Biodiversitäts-und Antibiotikaforschung begonnen, einige mit Konsortialleitungdurch die Abteilung. Als neuer Schwerpunkt entwickeltet sichdas Thema ZNS-aktive Substanzen, speziell Phytopharmazeutikagegen Alz heimer-Demenz aber auch Substanzen für eine ver -besserte Lernfähigkeit oder zur Geschmacksmodulation. Tech-nologisch wurde dies vor allem durch eine Intensivierung derMetabolic Profiling- und Screening-Aktivitäten befeuert. Hier lagder Schwerpunkt auf antifungischen, gram-negativ antibakte -riellen und nematoziden Substanzen.

Die Abteilung Natur- und Wirkstoffchemie konnte über 80 wis-senschaftliche Artikel publizieren, darunter etliche in den bestenJournalen der Chemie. Neben der Organisation kleinerer Tagun-gen wirkt die Abteilung mit bei den Leibniz Forschungsverbün-den Wirkstoffe und Biotechnologie (Initiator/Sprecher) und Biodi-versität, beim Agrochemischen Institut Piesteritz und am Deut -schen Biodiversitätszentrum iDiv der DFG, bei den BMBF-Konsor-tien Biodiversity & Health, DrugBioTune/InfectControl2020, sowiedem Leibniz-Verbund Hypericum gegen Alzheimer und dem Lan-desverbund Autonomie im Alter.

Department of Bioorganic ChemistryHead: Professor Ludger WessjohannSecretary: Ines Stein

Abteilung Natur- und WirkstoffchemieLeiter: Professor Ludger WessjohannSekretariat: Ines Stein

24

Page 14: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

2726 27

Modern metabolomics approaches thecomprehensive qualitative and quantita-tive analysis of ideally all metabolites inplant or fungal extracts. We were the firstto intensely use trans-species metabolicprofiling and want to extend this to studyphylogentic relationships, identify thebest sources for new metabolites, andidentify bioactives in their little disturbedcomplex matrix. Any such identificationof relevant metabolites is followed by theidentification and structural elucidationof the relevant natural products. To thiseffect, a variety of state-of-the art analyt-ical methods including mass spectrome-try, NMR spectroscopy, and optical meth-ods are applied and provided also forpartners within IPB and internationally.

Metabolite fingerprinting and profilingmethods were used to get a broader in-sight into the chemical composition ofdifferent plant tissues of various generaincluding Balanites, Bauhinia, Passiflora,Phoenix, and Senna. Fruits of Balanitesaegyptiaca (L.) Delile (Zygophyllaceae),known as desert date, have been used fora long time in folk medicine, e.g. in Egyptand Sudan. Our 1H NMR based investiga-tion of desert date fruits crude extractsrevealed trigonelline (3-carboxy- 1-meth ylpyridinium) as the relevant bio active andtaste imparting component. Tri gonellinerecently gained increased pharmacolog-ical interest because of its anti-hypergly -cemic effect. Applying quantitative NMR

(qNMR), we could show balanites fruitpeal and pulp to contain around 8 and 13mg trigonelline/g dry weight, respective -ly, comparable to its content in Trigo nellafoenumgraecum L., the previous mainnatural resource of this substance. Inter-estingly, the compound does not show inMS profiles.

A comparative metabolite profiling andfingerprinting of leave extracts of 17 Pas-siflora species were performed using amultiplex approach of UPLC-MS and NMRdata analyzed by chemometric tools. Incase of Senna (Senna alexandrina Mill),leaves and pods from geographically dif-ferent sources were distinguished fromeach other via 1H-NMR and UPLC-MS ana -lysis. Additionally, a selection of six so faruninvestigated Senna species was ana-lyzed by UPLC-MS. More than 100 me ta -bolites could be simultaneously identi-fied and quantified.

In collaboration with the Leibniz Centreof Tropical Marine Research Bremen andthe Pharmacognosy Department of theCairo University, the metabolite compo-sition of the soft corals was started withthe genus Sarcophyton. UPLC−MS wasfound to be more effective than 1D 1HNMR for a compound based classifica-tion, however, two-dimensional 1H-13Clong-range NMR fingerprints show signif-icant differences in the cembrane typediterpenes as well as cyclopropane con-

taining sterol patterns of Sarcophytoncoral species.

Analysis of the plant carbonyl metabolomeOxidative stress developing in response toenvironmental and biotic factors leads toenhanced oxidation of cellular lipids andcarbohydrates. This results in the forma-tion of so-called reactive carbonyl com-pounds (RCCs), known to be potent agentsof protein and nucleic acid modification.We addressed the carbonyl me tabolomeof Arabidopsis thaliana by UHPLC-ESI-LTQ-Orbitrap-MS. For this, a-dicarbonyl andhydroxycarbonyls products were deriva-tized with 7-(diethylamino)-coumarin-3-carbo-hydrazide (CHH), which provideshigh ionization efficiency and informativefragmentation patterns (including a diag-nostic ion at m/z 244). Different classes ofcarbonyl compounds could be character-ized by tandem mass spectrometry (MSn)and found up-regulated in A. thalianaplants subjected to experimental drought.

Patterns of modified amino acids in plantprotein hydrolyzatesDuring oxidative processes accompany-ing plant stress and ageing, plant proteinsare prospectively subjected to intensivenon-enzymatic post-translational modifi-cations. We addressed this question in age-ing pea (Pisum sativum) seeds. There by,complete profiles of the amino acid ad -ducts of lipid and carbohydrate oxidationproducts were obtained.

26

Metabolomics & SpectroscopyProject Leaders: Andrea Porzel, Jürgen Schmidt & Andrej Frolov

Anja EhrlichTechnical Assistant

Mohamed FaragGuest Scientist

Alexander FeinerPhD Student

Gudrun HahnTechnical Assistant

Duc Viet NguyenMaster Student

Clarice Noleto DiasPhD Student

Rica PatzschkeTechnical Assistant

Alena SobolevaPhD Student

Maria VikhninaPhD Student

Group Members Collaborators & Companies

Tatiana BilovaUniversity of St. Petersburg, Russia

Birgit DrägerUniversity of Halle, Germany

Mohamed FaragCairo University, Egypt

Dang Ngoc QuangHanoi National University of Education, Vietnam

Hildegard WestphalLeibniz Centre for Tropical Marine Research, Bremen, Germany

Hopsteiner Ltd., USA

The group is interested in the investigationof neuroactive natural products derivedfrom plants and fungi with special focuson substances taking effect in the centralnervous system. Our aim is to identify rele -vant neuroactive constituents by the com-bination of bioactivity guided isolationand metabolomic approaches that canimprove neurodegenerative diseases likeAlzheimer's dementia, alter learning abili -ty, or taste perception.

Thus, the ongoing screening of microal-gae finally led to the identification of sul-folipids as potent glutaminyl cyclase inhi -bitors with potential against Alzheimer’sdisease. The concept resulted in a patentin cooperation with the Anhalt Universityof Applied Sciences and the FraunhoferIZI. Within the frame of a project support -ed by the Leibniz association we now fo-cus on the identification of Hypericummetabolites with potential anti-Alzheimereffects. Thus, special emphasis was placedon the phytochemical characterization ofHypericum species (St. John’s worts) whichcomprise more than 450 species. The na-tive H. perforatum L. (Perforate St. John’swort) is well-known for its applicationagainst mild to moderate depressions inGermany and was medicinal plant of theyear 2015. The metabolomic analysis, cha -racterization, isolation and structure elu-

cidation of secondary meta bolites fromHypericum species resulted in the discov-ery of several new prenylated phenyl po -lyketides and acylphloro glu c i nols with di-verse biological activities (Fig.1). The phy-tochemical investigations were also ex-tended to related spe cies from the samefamily like Psorospermum densi punctatumEngl. The final structure elucidation anddetermination of absolute configurations

were supported by synthesis and circulardichroism calculations.

In cooperation with the Leibniz Institutefor Neurobiology in Magdeburg we con-tinued the characterization of metabolitesfrom Rhodiola rosea, which might be re-sponsible for the cognitive enhancementinduced by this adaptogenic species.

Collaborators

Helmut Bäumlein, Paride RizzoLeibniz Institute of Plant Genetics and Crop Plant Re-search (IPK), Gatersleben, Germany

Ludger BeerhuesTU Braunschweig, Germany

Hans-Ulrich DemuthFraunhofer Institut of Cell Therapy and Immunology (IZI),Halle, Germany

Bertram Gerber, Birgit MichelsLeibniz Institut for Neurobiology, Magdeburg, Germany

Carola Griehl Anhalt University of Applied Sciences, Köthen, Germany

Markus Krohn, Helle WangensteenUniversity of Oslo, Norway

Paolo La CollaUniversity of Cagliari, Monserrato, Italy

Antoine Honoré LonfouoUniversity of Dschang, Cameroon

Timothy SharbelUniversity of Saskatchewan, GIFS, Canada

Stephen WrightMiddle Tennessee State University, USA

CompaniesSymrise AG, Holzminden, Germany

Neurologically Active Natural ProductsProject Leaders: Katrin Franke & Ludger Wessjohann

Stephanie Hielscher-MichaelPhD Student

Luisa MöhlePostdoctoral Scientist

Kristin PaarmanPostdoctoral Scientist

Jens PahnkeGuest Professor

Silke PienknyPostdoctoral Scientist

Pauline StarkPhD Student

Serge Alain Fobofou TanemossuPhD Student

Boris TolkachevGuest Researcher

Group Members

Fig. 1: Examples of new compounds from Cameroonian Hypericum species.

Page 15: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

Fungi are an exceptional source of biolog-ically active natural products, which hadand possibly will have a significant influ-ence on the development of pharmaceu-tical and agricultural products. Less than10% of the world’s estimated number offungal species are described by now. Thusthere lies an enormous potential for newleads for crop protectants in chemicallyunexplored fungi. Fungi on one side arereliable producers of antibiotics, on theother side they cause some 85% of allpathogen-borne plant diseases leading toenormous losses in crop production. Fun-gal infections presently destroy at least125 million tons per year of the top fivefood crops (rice, wheat, maize, potatoesand soybeans). Our investigations con-centrate on the detection of new antifun-gal agents against the ascomycetous phy -topatho gens Botrytis cinerea Pers., caus-ing grey mold on strawberries and winegrapes, Septoria tritici Desm., the septorialeaf blotch pathogen on wheat, and Cla-dosporium cucumerinum Ellis & Arthur aswell as the oomy cete Phytophthora infes-tans (Mont.) de Bary, the causal agent ofthe late blight disease on potato and to -mato.

During our ongoing research on second-ary metabolites from fruiting bodies of thebasidiomycetous genus Hygrophorus, weisolated from Hygrophorus abieticola sev-eral new cyclopentenone derivatives ofthe hygrophorone series as well as the firstnaturally occurring alkyl cyclohexanonede rivatives named pseudohygropho rones.

The natural compounds exhibit a remark-able activity against the above mentionedplant pathogenic fungi. The hitherto un-known biosynthesis of hygrophorone B12

in fruiting bodies of Hygrophorus specieswas studied exemplary in H. abieticola bylabelling experiments in the field using 13C

labelled precursors. Based on the results,it is suggested that structurally related 4-oxo fatty acids and cyclopentenediones(chrysotriones), which are also producedby Hygrophorus spp., might be involved inthe natural formation of hygro pho rones.

Eileen BettePhD Student

Nicole HüneckeTechnical Assistant

Alexander OttoPhD Student

Haider SultaniPhD Student

Thi Hai Yen LamPhD Student, Scholarship

Group MembersAndreas BresinskyUniversity of Regensburg, Germany

Ermias Dagne, Dawit AbateAddis Ababa University, Ethiopia

Birgit Dräger, Reinhard NeubertUniversity of Halle, Germany

Ulrike LindequistUniversity of Greifswald, Germany

Dang Ngoc QuangUniversity of Education, Hanoi, Vietnam

Götz Palfner, Angelica Casanova-KatnyUniversidad de Concepción, Chile

Peter SpitellerUniversity of Bremen, Germany

Marc StadlerHelmholtz Center for Infection Re-search, Braunschweig, Germany

Wolfgang SteglichUniversity of Munich (LMU), Germany

Mika TarkkaHelmholtz Center for Environmental Re-search, Halle, Germany

CompanyBASF SE, Ludwigshafen, Germany

Collaborators

AntiinfectivesProject Leaders: Ludger Wessjohann & Katrin Franke

2928

Natural FungicidesProject Leaders: Norbert Arnold & Bernhard Westermann

Proposed biosynthesis of hygrophorone B12

Plants, fungi or microorganisms possessan evolutionary adaption to defend them-selves against other micro organisms, of-ten in form of antibiotic secondary meta -bolites. These represent a va luable sourcefor new lead structures so that the majorityof modern antibiotics is based on them.Because of resistance development, thereis a permanent need for new anti-infectivecompounds in both nature and clinic. Ourgroup aims at the direct identification andisolation of antibiotic natural products fromorganisms as well as on the synthetic andenzymatic modification and diversifica-tion of antiinfective molecules with a spe-cial focus on (gram-negative) antibacterialagents.

Our research is based on the developmentand performance of biological assays suit-able for the screening of crude naturalproduct extracts, which often contain col-ored or reactive compounds. Therefore afluorescence-based bioassay using Bacil-lus subtilis as test organism was devel-oped. Further antimicrobial assays wereadapted to the requirements of crude ex-tracts, e.g. a luminescence based testagainst the gram-negative bacterium Alli -vibrio fischeri and an anthelmintic test sys-tem using the nematode Caenorhabditiselegans (Fig.1).

A BMBF funded project was started in co-operation with the University of Leipzigand the Indonesian Institute of Sciencesand local Universities to identify and char-acterize new substances with anti-infec-tive effects in Indonesian plants and fungi

(Fig.2). Indonesia displays a very high le -vel of biodiversity which is expected to bereflected in the occurrence of natural prod -ucts. Furthermore, we contributed suc-cessfully to the characterization of antimi-crobial constituents from African medici-nal plants including Helichrysum species,Zanthoxylum lemairei (De Wild.) P.G.Water-man, Erica mannii (Hook.f.) Beentje and

Hydnora abyssinicaA.Br. Within the Drug-BioTune-group of theInfectControl 2020 consortium we starteda combined evolutionary and medicinalchemistry approach to modify establishedantibiotics for better activity against gram-negative and resistant bacteria using bio-catalytic and chemical methods.

Khaled AlkassemPhD Student

Anne-Katrin BlumePhD Student

Tuvchinjargal BudragchaaPostdoctoral Scientist

Anke DettmerTechnical Assistant

Mona FechtelDiploma Student

Annegret LaubPhD Student

Danilo MeyerPostdoctoral Scientist

Ari S. NugrahaPostdoctoral Scientist (DAAD)

Serge A. Fobofou TanemossuPostdoctoral Scientist

Group Members CollaboratorsDrugBio Tune Consortiumwww.infectcontrol.de/de/drugbiotune.html

Alexandra Muellner-Riehl, Jan SchnitzlerUniversity of Leipzig, Germany

Patrick Mutiso ChaloUniversity of Nairobi, Kenya

Atik RetnowatiIndonesian Institute of Sciences (Lipi), Indonesia

Tran Van SungAcademy of Science and Technology, Hanoi, Vietnam

Kustiariyah TarmanBogor Agricultural University, Indonesia

Johannes WohlrabUniversity of Halle, Germany

CompaniesSkinomics GmbH, Halle, Germany

Ontochem GmbH, Halle, Germany

Fig. 1: Test organisms for biological assays.

Fig. 2: The Biohealth consortium wants to identify anti-infective natural products fromIndonesian plants.

Page 16: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

PhenylpropanoidsHeads: Danilo Meyer, Martin Dippe & Ludger Wessjohann

31

Prenylating enzymes and terpene syn-thases are responsible for the biotransfor-mation of naturally occurring isoprenoidsand their diphosphates, and lead to a ple -thora of highly diverse terpenoid prod-ucts. Especially the group of all-a-helicalprenyl transferases, like e.g. ubiA, has se-quence homologies <20%, possesses nounequivocal consensus sequence, andusually is membrane bound. A similar dif-ficulty arises with the all-cis-polymeraseslike rubber synthases which require addi-tionally helper proteins. Therefore, newways to elucidate the structure and func-tion of these enzymes are required. Wedeveloped a combinatorial synthesis toproduce an array of natural and syntheticsubstrates which allow to study mecha-nisms and promiscuity aspects of theseenzymes, and which give quantitativemeasurements of conversion to quantifye.g. inhibitor effects. With these tools, incombination with computational meth-ods, suggested protein structures andmechanisms can be probed. This resultedin the elucidation of several intermediatesof higher terpenoids, as well as a discov-ery of new inhibitors of aromatic prenyl-transferases, albeit yet with low activity inthe higher µM range only.

Another project concentrates on the en-zymatic modification of isoprenoids withan emphasis on sterols which are in the fo-cus of the food and pharmaceutical indus-try as basis of flavor modifying substan -ces, for improved delivery and adsorption(cf. bile acids) of nutraceuticals (phyto-sterols) and pharmaceuticals, or as biode-tergents. A potential, cost-saving resourceof phytosterols are tall oils, a wood by -product that accumulates during the pa-

per production process. Tall oils of localpaper factories will be analyzed and pro -cessed with Fraunhofer CBP (supervisor,PI Gerd Unkelbach). For purified sterols,we started to develop enzymatic accessto new polar intermediates by hydroxyla-tions and glycosylations which render hy-drophylized sterols with new properties,

predominantly aiming for utilization in thefood industry. In contrast to most tradi-tional chemical processes, the enzymatictransformations allow the regio- andstereo selective hydroxylation of little ornon-activated CH groups in the sterolsand other isoprenoids.

30

IsoprenoidsProject Leaders: Ludger Wessjohann & Wolfgang Brandt

Steve LudwigPhD Student

Danilo Meyer (part time)Postdoctoral Scientist

Amina MsongaPhD Student

Pascal Pecher (part time)Postdoctoral Scientist

Pia SchönePhD Student

Felix SchreckenbachPhD Student

Group Members CollaboratorsOliver KayserTechnical University Dortmund, Germany

Axel Schmidt, Wilhelm BolandMax Planck Institute for Chemical Ecology, Jena,Germany

Lukáš SpíchalPalacký University & Institute of ExperimentalBotany, Olomouc, Czech Republic

Milton StubbsUniversity of Halle, Germany

Gerd UnkelbachFraunhofer Center for Chemical-Biotechnologi-cal Processes CBP, Leuna, Germany

CompaniesSymrise AG, Holzminden, GermanyLanxess AG, Köln, Germany

Fig. 1: HPL chromatogram of products from the heterologeously expressed enzyme unde-caprenyldiphosphatesynthase (UPPS) from Mycobacterium tuberculosis with the fluores-cent starter Mant-O-GPP and IPP.

Fig. 2: Production of phytosterols from tall oil by use of liquid-/liquid-extraction and sub-sequent crystallization to purity > 96% (courtesy of Fraunhofer CBP, Leuna)

Phenylpropanoids are the basis of ma nybioactive plant compounds, ranging fromsimple cinnamic acid to lignanes, fla von -oids and other polyphenolics. The re-search group develops new biocatal yticroutes in silico, in vitro and in vivo for theproduction of phenylpropanoids and de-rived plant polyphenols (plant polyketides).The emphasis is on such biotransforma-tion cascades that allow sufficient produc-tivity and stability to be useful for produc-tion. Tools of classical biocatalysis, mod-ern synthetic biology and chemistry arebrought together to provide efficient ac-cess to the plant phenolics but also to ar-tificial derivatives to be biologically pro-duced. Enzymes are modified, primarilyby rational re-design, to produce variantsof suitable properties. Subsequent to theirproduction in heterologous hosts, the pro-teins are character ised e.g. for substrate/product specificity, acceptance of non-natural substrates, and for use in cascad -ed reactions or designed pathways. Sev-eral enzymes and methods for the regio-selective hydroxylation of plant aromaticswere developed. Such hydroxylations are

difficult or impossible to perform by clas-sical chemical methods and opened thedoor to access the expensive bitter mask-ing compound homoeriodictyol (HED)from cheap naringenin, which is availablefrom citrus waste. This resulted in twopatents with the F&F industry. Eventually,we want to construct a combinatorialplant phenolics biosynthesis machine.

The Leibniz Research Cluster Bio/synthe -tic multifunctional micro production units- novel ways of compound developmentconsists of five independent junior re-search groups in five different Leibniz In-stitutes. At the IPB it was iniatially led byProf. Dr. Ludger Wessjohann and Dr. Da -nilo Meyer/Dr. Martin Dippe, until even-tually Junior Professor Martin Weissen -born took over in autumn 2016. The BMBFjoint project (Verbundprojekt) is aiming todevelop cell-free biosyntheses cascadesfor bioactive compounds and their deriv-atives in microreactors.

With the entry of Junior Professor Weis-senborn a new line will be started aiming

to develop complete novel enzyme reac-tions employing non-native diazo-com-pounds. This enzymatic reaction will beused to perform C-C-bond forming reac-tions of the Wittig-type to produce scaf-folds for secondary metabolites and non-natural derivatives. This will eventually besplit into an independent research unit ofJunior Professor Weissenborn.

Anne-Katrin BauerPhD Student

Martin DippePostdoctoral Scientist

Susann Herrmann, neé Riemer-KöhlerPhD Student

Danilo MeyerPostdoctoral Scientist

Benjamin WeigelPhD Student

Group Members

Markus PietzschUniversity of Halle, Germany

Consortium members of the Leibniz research cluster, GemanySymrise AG, Holzminden, GermanyEntreChem SL, Oviedo, Spain

Collaborators

A two-step enzymatic re-action transforms cheapnaringenin into homoerio-dictyol - a plant productused as sweet taste en-hancer and bitter maskerin low-calory foods andbeverages.

Page 17: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

Drought represents the main reason forcrop losses worldwide. Enhancement ofplant tolerance to this environmental fac-tor thus is a primary aim of plant researchand this project group. In general, droughtis accompanied with metabolic alterationsand adjustments, i.e. accumulation ofdrought-protective proteins and metabo-lites, in parallel to development of (oxida-tive) stress. Drought tolerance is usuallyunderstood as a plant physiological statethat allows to sustain crop productivity de-spite unfavorable osmotic conditions. Thiscan be achieved by application of drought-protective agrochemicals, known as phy-toeffectors typically representing inhi bi -tors of drought-responsive enzymes, thekey-players of the plant stress response.Thus, the main aims of the project groupare:- development of adequate models for the

characterization of plant stress responses- characterization of delirious aspects of

drought stress response affecting plant

productivity- identification of prospective targets for

the application of phytoeffectors - discovery and development of new

phytoeffectors

Models of drought stress & inhibitorscreeningTo address potential effect of syntheticphytoeffectors, we improved two droughtmodels developed earlier:(1.) The Lemna minor test system (Geisslerand Wessjohann, 2011) is currently em-ployed on a routine basis. After culturingin an aqueous medium (Fig. 1a), individualplants are transferred to 24-well plates(Fig. 1b) with the test substances dilutedwith the growth medium to 10 µM andlower concentration. The drought stress isapplied for 48 h by the addition of PEG6000 as water binder, and the total leafarea is assessed 24 h later with a Lemna -Tec Scanalyzer (Fig. 1c). 2015-2016 some200 substances representing ten pre-

evaluated structure classes were synthe-sized and analyzed in detail. This lead tothe discovery of a number of drought tol-erance enhancing compounds, of whichthe top compounds will be developedfurther.

(2.) The Arabidopsis thaliana test system(Frolov et al, 2017) was established to es-pecially study the influence on the plantproteome. It relies on the agar-based PEGinfusion model, earlier proposed for seed -lings by Verslues et al (2006). This ap-proach was extended to mature plants,usually suffering in fields from moderatetransient drought. A complete characteri-zation was performed with a pattern ofbiochemical, transcriptional and physio-logical markers (Paudel et al, 2016). Theplants are grown for six weeks in aqueousmedium prior to the stress application bytransfer to agar, saturated with PEG8000solution during three days.

Characterization of plant response todrought stress and the plant glycated pro-teomeBy means of the established A. thalianadrought model, drought related changesin plant proteome and metabolome werestudied. Thereby, potential targets for thephytoeffector approach were selected.Further, we addressed the potential ef-fects of drought on the quality of plantproteins. Indeed, simultaneous drought-related increases in sugar contents andlevels of reactive oxygen species mightenhance glycation in plants. This glycationis different from the one known in mam-mals due to the prevalence of differentsugars and reactive species. In general,the high susceptibility of plant proteins toglycation was proved. As expected, glyca-tion increased under drought conditions.

Group MembersRobert BergerPhD Student

Anna DidioMaster Student

Evelyn FunkeMaster Student

Peter-Paul HeymPhD Student

Ahyoung KimMaster Student

Silke PienknyPostdoctoral Scientist

Anne Steimecke PhD Student

CollaboratorsTatiana Bilova, Sergei MedvedevUniversity of St. Petersburg, Russia

Klaus Humbeck, Carsten Milkowski, Edgar Peiter, Andrea Sinz University of Halle, Germany

CompanySKW Stickstoffwerke Piesteritz GmbH, Germany

Agravis, Münster, Germany

33

Nature, especially plants, provide the ma-jority of our current anticancer drugs. How-ever, the pharmacological profile of thenatural cytotoxins commonly needs to beimproved. This is done through syntheticderivatisations, e.g. from tubulysins totubugis, which have picomolar activityand became Leibniz drug of the year 2016.With highly potent and stable toxins nowavailable, the focus has shifted to the im-proved targeting of the natural productdrugs and their derivatives in order to se-lectively accumulate the drug in cancer-ous cells vs. other tissue and reduce sideeffects. One successful method was theapplication of various cytotoxins (tubugis,paclitaxel, Aloe emodin etc.) on mesopor -ous silica nano particles as carrier sys-tems. With a set of fluorescent dyes, boththe nano particles and the loaded drugcould be followed during uptake and re-lease in mammal cells.

Another strong topic will be the discoveryof mechanisms of action, especially suchaccessing low differentiated (resting orstem) cancer cells and metastatic cells,which are responsible for untreatable or

returning cancer. Toward this goal, the celldifferentiation properties of plant naturalproducts alone or in synergism with anti-cancer drugs has become a highly rele-vant topic. Thus, we are looking for com-pounds which are not only cytotoxins witha classical mode of action, e.g. tubulinbinders, but which are able to reprogramtumor cells. A breakthrough was our dis-covery that the beer component isoxan-thohumol, a prenylflavonoid from hops,can induce such effects and also increa -ses the performance of the anticancerdrug paclitaxel some tenfold – thus allow-ing for strongly reduced dosing of the drugotherwise rich in negative side effects.

With the facilities from the project groupSpectroscopy, structural elucidation ofnew compounds is performed. For the in-creased demands of detailed studies onthe compounds actions, a new cell culturelaboratory was build and equipped withlaminar flow hoods, CO2 incubators,Coun tess® II Automated Cell Counter,state-of-the art cell sorter BD FACSAria™III, as well as microscopy, western blot,cryogenic storage facilities etc.

32

Anticancer Agents & TargetingProject Leaders: Goran Kaluderovic & Ludger Wessjohann

PhytoeffectorsProject Leaders: Ludger Wessjohann, Wolfgang Brandt & Andrej Frolov

Ali HmedatMaster Student

Paul JänickePhD Student

Mathias KalinaMaster Student / PhD Student

Martina LerbsTechnical Assistant

Vieira da SilvaGuest Scientist

Group Members

Stefan Ebbinghaus, Barbara SeligerUniversity of Halle, Germany

Jan G. HengstlerLeibniz Research Centre for Working Environ-ment and Human Factors

Danijela Maksimović-Ivanić, Sanja MijatovićUniversity of Belgrade, Serbia

Erik FreierLeibniz Institute of Advanced Analytics, Dort-mund, Germany

CompaniesOntochem GmbH, Halle, Germany

Tube Pharma GmbH, Vienna, Austria

Collaborators

The influence of the hops con-stituent isoxanthohumol (IXN,see formula in hops cone) onskin melanoma in mice and itssymbiotic effect on the activityof the established drug paclita-xel applied at a normally subac-tive dose. (For details see: Versa-tile antitumor potential of iso-xanthohumol: Enhancement ofpaclitaxel activity in vivo. Phar-macol. Res. 2016: 105, 62–73.)

Fig. 1: Lemna minor assay for drought-protective effect of synthetic phytoef-fector candidates: L. minor culture (a), individual plants with drought inducedin 24-well plates (b), and scanning of leaf area and quality by LemnaTec (c).

Page 18: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

The synthesis and evaluation of small-mole cule tools (chemical probes) is fun-damental to early stages of drug discov-ery and in target validation processes asthey can also be directed to the inhibitionof proteins in almost any cell type. Theyare often complementary to genetic ap-proaches (e. g. mutational probes byCRISPR-CAS). Within this context not onlythe chemistry of the probe itself but alsothe analytical method to determine thelocalization and molecular interactions isof great relevance.

Electron paramagnetic resonance (EPR)spectroscopy is a well-established methodwhich has become a strong tool for thedetermination of structural features, inparticular in biomolecules for applica-tions such as resolving protein–peptideinteractions.

Small-molecule probes eligible for EPR-studies mostly are achieved by attachingTEMPO-derivatives. However, these pro-vide single case solutions only, necessi-

tating an inevitable amount of experi-ments to access a variety of products. Wecould show that multicomponent reac-tions such as isonitrile-mediated Ugi-re-actions can serve as a synthetic tool toquickly obtain a broad portfolio of variedspin-labelled products with reduced syn-thetic endeavor. It was shown that thespin label is stable under conditions ofmost Ugi-reaction and peptide couplingprotocols. To reveal the flexibility of thisapproach, various peptides, diketopiper-azines, and peptide–peptoid chimerahave been synthesized with spin-labelsattached at varied positions.

The highly regioselective formation of1,4-disubstituted-1,2,3-triazoles to func-tionalized peptoids has been accom-plished by combining Ugi and metal-freeorgano click reactions. The MCR genera -ted peptides and peptoids (see PG Mul-ticomponent Reactions & Peptide Mi me -tics), or carboxylic acids synthesized byconventional peptide couplings, were uti-lized as substrates for this cycloaddition

reaction allowing for the bio-orthogonalintroduction of probes (see Figure). In an-other approach aldehydes react with ma -lononitrile in the presence of DBU to insitu generate alkylidene malo nonitrileserving as dipolarophiles. Therefore, asdemonstrated earlier in collaborationwith the group of Prof. M. Paixão-Weber,suitable for 1,3-dipolar cycloaddition re-actions for the generation of complexpeptidomimetic products can be achievedtoo.

Group MembersAli AkbarPhD Student

Bruno Brisolla RavanelloPhD Student

Haider N. A. SultaniPhD Student

Angela SchaksTechnical Assistant

CollaboratorsDariush Hinderberger, Andrea Sinz, Jochen BalbachUniversity of Halle, Germany

Marcio Paixao-WeberUniversidade Sao Carlos, Brazil

Oscar RodriguesUniversidade St. Maria, Brazil

35

The synthetic access to natural moleculescan provide sufficient material where nat-ural resources are either scarce or threat-ened. Most importantly, it can provide de-rivatives which ideally provide improvedproperties, help to understand the under-lying mechanisms, or to trace the com-pounds within an organism or the environ-ment. In addition, artificial compoundscan be generated which allow to selecti -vely address or modify certain biologicalfunctions or alter material properties. Thegroup in recent years has gained a leadingexpertise in using multiple isonitrile-basedmulticomponent reactions (I-MCRs) to ra -pidly synthesize molecules of biologicalrelevance, especially with peptidic ele-ments.

Ugi- and Passerini-MCRs could be used toligate and cyclize peptides and synthe-size natural macrocycles with antifungal,nematodic, herbicidal, or cytotoxic prop-erties (Fig. A). Recently we could al so useMCRs to cyclize larger peptide sidechains and force the peptide into definedsecondary structures. However, some-times unwanted side chains or dead endfunctions of a MCR component remain inthe molecules. Therefore, currently wework on methods to utilize and removethese dead end functions by using so-called convertible building blocks whichallow to transform formerly unreactivefunctions into reactive ones upon con-trolled activation. One way was the use ofconvertible isonitriles like IPB reagent

previously developed by us, i.e. isonitrileswhich after the MCR can be convertedinto an activated amide as acylationreagent. These peptidic acyl donors canthen be used for ligation or cyclisation(Fig. B).

Furthermore, IMCRs allow for the one-potformations of selective binders like po-dands and cages through a new concept,in which instead of reacting two bran chedbridgeheads, the MCR is used to assembleself-organized bridgeheads. This self-as-sembly method allows to introduce up to

four different tethers in one shot withoutany protecting group or sequential multistep technology required. (Angew. Chem.IE 2017: 3501).

The Ugi and other reactions were alsoused for the synthesis of small heterocy-cles, especially such with cis amide link-ages suitable as PARP inhibitors and phy-toeffectors (see Project Group Phytoeffec-tors), or for seleno-amino acids and pep-tides and related compounds relevant innutrition, redox biology and cancer.

34

Multicomponent Reactions & Peptide MimeticsProject Leaders: Ludger Wessjohann & Bernhard Westermann

Andrea BozzanoGuest Scientist

Micjel Chavez MorejónPhD Student

Nalin de Seixas BorgesPhD Student, Scholarship

David EdelerPhD Student

Thomas EichhornPhD Student

Daniel G. RiveraAvH Guest Professor

Alfredo Rodriguez PuentesPhD Student

Aldrin Vasco VidalPhD Student

Ricardo W. Neves FilhoPhD Student

Sebastian WelschPhD Student

Katharina WolfTechnical Assistant

Group MembersCarlos Kleber AndradeUniversidade Federal de Brasilia, Brazil

Luca Banfi, Andrea Basso, Renata RivaUniversity of Genova, Italy

Greg HeffronHarvard Medical School, USA

Diogo Lüdtke, Henri SchrekkerUniversidade Federal de Rio Grande do Sul,Porto Alegre, Brazil

Daniel G. Rivera, Anselmo OteroUniversidad Habana, Cuba

Barbara SeligerUniversity of Halle, Germany

Saad ShaabanMansour University, Egypt

Mohammad Wadaan, Muhammad AbbasKing Saud University, Saudi Arabia

CompaniesSKW Piesteritz, Wittenberg, GermanyPriaxon GmbH, München, GermanyTube Pharmaceuticals, Vienna, Austria

Collaborators

Chemical ProbesProject Leaders: Bernhard Westermann & Ludger Wessjohann

Ligation or cyliza-tion of peptideswith – if desired –simultaneousfunctionalization(orange lobe, e.g.being a lipid, gly-coside, folding in-ducer, fluorescentlabel etc.) throughMCR strategies,(A) using MCRringclosure to pro-duce surfactin andmycosubtilin ana-logues; (B) usingconvertible isoni-triles.

EPR-spectra ofmono- and bis-functionalizedUgi-products.

PGHN

Page 19: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

The structure of huge molecular systemscan be modelled based on several avail-able and specialized force fields. How-ever, the prediction of chemical pro -cesses, i.e. electronic transitions, andthereby thermodynamic or kinetic values,is currently restricted to very small molec-ular systems only. Rather computer-timeexpensive calculations have to be usedfor even me di um sized molecular ensem-bles, and accuracy often is bad too. Thus,currently there is no method availablethat can simulate che mical reactions inlarger systems (e.g. proteins or water so-lutions) in a short time by non-specialistsand without access to significant CPUtime. Only experienced quantum chemistscan do these calculations appropriately,but as mentioned only for rather smallmolecular systems.

First development of an ultrafast quan-tum mechanical methodWe are going to develop a very fast semi-empirical method, initially based on 2D-structures only. First very promising re-sults indicate that this new method ismany times faster than all other quantum

mechanical methods and in comparisonto currently widely used semi-empiricalmethods (e.g. MOPAC2016) and even DFTcalculations it is also more accurate incalculations of valence electron energies,heats of formations, and calculation ofproton affinities for example (Fig. 1). Thisincludes the development of new solva-tion models which allow fast polari zationof bonds involved in hydrogen bonds aswell.

The method is consistent with chemicalexperiments and the wisdom of syntheticchemists and therefore it reflects chem-istry as chemists like to describe theseproperties (e.g. description of inductiveand mesomeric effects).

2nd development of methods to predict thefragmentation trees in mass spectrometryThe correct prediction of proton affinitiesor deprotonation energies is of funda-mental relevance in mass spectrometry,but also of importance for other physicaland synthetic methods. Our new theoret-ical method is able to calculate these en-ergies very fast and accurately. Thus, ba -

sed on this new method, we are going todevelop predictive tools for mass spec-trometry fragmentation trees of organiccompounds (in our department preferen-tially natural products, see correspon-ding project groups). Thus it will be pos-sible to identify structural components orideally the structure of a compound moreeasily and reliably based purely on theo-retical grounds thereby improving whatis currently possible with rule-based orempirical methods.

37

Method DevelopmentProject Leader: Wolfgang Brandt

Three-dimensional molecular structures ofsmall molecules and proteins, and their re-action mechanisms are broadly investi-gated by methods of computational chem-istry. In the focus of the project group is thedevelopment of protein 3D structural mo -dels as a prerequisite to understand theirbiological function. This includes the pre-diction:• of putative natural substrates for native

enzymes, • of substrate specificities and predictions

for site directed mutations to modify them,• investigations of catalytic mechanisms

based on quantum mechanical calcula-tions,

• and of new drug leads by in silicoscreen ing and rational drug design for applications in pharmaceutical/medical as well as agrochemical industry (see also PG Scree ning and PG Phytoeffectors).

Other permanently performed calcula-tions concern the simulation of CD-spec-tra. These theoretically calculated spectraare compared with experimental ones toresolve unknown stereochemistry of chiralcompounds isolated from natural sourcesor synthesis.

Protein structures and functions Protein homology models of a wide rangeof enzymes have been created and did es-sentially guide and support experimentalwork. This includes predictions of suitablemutation sites to detect the active site orsubstrate localization, or to aid rationalprotein redesign for biocatalytic applica-

tions. Covered families of enzymes areprenylating enzymes (PG Isoprenoids), glu-cosyltransferases, peroxidases, poly-(ADP-ribose)polymerases (PARPs, PG Phytoef-fectors), plant specifier proteins and more.

Protein Models and structure-functionrelationships, examplesCytochrome P450 oxygenases in the bio -synthetic pathway of carnosic acidIn close IPB-internal cooperation with thedepartment Cell and Metabolic Biologywe investigated several proteins related tothe biosynthetic pathway of carnosic acid(Scheler, U. et al. Nat. Com. 7, 2016). Cyto -chrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salviafruticosa were already characterized as

ferruginol synthases (FS) but are also ableto produce 11-hydroxyferruginol. Model-ing-based mutagenesis of three aminoacids (D301, N303, V479) in the relatedferruginol synthase (CYP76AH1) (Fig. 1)from S. miltiorrhiza is sufficient to convertit to a 11-hydroxyferruginol synthase (HFS).

The a-terpineol to 1,8-cineole cyclizationreaction of tobacco terpene synthasesIn close cooperation with Prof. Birgit Pie -chulla (University of Rostock) we devel -o ped a model of the tobacco terpene syn-thase which catalyzes the formation of 1,8-cineole. Based on semi-empiric quantummechanical calculations (PM7), a catalyticmechanism could be suggested (Piechul -la, B.et al. Plant Physiol. 172, 2016).

36

Cooperative Modeling & BioinformaticsProject Leader: Wolfgang Brandt

Richard BarteltScientist

Anne-Katrin BlumeMaster Student

Frank BrodaSystem Administrator

Iris EckertMaster Student

Daniela Eisenschmidt, PhD Student

Evelyn FunkeMaster Student

Susan GrunerMaster Student

Alexandra GurowietzMaster Student

Peter-Paul Heym, PhD Student

Silke PienknyPostdoctoral Fellow

Jördis-Ann SchülerMaster Student

Anne SteimeckePhD Student

Jennifer SzczesnyPhD Student

Eva SchulzePhD Student

Group MembersLudger Beerhues, Ute WittstockTechnical University Braunschweig, Ger-many

Wilhelm BolandMPI for Chemical Ecology, Jena, Germany

René Czuk, Jörg Degenhardt, FilipeNatalio, Edgar Peiter, Werner RoosUniversity of Halle, Germany

Joram Eyal Institute of Plant Sciences, Bet-Dagan, Is-rael

Friedrich PaulsenUniversity of Erlangen-Nürnberg, Ger-many

Birgit PiechullaUniversity of Rostock, Germany

Kazufumi YazakiKyoto University, Gokasho, Japan

CompanySKW Piesteritz GmbH, Wittenberg,Germany

Collaborators

Fig. 1: a) 3D-model of CYP76AH1 as representative of all other ferruginol synthases. The heme(space fill representation with orange colored iron ion) and the substrate (magenta carbonatoms) are located in the center. b) Active site of CYP76AH1 with formed ferruginol (greencarbon atoms) after the first oxidation step. The second hydrogen atom (at C11) of the aro-matic ring system can not be abstracted by the reactive oxygen atom because it is in a di-stance of 4.6 Å (red dashed line) which is too far to support oxidation in this position.

a b

Group MembersMarius ErbertPhD Student

Thomas HerbergPhD Student

Jördis-Ann SchülerPhD Student

Sebstian WussowMaster Student

CollaboratorMatthias Müller-HannemannUniversity of Halle, Germany

Fig. 1: Calculated proton affinitiesfor 120 compounds in comparisonwith experimental data.

Page 20: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

The group is involved in research data ma -nagement, maintains and develops a data-base of chemical structures, it hosts thede partment’s compound and extract in-house library as well as a stock programfor commercially available substances. Asthe search for new active natural productsand synthetic derivatives belongs to thecore task of the department of BioorganicChemistry, the screening unit of the groupprovides service for biological screening,with main focus to small molecules. Thebioassays comprise pure compounds aswell as extracts from plants and higherfungi.

Data managementThe group is responsible for interactionwith IPBs primary data storage facility. Italso is partner of the interdisciplinary RA -DAR (Research Data Repository) projectteam, consisting of cooperating researchinstitutes from the fields of natural and in-formation sciences: the FIZ Karlsruhe, the

Steinbuch Centre for Computing (SCC) ofthe Karlsruhe Institute of Techno logy (KIT),the University of Munich (LMU), the IPBand the German National Library of Sci-ence and Technology (TIB). The aim of theproject (www.radar-projekt. org/display/RE/Home) was to set up and establish aninfrastructure that facilitates research datamanagement. The repository has been de-veloped as part of a three-year projectfunded by the German Research Founda-tion. The infrastructure allows researchersto store, manage, annotate, cite, curate,search and find scientific data in a digitalplatform available at any time that can beused by multiple (specialized) disciplines.As such, RADAR makes a key contribution

to ensure a better availability, sustainablepreservation and publishability as well asreusability of research data for presentand future scientific communities. The re -pository pursues a two-stage approachwith a basic service for preserving re-search data and an extended service fordata publication. For making data citable,traceable and reusable, datasets pub-lished in RADAR are identified by a digitalobject identifier (DOI). This allows datasetsto be persistently and unambiguously ref-erenced. Furthermore, RADAR includes areview status of the data, enabling a peerreview of data underlying a scientific pub-lication. Reciprocal linking of the DOIs ofthe published publication and the data sethosted in RADAR allows a fast access fromthe published publication to the corre-sponding data set and vice versa. Metada -ta are essential to the traceability, access,and effective use of scientific data. In RA -DAR, submitted data must be comple-mented by a set of basic descriptive meta-

data parameters that document and de-scribe the respective resource. The meta-data scheme developed for RADAR aimsto enhance the traceability and usability ofresearch data by maintaining a discipline-agnostic character and simultaneously al-lows a description of discipline-specificdata. For this purpose, the scheme in-cludes a set of generic parameters that al-low an accurate and consistent identifica-tion of a resource for citation and retrievalpurposes, while at the same time meetingthe requirements of more discipline-spe-cific datasets.

As part of the Leibniz Research AllianceBioactive Compounds and Biotechnology

(http://www.leibniz-wirkstoffe.de), whichbundles the Leibniz Association’s broadly-based research on molecules with biolog-ical effects, we recently started the devel-opment of a distributed database and in-teraction platform for the Leibniz Bioac-tives Cloud.

The in-house development of the programfor chemicals management “KICKS” hasbeen continued. Within the framework ofour cooperation with Henri Schrekkerfrom the Universidade Federal do RioGrande do Sul, Brazil, the program hasbeen made available to this universitygroup and has furthermore been adaptedto the local demands.

As a strategy to increase efficiency, stan-dardization and compliance are continu-ously being improved. This is achieved byintensive fostering standard operation pro-cedures and a department wiki to build upa knowledge base and at the same time tominimize on-the-job training times. All thesemeasures are constantly refined to increasetheir effectiveness.

ScreeningTo cover the most relevant bioactivities ofsecondary metabolites and related sub-stances, cytotoxicity, antifungal, antibac-terial, and antihelmintic bioassays are reg-ularly performed. Feedback from thesescreen ing experiments is used to evaluatevirtual screening projects and to supportbioactivity guided isolation of natural pro -d ucts from plants and higher fungi. Thegroup also heads the screening platformof IPB.

It is concerned with the organization, stan-dard operating procedures and data man-agement tools of the screening activitiesconnected with the different dedicatedprojects and project groups. It also han-dles external samples (in or out) and thecollection of organisms.

Group MembersNorbert ArnoldSenior Scientist

Martina BrodeTechnical Assistant

Filipe Duarte FurtadoScientific Coworker

Nicole HüneckeTechnical Assistant

Frank LangeScientific Coworker

Martina LerbsTechnical Assistant

Anselmo OteroGuest Scientist

CollaboratorsThomas EngelUniversity of Munich, Germany

Angelina KraftLeibniz TIB, Hannover, Ger-many

Anselmo OteroUniversity of Havana, Cuba

Jan PotthoffKarlsruhe Institut of Technol-ogy, Germany

Matthias RazumFIZ Karlsruhe, Germany

Henri SchrekkerUniversidade federal de RioGrande do Sul, Brazil

39

Data Management & ScreeningProject Leaders: Andrea Porzel & Frank Broda

Chemoinformatics deals with the analysisof big data related to chemical structures.E.g. more than 50% of drugs in use havebeen developed based on compoundsisolated from natural sources like plants,fungi or bacteria, based on some 300.000isolated natural compounds vs. about 100Mio. known synthetic compounds. One ofthe major questions to be answered bymeans of chemoinformatics thus is: Arethere any structural chemical elements orparticular physiochemical properties thatare characteristic for natural products anddistinguishing them from artificial com-pounds, that render them more suitable asbioactive compound?

Natural and nature-inspired Macrocycles

As an essential part of many drugs, macro-cyclic compounds (MCs) are exceptionallyabundant. Most of the pharmaceuticallyrelevant MCs are either taken directly fromnature or they are derivatives or mimeticsof natural MCs. Understanding nature’sprinciples based on evolutionary selectionfor activity remain dominant guidelines fordrug development. Understanding the bio -synthesis and role of these compounds fortheir native organism remains a highlycompelling topic that can open doors tonew biotechnological means of produc-tion and new medicinal applications, re-spectively. We analyzed the distribution of

several classes of MCs in natural sources(Fig. 1) and their areas of medicinal appli-cations (Fig. 2).

Chemoinformatic analyses of natural prod-ucts occurring in Indonesian plant species Biodiverse regions, in which plants areused in traditional medicine are especiallyinteresting for the search for new com-pounds. Within the scope of the Biohealthproject (PG Antiinfectives, www.biphaps.uni-leipzig.de/en/sysbot/research/pro-jects/biohealth.html) we are using datamining techniques to collect all informa-tion on known natural products from In-donesian plants and their effects. Basedon this we apply chemoinformatic meth-ods and develop new software toolswhich includes also the capture of ontolo-gies and synonyms in plant species as wellas in compound trivial names. Further-more the information will be combinedwith phylogenetic data to identify interest-ing plant genera for further studies intoanti-infective agents.

38

Chemoinformatics of Natural Compounds Project Leaders: Wolfgang Brandt & Ludger Wessjohann

Richard BarteltScientific Coworker

Anne-Kathrin BlumePhD Student

Iris EckertMaster Student

Frank BrodaScientific Coworker

Group Members

Lutz Weber, Claudia BobachOntoChem IT Solutions GmbH, Halle, Germany

Collaborators

Fig. 1: Distribution of several classes of macrocycles in naturalsources.

Fig. 2: Proportional areas of medicinal applications of macrocyclicdrugs.

Page 21: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

41

Michels, K., Heinke, R., Schöne, P., Kuipers, O. P.,Arnold, A. &. Wessjohann, L. A. A fluorescence-based bioassay for antibacterials and its applica-tion in screening natural product extracts. J. An-tibiot. 68, 734-740.

Momcilovic, M., Eichhorn, T., Blazevski, J., Schmidt,H., Kaluđerović, G. N. & Stosic-Grujicic, S. Invitro effects of binuclear (η 6-p-cymene) ruthe-nium (II) complex containing bridging bis(nicoti-nate)-polyethylene glycol ester ligand on differ-entiation pathways of murine Th lymphocytesac tivated by T cell mitogen. J. Biol. Inorg. Chem.20, 575-583.

Nagel, R., Bernholz, C., Vranová, E., Košuth, J.,Bergau, N., Ludwig, S., Wessjohann, L., Gershen-zon, J., Tissier, A. & Schmidt, A. Arabidopsis tha -liana isoprenyl diphosphate synthases producethe C25 intermediate geranylfarnesyl diphos-phate. Plant J. 84, 847-859.

Nin Brauer, M. C. N., Neves Filho, R. A. W., Wes -termann, B., Heinke, R. &. Wessjohann, L. A. Syn-thesis of antibacterial 1,3-diyne-linked peptoidsfrom an Ugi-4CR/ Glaser coupling approach.Beilstein J. Org. Chem. 11, 25-30.

Otto, A., Laub, A., Porzel, A., Schmidt, J., Wessjo-hann, L., Westermann, B. & Arnold, N. Isolationand total synthesis of Albu peptins A–D: 11-res -i due peptaibols from the fungus Gliocladium al-bum. Eur. J. Org. Chem. 34, 7449-7459.

Otto, A., Porzel, A., Schmidt, J., Wessjohann, L. &Arnold, N. A study on the biosynthesis of hygro -phorone B12 in the mushroom Hygrophorus abi-eticola reveals an unexpected labelling patternin the cyclopentenone moiety. Phytochemistry118, 174–180.

Rahfeld,P., Haeger, W., Kirsch, R., Pauls, G., Becker,T., Schulze, E., Wielsch, N., Wang, D., Groth, M.,Brandt, W., Boland, W. & Burse, A. Glandular β-glucosidases in juvenile Chrysomelina leaf beet -les support the evolution of a host-plant-depen-dent chemical defense. Insect Biochem. Mol.Biol. 58, 28-38.

Ricardo, M. G., Morales, F. E., Garay, H., Reyes, O.,Vasilev, D., Wessjohann, L. A. &. Rivera. D. G. Bidi-rectional macrocyclization of peptides by dou-ble multicomponent reactions. Org. Biomol.Chem. 13, 438-446.

Schäffler, I., Steiner, K. E., Haid, M., van Berkel, S.S., Gerlach, G., Johnson, S. D., Wessjohann, L. &Dötterl, S. Diacetin, a reliable cue and privatecommunication channel in a specialized pollina-tion system. Sci Rep. 5,12779.

Schmidt, J. Negative ion electrospray high-reso-lution tandem mass spectrometry of polyphe-nols J. Mass Spectrom. 51 (2016): 33-43.

Shaaban, S., Negm, A., Sobh, M. A. & Wessjohann,L. A. Organoselenocyanates and symmetrical di -se lenides redox modulators: Design, synthesisand biological evaluation. Eur. J. Org. Chem. 97,190-201.

Vasco, A. V., Pérez, C. S., Morales, F. E., Garay, H.E., Vasilev, D., Gavín, J. A., Wessjohann, L. A. & Ri -vera, D. G. Macrocyclization of peptide sidechains by the ugi reaction: achieving peptidefolding and exocyclic N-functionalization in oneshot. J. Org. Chem. 80, 6697–6707.

Vattekkatte, A., Gatto, N., Schulze, E., Brandt, W.& Boland, W. Inhibition of a multiproduct ter-pene synthase from Medicago truncatula by 3-bromoprenyl diphosphates. Org. Biomol. Chem.13, 4776-4784.

Welsch,S. J., Umkehrer, M., Kalinski, C., Ross, G.,Burdack, C., Kolb, J., Wild, M., Ehrlich, A. &Wessjohann, L. A. Synthesis of substituted imi-dazolines by an Ugi/Staudinger/aza-Wittig se-quence. Tetrahedron Lett. 56, 1025–1029.

Wittmann, I., Schierling, A., Dettner, K., Göhl, M.,Schmidt, J. & Seifert, K. Detection of a new pi -perideine alkaloid in the pygidial glands of somestenus beetles. Chem. Biodivers. 12, 1422–1434.

Yahyaa, M., Matsuba, Y., Brandt, W., Doron-Faigen-boim, A., Bar, E., McClain, A., Davidovich-Rikanati,R., Lewinsohn, E., Pichersky, E. & Ibdah, M. Focuson metabolism: Identification, functional charac-terization, and evolution of terpene synthasesfrom a basal dicot. Plant Physiol. 169, 1683-1697.

Bookchapter 2015Wessjohann, L. A., Schreckenbach, H. F. & Ka lu -đerović, G. N. Enzymatic C-alkylation of aroma -tic compounds. In: Biocatalysis in Organic Syn-thesis, Vol. 2 Science of Synthesis. (K. Faber & W.-D. Fessner eds.) Thieme Verlag Stuttgart, 2015, S.177-211. ISBN 978-3-13-174161-5.

Bachelor Theses 2015Fuchs, Tristan: Synthese von Phenylpropanoidenund deren enzymatische Anwendung. Martin-Luther-Universität Halle-Wittenberg, Naturwis-senschaftliche Fakultät II, Institut für Chemie,05.08. 2015

Schwerdtner, Volker: Enzymatische Oxidationund Strukturaufklärung von Phenolen. Martin-Luther-Universität Halle-Wittenberg, Naturwis-senschaftliche Fakultät II, Institut für Chemie,05.08.2015

Master Theses 2015Blume, Anne-Kathrin: Characterization of ade -ny late isopentenyl transferases from Arabidop -sis thaliana based on protein homology models, virtual screening and in vitro studies. Martin-Lu -ther-Universität Halle-Wittenberg, Naturwis-senschaftliche Fakultät I, Institut für Biochemieund Biotechnologie, 14.12.2015

Schüler, Jördis-Ann: Moleküldesign von Stilben-derivaten als Inhibitoren für Acetylcholin este ra -se und Butyrylcholinesterase und systematischeUntersuchungen zur Berechnung von pKi-Wer -ten mittels Methoden der Computerchemie.Mar tin-Luther-Universität Halle-Wittenberg, Na - turwissenschaftliche Fakultät III, Institut für In-formatik, 12.01.2015

Diploma Theses 2015Fechtel, Mona:Vitamin D aus Pflanzen. Martin-Lu -ther-Universität Halle-Wittenberg, Naturwissen -schaftliche Fakultät II, Institut für Chemie, Le bens -mittelchemie und Umweltchemie, 29.04.2015

Roth, Pia: N-Acylpeptaibole - Synthese und bio -lo gische Evaluierung. Martin-Luther-UniversitätHalle-Wittenberg, Naturwissenschaftliche Fa -kultät II, Institut für Chemie, Lebensmittelche -mie und Umweltchemie, 29.04.2015

Sendatzki, Ann-Katrin: Pigmente aus chileni -schen Cortinarius-Arten. Martin-Luther-Uni-versität Halle-Wittenberg, Naturwissen schaft -liche Fa kultät II, Institut für Chemie, Le bens -mittelche mie und Umweltchemie, 29.04.2015

Doctoral Theses 2015Brand, Kristin: Chalcogen based organocatalystsin transesterification, Martin-Luther-UniversitätHalle-Wittenberg, Naturwissenschaftliche Fa -kultät II, Institut für Chemie, 22.04.2015

Fischer, Juliane: Homology modelling, virtualscreening and evolutionary analyses of plant en-zymes metabolizing putrescine. Martin-Luther-Universität Halle-Wittenberg, Naturwissen -schaftliche Fakultät I, Institut für Pharmazie,04.08.2015

40

Publications 2015Alresly, Z., Lindequist, U., Lalk, M., Porzel, A., Ar -nold, N. & Wessjohann, L. A. Bioactive triterpenesfrom the fungus Piptoporus betulinus. Rec. Nat.Prod. 10 (2016) 103-108.

Apostolova, I., Niedzielska, D., Derlin, T., Kozi-olek, E. J., Amthauer, H., Salmen, B., Pahnke, J.,Brenner, W., Mautner,V. F. & Buchert, R. Perfusionsingle photon emission computed tomographyin a mouse model of neurofibromatosis type 1:towards a biomarker of neurologic deficits. J.Cer. Blood Flow Metabolism 35,1304-1312.

Bette, E., Otto, A., Dräger, T., Merzweiler, K., Ar -nold, N., Wessjohann, L. & Westermann, B. Isola-tion and asymmetric total synthesis of fungal se -condary metabolite Hygrophorone B12. Eur. J.Org. Chem. 11, 2357-2365.

Bitchagno, G.T.M., Tankeo, S.B., Tsopmo,A., Mpet -ga, J.D.S., Tchinda, A.T., Fobofou Tanemossu, S.A.,Wessjohann, L.A., Kuete, V. & Tane, P. LemaironesA and B: Two new antibacterial tetraflavonoidsfrom the leaves of Zanthoxylum lemairei (Ruta -ceae). Phytochem. Lett. 14, 1-7.

Brandt, W., Manke, K. & Vogt, T. A catalytic triad– Lys-Asn-Asp – is essential for the catalysis ofthe methyl transfer in plant cation-dependentO-methyltransferases. Phytochemistry 113, 130-139.

Büchter,C., Ackermann, D., Honnen, S., Arnold,N., Havermann, S., Koch, K. & Wätjen, W. Methy-lated derivatives of myricetin enhance life spanin Caenorhabditis elegans dependent on thetranscription factor DAF-16. Food & Function6, 3383-3392.

Bulatović, M., Kaluđerović, M. R., Mojić, M., Zme-jkovski, B. B., Hey-Hawkins, E., Vidaković, M.,Grdović, N., Kaluđerović, G. N., Mijatović, S. &Maksimović-Ivanić, D. Improved in vitro antitu-mor potential of (O,O′-Diisobutyl-ethylenedia -mine-N,N′-di-3-propionate)tetrachloridoplat-inum(IV) complex under normoxic and hypoxicconditions. Europ. J. Pharmacol. 760, 136–144.

Dippe, M., Brandt, W., Rost, H., Porzel, A., Schmidt,J. & Wessjohann, L. A. Rationally engineered vari-ants of S-adenosylmethionine (SAM) synthase:reduced product inhibition and synthesis of arti -ficial cofactor homologues. Chem. Commun. 51,3637-3640.

Echemendía, R., de La Torre,A. F., Monteiro, J. L.,Pila, M., Corrêa,A. G., Westermann, B., Rivera, D.G. & Paixão,A. W. Highly stereoselective synthe-sis of natural-product-like hybrids by an organo -

catalytic/multicomponent reaction sequence. Angew. Chem. Int. Ed. 54, 7621–7625.Angew. Chem. Dt. Ausg. 127, 7731-7735.

Eichenberg, D., Purschke, O., Ristok, C., Wessjo-hann, L. & Bruelheide, H. Trade-offs betweenphysical and chemical carbon-based leaf defence:of intraspecific variation and trait evolution. J.Ecolog. 103, 1667-1679.

Essombe Malolo, F.-A., Bissoue Nouga, A., Ka -kam,A., Franke, K., Ngah, L., Flausino, O., Mpon -do Mpondo, E., Ntie-Kang, F., Ndom, J. C., Bolzanida Silva, V. & Wessjohann, L. Protease-inhibiting,molecular modeling and antimicrobial activitiesof extracts and constituents from Helichrysumfoetidum and Helichrysum mechowianum(Compositae). Chem. Cent. J. 9, 32.

Farag, M. A., Porzel, A., Mahrous, E. A., El-Massry,M. M. &. Wessjohann, L. A. Integrated compara-tive metabolite profiling via MS and NMR tech-niques for Senna drug quality control analysis.Anal. Bioanal. Chem. 407, 1937-1949.

Farag, M. A.,Al-Mahdy, D. A., El Dine, R. S., Fahmy,S., Yassia, A., Porzel,A. & Brandt, W. Structure-ac-tivity relationship of antimicrobial gallic acid de-rivatives from pomegranate and Acacia fruit ex-tracts against potato bacterial wilt pathogen.Chem. Biodivers. 12, 955-962.

Farag, M. A., Porzel, A. & Wessjohann, L. A. Unra -veling the active hypoglycemic agent trigonellinein Balanites aegyptiaca date fruit using metabo-lite fingerprinting by NMR. J. Pharm. Biomed.Anal. 115, 383-387.

Fobofou Tanemossu, S. A., Franke, K., Schmidt, J.& Wessjohann, L. A. Chemical constitutents ofPsorospermun denispunctatum (Hypericaceae).Biochem. Syst. Ecol. 59, 174-176.

Fobofou Tanemossu, S.A., Franke, K., Sanna, G.,Porzel, A., Bullita, E., La Colla, P. & Wessjohann,L.A. Isolation and anticancer, anthelmintic, andantiviral (HIV) activity of acylphloroglucinols,and regioselective synthesis of empetrifranzi-nans from Hypericum roeperianum. Bioor. Med.Chem. 23, 6327-6334.

Gumz, F., Krause, J., Eisenschmidt, D., Backen -köhler, A., Barleben, L., Brandt, W. & Wittstock,U.The crystal structure of the thiocyanate-for -m ing protein from Thlaspi arvense, a kelch pro-tein involved in glucosinolate breakdown. PlantMol. Biol. 89, 67-81.

Heinze, M., Brandt, W., Marillonnet, S. & Roos, W.“Self” and “Non-Self” in the control of phyto -ale xin biosynthesis: plant phospholipases A2with alkaloid-specific molecular fingerprints.Plant Cell 27, 448-462.

Kaluđerović, G. N., Krajnović, T., Momcilovic, C.,Stosic-Grujicic, S., Mijatović, S., Maksimović-Ivanić; D. & Hey-Hawkins, E. Ruthenium(II) p-cy -mene complex bearing 2,2′-dipyridylamine tar-gets caspase 3 deficient MCF-7 breast cancercells without disruption of antitumor immuneresponse. J. Inorg. Biochem. 153, 315-321.

Khalil, M. N. A., Brandt, W., Beuerle, T., Reckwell,D., Groeneveld, J., Hänsch, R., Gaid, M. M., Lieu,B. & Beerhues, L. O-Methyltransferases involvedin biphenyl and dibenzofuran biosynthesis. PlantJ. 83, 263-276.

Kiep, L., Göhl, M., Schmidt, J. & Seiffert, K. Studieson the biotransformation of veratric acid, a hu-man metabolite of Mebeverine, by using the in-cubated hen’s egg. Drug Res. 65, 500-504.

Krause-Hielscher, S., Demuth, H.-U., Wessjo-hann, L., Arnold, N. & Griehl, C. Microalgae assource for potential anti-Alzheimer's disease di-rected compounds - screening for glutaminyl cy-clase (QC) inhibiting metabolites. Int. J. Pharm.Biol. Sci. 5, 164-170.

Krohn, M., Bracke, A., Avchalumov, J., Schuma -cher, T., Hofrichter, J., Paarmann, K., Fröhlich, C.,Lange, C., Brüning, T., von Bohlen und Halbach,O. & Pahnke, J. Accumulation of murine amy-loid-β mimics early Alzheimer’s disease. Brain138, 2370-2382.

Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann,L. A. & Seliger, B. Hydrogen peroxide - produc-tion, fate and role in redox signaling of tumorcells. Cell Commun. Signal. 13, 39.

Lima, C. G. S., Ali, A., van Berkel, S. S., Wester-mann. B. & Paixão, M. W. Emerging approachesfor the synthesis of triazoles: beyond metal-cat-alyzed and strain-promoted azide-alkyne cy-cloaddition. Chem Commun. 51, 10784-10796.

López-Abarrategui, C., McBeth, C., Mandal, S. M.,Sun, Z. J., Heffron, G., Alba-Menéndez, A., Migli-olo, L., Reyes-Acosta, O., García-Villarino, M.,Nolasco, D.O., Falcão, R., Cherobim, M. D., Dias,S. C., Brandt, W., Wessjohann, L., Starnbach, M.,Franco, O.-L. &. Otero-González, A. J. Cm-p5: anantifungal hydrophilic peptide derived from thecoastal mollusk Cenchritis muricatus (Gastro -po da: Littorinidae). FASEB J. 29, 3315-3325.

Publications and other Activities

of the Department Bioorganic Chemistry

Page 22: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

43

nity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) ox-ide nanoparticles for bottom-up phosphopro-teomics. J. Chromatogr.A. 1443, 181-190.

Greifenhagen, U., Frolov, A., Blüher, M. & Hoff-mann, R. Site-specific analysis of advanced glyca-tion end products in plasma proteins of type 2 diabetes mellitus patients. Anal. Bioanal. Chem.408, 5557-5566.

Hielscher-Michael, S., Griehl, C., Buchholz, M.,Demuth, H.-U., Arnold, N. & Wessjohann, L. A.Natural products from microalgae with poten-tial against Alzheimer’s disease: sulfolipids arepotent glutaminyl cyclase inhibitors. MarineDrugs, 14(11), 203. doi:10.3390/md14110203.

Hofrichter, J., Krohn, M., Schumacher, T., Lange,C., Feistel, B., Walbroel, B. & Pahnke, J. Sideritisspp. extracts enhance memory and learning inAlzheimer’s b-amyloidosis mouse models andaged C57Bl/6 Mice. J. Alzheimers Dis. 53(3) 967-980. doi:10.3233/JAD-160301.

Hübner, D., Kaluđerović, M. R., Gómez-Ruiz, S. &Kaluđerović, G. N. Anionic chlorido (triphenyl) -tin(IV) bearing N-phthaloylglycinato or 1,2,4-benzenetricarboxylato 1,2-anhydride ligands: po-tential cytotoxic and apoptosis-inducing agentsagainst several types of cancer. Chem. Biol. DrugDes. doi:10.1111/cbdd.12885.

Kaluđerović, G. N., Hernández-Corroto, E.,Brandt, W., Zmejkovski, B. B. & Gómez-Ruiz, S.Palladium(II) complexes with R2edda-derivedligands. J. Coord. Chem. 69, 1337-1345.

Kraft,A., Razum, M., Potthoff, J., Porzel, A., Engel,T., Lange, F., van den Broek, K. & Furtado, F. TheRADAR project - a service for research data ar -chival and publication. ISPRS Int. J. Geo-Inf. 5: 28.

Krajnović, T., Kaluđerović, G. N., Wessjohann, L.A., Mijatović, S. & Maksimović-Ivanić, D. Versatileantitumor potential of isoxanthohumol: en-hancement of paclitaxel activity in vivo. Pharma-col. Res. 105, 62-73.

Ludwig, G., Mojić, M., Bulatović, M., Mijatović, S.,Maksimović-Ivanić, D., Steinborn, D. &. Kalu đe -ro vić, G. N. Biological potential of halfsandwichRuthenium(II) and Iridium (III) complexes. Anti-Cancer Agents in Medicinal Chemistry 16(11), 1455-1460. doi: 10.2174/ 1871520615666 15 10 -2 9100749.

Marques, F., Sousa, J. C., Brito, M. A., Pahnke, J.,Santos, C., Correia-Neves, M. & Palha, J. A. The

choroid plexus in health and in disease: dia-logues into and out of the brain. Neurobiol. Dis.http://dx.doi.org/10.1016/j.nbd.2016.08.011.

Möhle, L., Israel, N., Paarmann, K., Krohn, M., Piet -kiewicz, S., Müller, A., Lavrik, I. N., Buguliskis, J. S.,Schott, B. H., Schlüter, D., Gundelfinger, E. D.,Mon tag, D., Seifert, U., Pahnke, J. & Dunay, I. R.Chro nic Toxoplasma gondii infection enhancesb-amyloid phagocytosis and clearance by recrui -t ed monocytes. Acta Neuropath. Commun. 4(1)25. doi:10.1186/s40478-016-0293-8.

Morejón, M. C., Laub, A., Westermann, B., Rivera,D. G. & Wessjohann, L. A. Solution- and solid-phase macrocyclization of peptides by the ugi–smiles multicomponent reaction: synthesis of N-aryl-bridged cyclic lipopeptides. Org. Lett. 18(16) 4096-4099.

Otto,A., Laub,A., Wendt, L., Porzel,A., Schmidt,J., Palfner, G., Becerra, J., Krüger, D., Stadler, M.,Wessjohann, L., Westermann, B. & Arnold, N.Chilenopeptins A and B, peptaibols from theChilean Sepedonium aff. chalcipori KSH 883. J.Nat. Prod. 79, 929-938.

Otto,A., Laub,A., Haid, M., Porzel,A., Schmidt, J.,Wessjohann, L. & Arnold, N. Tulasporins A–D, 19-residue peptaibols from the mycoparasitic fun-gus Sepedonium tulasneanum. Nat. Prod. Com-mun 11(12), 1821-1824.

Otto,A., Porzel,A., Schmidt, J., Brandt, W., Wess -johann, L. & Arnold, N. Structure and absoluteconfiguration of pseudohygrophorones A12 andB12, alkyl cyclohexenone derivatives from Hy-grophorus abieticola (Basidiomycetes) J. Nat.Prod. 79, 74-80.

Otto, M., Naumann, C., Brandt,W., Wasternack,C. & Hause, B. Activity regulation by heteromer-ization of Arabidopsis allene oxide cyclase familymembers. Plants 5: 3.

Pantelic, N., Stankovic, D. M., Zmejkovski, B. B.,Kaluđerovic , G. N. & Sabo, T. J. Electrochemicaproperties of some gold(III) complexes with (S,S)-R2edda-type ligands. Int. J. Electrochem.Sci. 11,1162-1171.

Pantelić, N., Zmejkovski, B. B., Marković, D. D.,Vujić, M. J., Stanojković, P. T., Sabo, J. T. & Kalu đe -rović, N. G. Synthesis, characterization, and cy-totoxicity of a novel gold(III) complex with O,O′- Diethyl ester of ethylenediamine-N,N′-Di-2-(4-Methyl)pentanoic acid. Metals 6(9).doi:10.3390/met6090226.

Paudel, G., Bilova, T., Schmidt, R., Greifenhagen,U., Berger, R., Tarakhovskaya, E., Stöckhardt, S.,Balcke, G. U., Humbeck, K., Brandt, W., Sinz, A.,Vogt, T., Birkemeyer, C., Wessjohann, L. & Frolov,A. Osmotic stress is accompanied by proteinglycation in Arabidopsis thaliana. J. Exp. Bot.doi:10.1093/jxb/erw395.

Piechulla, B., Bartelt, R., Brosemann, A., Effmert,U., Bouwmeester, H., Hippauf, F. & Brandt, W.The a-terpineol to 1,8-cineole cyclization reac-tion of tobacco terpene synthases. Plant Physiol.172(4), 2120-2131.

Quang, D. N., Wagner, C., Merzweiler, K., Abate,D., Porzel, A., Schmidt, J. & Arnold, N. PyrofominsA-D, polyoxygenated sesquiterpenoids from Py-rofomes demidoffii. Fitoterapia. 112, 229–232.

Scheler, U., Brandt, W., Porzel, A., Rothe, K., Man-zano, D., Božić, D., Papaefthimiou, D., Balcke, G.U., Henning,A., Lohse, S., Marillonnet, S., Kanellis,A. K., Ferrer, A. & Tissier, A. Elucidation of thebiosynthesis of carnosic acid and its reconstitu-tion in yeast. Nature Comm. 7, 12942.

Shaaban, S., Negm, A., Sobh, M. A. & Wessjohann,L. A. Expeditious entry to functionalized pseudo-peptidic organoselenide redox modulators viasequential Ugi/SN methodology. Anti-CancerAgents Med. Chem. 16, 621-632.

Soboleva, A. V., Grischina, T. V., Stefanov, V. E., Ka -ronova, T. L., Bystova, A. A., Birkemeyer, K. & Fro -lov, A. A. Novye perspektivnye Biomarkery sa -charnogo diabeta. ActaNaturae 8, 133.

Steffen, J., Krohn, M., Paarmann, K., Schwitlick, C.,Brüning, T., Marreiros, R., Müller-Schiffmann, A.,Korth, C., Braun, K. & Pahnke, J. Revisiting rodentmodels: Octodon degus as Alzheimer’s diseasemodel? Acta Neuropathologica Communica-tions 4(1) 91. doi:10.1186/s40478-016-0363-y.

Sultani, H. N., Haeri, H. H., Hinderberger, D. &Westermann, B. Spin-labelled diketopiperazinesand peptide-peptoid chimera by Ugi-multi-com-ponent-reactions. Org. Biomol. Chem., 14(48),11336-11341.

Treutler, H., Tsugawa, H., Porzel,A., Gorzolka, K.,Tissier, A., Neumann, S. & Balcke, G. U. Discov-ering regulated metabolite families in untargetedmetabolomics studies. Anal. Chem. 88(16), 8082-8090.

42

Doctoral Theses 2015Heinke, Ramona: Mass spectrometry, biologicalscreening and informatics of prenylated naturalproducts. Martin-Luther-Universität Halle-Wit-tenberg, Naturwissenschaftliche Fakultät II, Insti -tut für Chemie, 22.04.2015

Nin Brauer, Martin Claudio: New post conden-sation reactions of Biginelli three and Ugi fourcomponent products. Martin-Luther-UniversitätHalle-Wittenberg, Naturwissenschaftliche Fa -kultät II, Institut für Chemie, 04.11.2015

Rausch, Felix: 3 D modeling of the putative hu-man surfactant proteins SP-G and Sp-H and sim-ulations in a pulmonary surfactant model sys-tem. Martin-Luther-Universität Halle-Witten-berg, Naturwissenschaftliche Fakultät II, Institutfür Chemie, 30.09.2015

Vasilev, Dimitar: Synthesis of isoprenyl diphos-phate surrogates as potential inhibitors of prenylconverting enzymes. Martin-Luther-UniversitätHalle-Wittenberg, Naturwissenschaftliche Fa -kul tät II, 29.05.2015

Wanderley Neves Filho, Ricardo Antonio: Totalsynthesis of natural products with Ugi reactions.Martin-Luther-Universität Halle-Wittenberg,Naturwissenschaftliche Fakultät II, Institut fürChemie, 28.05.2015

Publications 2016Al-Fatimi, M., Ali, N. A. A., Kilian, N., Franke, K.,Arnold, N., Kuhnt, N., Schmidt, J. & Lindequist,U. Ethobotany, chemical constituents and bio-logical activities of the flowers of Hydnora abys -si nica A.Br. (Hydnoraceae). Die Pharmazie 71.222-226.

Al-kaf, A. G., Crouch, R. A., Denkert, A., Porzel,A., Al-Hawshabi, O. S. S., Ali, N. A. A., Setzer, W. N.& Wessjohann, L. Chemical composition and bi-ological activity of essential oil of Chenopodiumambrosioides from Yemen. Am. J. Essential OilsNat. Prod. 4, 20-22.

Arnold, N., Palfner, G., Kuhnt, C. & Schmidt, J.Chemistry of the earthy odour of basidiomata ofCortinarius hinnuleus (Basidiomycota,Agaricales)Österr. Z. Pilzk. - Austrian J. Mycol. 25, 5-10.

Bensing, C., Mojić, M., Gómez-Ruiz, S., Carralero,S., Dojčinović, B., Maksimović-Ivanić, D., Mijatović,S. & Kaluđerović, G. N. Evaluation of functional-ized mesoporous silica SBA-15 as a carrier sys-tem for Ph3Sn(CH2)3OH against the A2780 ova -rian carcinoma cell line. Dalton T. 45, 18984-18993. doi:10.1039/C6DT03519A

Bernstein, H.-G., Hildebrandt, J., Dobrowolny, H., Steiner, J., Bogerts, B. & Pahnke, J. Morphometricanalysis of the cerebral expression of ATP-bind-ing cassette transporter protein ABCB1 in chro -nic schizophrenia: Circumscribed deficits in thehabenula. Schizophr. Res. 177, 52-58.doi:10.1016/j.schres.2016.02.036.

Bilova, T., Lukasheva, E., Brauch, D., Greifenhagen,U., Paudel, G., Tarakhovskaya, E., Frolova, N., Mit-tasch, J., Balcke, G. U., Tissier, A., Osmolovskaya,N., Vogt, T., Wessjohann, L. A., Birkemeyer, C.,Milkowski, C. & Frolov, A. A snapshot of theplant glycated proteome: structural, functional,and mechanistic aspects. J. Biol. Chem. 291,7621-7636.

Bitchagno, G. T. M., Tankeo, S. B., Tsopmo, A., SimoMpetga, J. D., Tchinda, A. T., Fobofou, S. A. T., Nku -ete, A. H. L., Wessjohann, L. A., Kuete, V. & Tane, P.Ericoside, a new antibacterial biflavonoid fromEri ca mannii (Ericaceae). Fitoterapia 109, 206-211.

Dieckow, J., Brandt, W., Hattermann, K., Schob,S., Schulze, U., Mentlein, R., Ackermann, P., Sel, S.& Paulsen, F. P. CXCR4 and CXCR7 mediateTFF3-induced cell migration independently fromthe ERK1/2 signaling pathway. Invest. Ophthal-mol. Vis. Sci. 57, 56-65.

Domik, D., Thürmer, A., Weise, T., Brandt, W., Da -niel, R. & Piechulla, B. A terpene synthase is in-volved in the synthesis of the volatile organiccompound sodorifen of Serratia plymuthica4Rx13. Frontiers in Microbiology 7: 737. doi: 10.3389/fmicb.2016.00737.

Edeler, D., Bensing, C., Schmidt, H. & Kaluđerović,G. N. Preparation and in vitro investigations oftriphenyl[ω-(tetrahydro-2H-pyran-2-yloxy)al -kyl]tin(IV) compounds. Appl. Organomet. Chem.doi:10.1002/aoc.3630.

Edeler, D., Kaluđerović, M. R., Dojćinović, B.,Schmidt, H. & Kaluđerović, G. N. SBA-15 meso-porous silica particles loaded with cisplatin in-duce senescence in B16F10 cells. RSC Adv., 6,111031-111040. doi:10.1039/C6RA22596A.

Faden, F., Ramezani, T., Mielke, S., Almudi, I., Nairz,K.,Froehlich, M. S., Höckendorff, J., Brandt, W., Hoehenwarter, W., Dohmen, R. J., Schnittger, A.& Dissmeyer, N. Phenotypes on demand viaswitchable target protein degradation in multi-cellular organisms. Nature Comm. 7: 12202.

Farag, M. A., Handoussa, H., Fekry, M. I. & Wessjo-hann. L. A. Metabolite profiling in 18 Saudi datepalm fruit cultivars and their antioxidant poten-

tial via UPLC-qTOF-MS and multivariate dataanalyses. Food Funct. 7, 1077-1086.

Farag, M. A., Otify, A., Porzel, A., Michel, C. G., El-sayed, A. & Wessjohann, L. A. Comparative me -ta bolite profiling and fingerprinting of genus Pas-siflora leaves using a multiplex approach ofUPLC-MS and NMR analyzed by chemometrictools. Anal. Bioanal. Chem. 408, 3125–3143.

Farag, M. A., Porzel, A., Al-Hammady, M. A., He gazy,M.-E. F., Meyer, A., Mohamed, T. A., Westphal, H. &Wessjohann, L. A. Soft corals biodiversity in theegyptian red sea: A comparative MS and NMRmetabolomics approach of wild and aqua riumgrown species. J. Proteome Res. 15, 1274–1287.

Fobofou, S. A. T., Harmon, C. R., Nkuete Lonfouo,A. H., Franke, K., Wright, S. M. & Wessjohann, L.A. Prenylated phenyl polyketides and acyl phlo -ro glucinols from Hypericum peplidifolium. Phy-tochemistry 124, 108-113.

Fobofou, S. A. T. Franke, K., Porzel, A., Brandt, W.& Wessjohann, L. A. Tricyclic acylphloroglucinolsfrom Hypericum lanceolatum and regioselectivesynthesis of Selancins A and B. J. Nat. Prod. 79,743-753.

Fröhlich, C., Zschiebsch, K., Gröger, V., Paarmann,K., Steffen, J., Thurm, C., Schropp, E.-M., Brüning,T., Gellerich, F., Radloff, M., Schwabe, R., Lach-mann, I., Krohn, M., Ibrahim, S. & Pahnke, J. Acti-vation of mitochondrial complex II-dependentrespiration is beneficial for a-synucleinopathies.Mol. Neurobiol. 53, 4728-4744.doi:10.1007/s12035-015-9399-4.

Frolov, A., Bilova, T., Paudel, G., Berger, R., Balcke,G., U., Birkemeyer, C. & Wessjohann, L., A. Earlyresponses of mature Arabidopsis thaliana plantsto reduced water potential in the agar-basedpolyethylene glycol infusion drought model. J.Plant Physiol. 208, 70-83 (2017)http://dx.doi.org/ 10.1016/j.jplph.2016.09.013.

Frolov, A., Bilova, T., Paudel, G., Greifenhagen, U.,Lukasheva, E., Schilyaev, N., Brauch, D., Soboleva,A., Didio, A., Chantseva, V., Mavropolo-Stolya ren -ko, G., Grishina, T., Smolikova, G., Osmolovskaya, N., Balcke, G. U., Milkowski, C., Stefanov, V., Med- vedev, S., Birkemeyer, C. & Wessjohann, L. A. Im-pact of plant proteine glycation in ageing andstress response: potential mechanisms, biochem-istry and biological role. Acta Naturae 8, 225.

Gladilovich, V., Greifenhagen, U., Sukhodolov, N.,Selyutin, A., Singer, D., Thieme, D., Majovsky, P.,Shirkin, A., Hoehenwarter, W., Bonitenko, E., Po -dolskaya, E. & Frolov, A. Immobilized metal affi-

Publications and other Activities

of the Department Bioorganic Chemistry

Page 23: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

4544

Publications 2016Weigl, S., Brandt, W. & Langhammer, R., Roos, W.The vacuolar proton-cation exchanger EcNH -X1 generates pH-signals for the expression ofse condary metabolism in Eschscholzia califor-nica. Plant Physiol. 170, 1135-1148.

Wessjohann, L. A., Morejón, M. C., Ojeda, G. M.,Rhoden, C. R. B. & Rivera, D. G. Applications ofconvertible isonitriles in the ligation and macro-cyclization of multicomponent reaction-derivedpeptides and depsipeptides. J. Org. Chem. 81(15),6535-6545.

Wessjohann, L. A., Wild, H., Ferreira, L. A. &Schrekker, H. S. Synthesis of a-alkenyl-b-hydroxyadducts by a-addition of unprotected 4-bro mo -crotonic acid and amides with aldehydes and ke-tones by chromium(II)-mediated reactions. Appl.Organomet. Chem. 30(8) 674-679.

Zmejkovski, B. B., Pantelić, N., Filipović, L., Aran -đelović, S., Radulović, S., Sabo, T. J. & Kalu đe rović,G. N. In vitro anticancer evaluation of plati -num(II/IV) complexes with diisoamyl ester of(S,S)-ethylenediamine-N,N’-di-2-propanoic acid.Anti-Cancer Agents Med. Chem.doi: 10.2174/1871520616666161207155634.

Bookchapters 2016Bilova, T., Greifenhagen, U., Paudel, G., Lukasheva,E., Brauch, D., Osmolovskaya, N., Tarakhovskaya,E., Balcke, G. U., Tissier,A., Vogt, T., Milkowski, C.,Birkemeyer, C., Wessjohann, L. & Frolov,A. Gly-cation of plant proteins under environmentalstress - methodological approaches, potentialmechanisms and biological role. In: Abiotic andBiotic Stress in Plants - Recent Advances andFuture Perspectives (Shanker, A. K. & Shanker,C., eds) Rijeka, InTech, 2016. ISBN 978-953-51-2250-0.Doi: 10.5772/61860.

Pillen, K., Sonntag, N., Flügel, C., Tissier, A.-L. &Wessjohann, L. Der WissenschaftsCampus Halle- pflanzenbasierte Bioökonomie: vom Molekülzur Gesellschaft - Wege zu einer pflanzenba sier -ten Wirtschaft. In: Bioökonomie:Welche Bedeu- tung haben die Agrar- und Forstwissenschaften? (Christen, O., ed.) In: Agrarspectrum des DAF48, 99-112, ISBN: 978-3-7690-5049-3

Master Theses 2016Eckert, Iris: Chemoinformatic analysis of diphos-phate recognition and consequences for prenyl-transferases. Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III,Institut für Informatik, 04.10.2016

Hmedat, Ali N.: In vitro anticancer screening oflipopeptides. Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I,Institut für Pharmazie, 16.09.2016

Jänicke, Paul: Mesoporus silica nanoparticlesgrafted with plant natural products and extracts.Martin-Luther-Universität Halle-Wittenberg,Naturwissenschaftliche Fakultät II, Institut fürChemie, 15.03.2016

Kalina, Mathias: Bioaktive Peptoide durch Multi-komponentenreaktionen. Martin-Luther-Univer-sität Halle-Wittenberg, NaturwissenschaftlicheFakultät II, Institut für Chemie, 15.03.2016

Kammel, Michelle: Exploitation of the biocat-alytic potential of para-Hydroxybenzoate Hy-droxylase (pHBH). Martin-Luther-UniversitätHalle-Wittenberg, Naturwissenschaftliche Fa -kultät I, Institut für Biochemie und Biotechnolo-gie, 05.10.2016

Kautz, Hans-Christian: Lineare mehrfache Mul-tikomponentenreaktionen zu Peptoid-Peptid-Oligomeren. Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät II,Institut für Chemie, 04.03.2016

Wussow, Sebastian: Development of a hybridimplicit/explicit solvation model. Martin-Luther-Universität Halle-Wittenberg, Naturwissen -schaftliche Fakultät III, Institut für Informatik,30.08.2016

Doctoral Theses 2016Bauer, Anne-Katrin: Biocatalytic synthesis oftaste-modifying flavonoids. Martin-Luther-Uni-versität Halle-Wittenberg, Naturwissen schaft -liche Fakultät II, Institut für Chemie, 04.11.2016

Fobofou Tanemossu, Serge Alain: Metabolomicanalysis, isolation, characterization and synthesisof bioactive compounds from Hypericum spe -cies (Hypericaceae). Martin-Luther-UniversitätHalle-Wittenberg, Naturwissenschaftliche Fa -kultät II, Institut für Chemie, 14.12.2016

Heym, Peter-Paul: In silico characterization ofAtPARP1 and virtual screening for AtPARP in-hibitors to increase resistance to abiotic stress.Martin-Luther-Universität Halle-Wittenberg,Naturwissenschaftliche Fakultät II, Institut fürChemie, 12.12.2016

Kufka, Julia: Modifizierung von prenylierendenEnzymen. Martin-Luther-Universität Halle-Wit-tenberg, Naturwissenschaftliche Fakultät I, Insti-tut für Pharmazie, 03.05.2016

Kufka, Rainer (geb. Preusentanz): Synthese vonTubulysin-Derivaten, Chimären und -Konjugatenmit Targeting-Komponenten. Martin-Luther-Uni-versität Halle-Wittenberg, Naturwissen schaft li -che Fakultät II, Institut für Chemie, 08.11.2016

Ludwig, Steve: Synthesis and biocatalytic conver-sion of natural and artificial isoprenoid diphos-phates. Martin-Luther-Universität Halle-Witten-berg, Naturwissenschaftliche Fakultät II, Institutfür Chemie, 05.12.2016

Stark, Sebastian: Utilization of the Ugi four-component reaction for the synthesis of lipo -philic peptidomimetics as potential antimicro-bials. Martin-Luther-Universität Halle-Witten-berg, Naturwissenschaftliche Fakultät II, Institutfür Chemie, 18.04.2016

Welsch, Sebastian: Novel postmodifications ofthe Ugi reaction. Martin-Luther-Universität Hal -le-Wittenberg, Naturwissenschaftliche FakultätII, Institut für Chemie, 05.04.2016

Publications and other Activities

of the Department Bioorganic Chemistry

Bild der Wissenschaft im Dezember 2016

Page 24: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

Die pflanzliche Entwicklung ist in genetischen Pro-grammen festgelegt, jedoch durch biotische undabio tische Umweltfaktoren weitgehend modulierbar.

Dadurch ist gewährleistet, dass Entwicklungsprozesse an diejeweiligen Standortbedingungen angepasst werden undSchutz- beziehungsweise Anpassungsreaktionen in Stress-situationen möglich sind, was bei der zumeist sessilen Le -bensweise von Pflanzen von besonderer Bedeutung ist. Vor -aussetzung für die Einleitung dieser Prozesse ist die Fähigkeitvon Pflanzen, Umweltfaktoren und deren Veränderung spe -zifisch zu erkennen und über Signaltransduktionsnetzwerkein entsprechend modifizierte Genexpressions-, Protein- undMetabolitenmuster zu übersetzen. Die Untersuchung dermolekularen Mechanismen dieser Vorgänge steht im Mittel -punkt der Forschungsarbeiten der Abteilung. Dabei liegt derSchwerpunkt im Bereich biotischer Umweltfaktoren.

Pflanzen erkennen potentielle Pathogene mittels Plasma -membran-lokalisierter Rezeptoren, welche typische mikrobi -elle Strukturen perzipieren, die für deren Biologie wichtigsind, in der Pflanze aber nicht existieren. Beispiele für diesesogenannten Mikroben- oder Pathogen-assoziierten moleku-laren Muster (MAMPs oder PAMPs) sind Fragmente des Chi -tins oder Glukans der pilzlichen Zellwände oder des Flagel -lins der bakteriellen Flagellen. Die Bindung von PAMPs anihre korrespondierenden Rezeptoren löst eine aus vielenKomponenten bestehende Abwehrreaktion aus, was in derPAMP-vermittelten Immunität (PTI) resultiert.

Erfolgreiche Pathogene können die PTI mit Hilfe von Effek-toren unterdrücken, die sie entweder in den Apoplasten se -kretieren oder sogar in die Pflanzenzelle injizieren, wo sie mitErkennungs- oder Signaltransduktions-Vorgängen interfe rie -ren und die Pflanze empfindlich gegenüber dem Pathogenmachen. Dieses Phänomen ist als Effektor-vermittelte Sus -zeptibilität bekannt. Im Laufe der Koevolution mit ihren Pa -thogenen haben Pflanzen Mechanismen entwickelt, die esihnen ermöglichen, spezifische Effektoren mit Hilfe von Re-sistenzproteinen zu erkennen und eine sehr effektive Resis -tenzreaktion gegen Pathogene auszulösen, die diesen Effek-

tor exprimieren. Dadurch kommt es zur Wirtsresistenz, dieauch als Effektor-vermittelte Immunität bezeichnet wird.Mehrere Arbeitsgruppen der Abteilung untersuchen Effek-toren, Erkennungs-, Signaltransduktions- und Genakti vie -rungsprozesse, die bei den verschiedenen Wechselwirkun-gen von Pflanzen und Pathogenen eine Rolle spielen.

Reaktionen von Pflanzen auf Umweltfaktoren drücken sichletztendlich in einem veränderten Muster von Metabolitenaus. Darüber hinaus sekretieren Pflanzenwurzeln eine großeAnzahl von Stoffen in die Rhizosphäre. Auch das Muster dersekretierten Stoffe ist genetisch determiniert und wird durchUmweltfaktoren moduliert. Es wird vermutet, dass Kompo-nenten dieser sogenannten Exsudate an der chemischenKommunikation zwischen verschiedenen Organismen betei -ligt sind. Um diese Veränderungen detektieren zu können,wurden Methoden zur umfassenden Analyse von Metabo-liten mittels Massenspektrometrie etabliert. Das umfassendeMetaboliten-Profiling erforderte die Etablierung einer Bioin-formatik- und Metabolomics-Plattform, die eine Erstellungvon Datenbanken und Anwendungen für eine Analyse undAnnotation insbesondere von massenspektrometrischenMessdaten beinhaltet.

47

Plant development is genetically determined, but theseprograms are modulated to certain degree by abioticand biotic environmental factors. Thereby, develop-

mental programs are adapted to specific local conditionsand protective as well as defense reactions are initiated dur-ing stress situations. This is a particular advantage for themostly sedentary living plants. A prerequisite for the initia-tion of such adaptation and defense processes is the abilityof plants to specifically recognize environmental factors, aswell as their variation and to subsequently activate signaltransduction networks that translate the perceived signalinto appropriately modified gene expression, protein andmetabolite patterns. The investigation of the molecular me -chanisms underlying these processes is the main researchtopic of the department, with the focus in the area of bioticinteractions.

Plants recognize potential pathogens through plasma mem-brane-localized receptors, which perceive typical microbialstructures that are of importance for microbial biology, butabsent from plants. Examples for such microbe- or patho -gen-associated molecular patterns (MAMPs or PAMPs) arefragments of chitin or glucan from fungal cell walls or of fla-gellin from bacterial flagella. Binding of PAMPs to their cor-responding receptors triggers the initiation of a multi-com-ponent defense response, resulting in PAMP-triggered im-munity (PTI).

Successful pathogens are able to suppress PTI by secretingeffectors into the plant apoplast or injecting them into plantcells, where they affect recognition or signaling processesand thereby render the plant susceptible to the correspon-ding pathogen. This phenomenon is called effector-trig-gered susceptibility. During co-evolution with their patho -gens plants evolved mechanisms to recognize specific ef-fectors by resistance proteins. This perception event initiatesan efficient defense response against pathogens expressingthese effectors, resulting in host resistance or effector-trig-gered immunity. The work of several research groups of thedepartment focuses on the analysis of effectors, as well as

of recognition, signal transduction and gene activation pro -cesses in plant-pathogen interactions.

Plant responses to environmental factors finally result in al-tered patterns of metabolites. Furthermore, plant roots se-crete a large number of compounds into the rhizosphere. Al -so the pattern of these secreted compounds is geneticallydetermined and modulated by environmental factors. In fact,it is believed that exudate constituents are involved in chem-ical communication between different organisms. In orderto be able to directly monitor such alterations, mass spectro -metry-based methods have been established allowing thecomprehensive analysis of metabolites. Comprehensive me -tabolite profiling required the establishment of metabol o -mics and bioinformatics platforms including the develop-ment of appropriate databases and tools for analysis and an-notation of primarily mass spectrometry data.

46

Department of Stress and Developmental BiologyHead: Professor Dierk ScheelSecretary: Susanne Berlin

Abteilung Stress- und EntwicklungsbiologieLeiter: Professor Dierk ScheelSekretariat: Susanne Berlin

Page 25: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

Fungal secondary metabolismAll key enzymes of the major fungal sec-ondary metabolic pathways are encodedin the Rhynchosporium genomes, i.e., ninepolyketide synthases (PKS), four non-ribo-somal peptide synthetases (NRPS), threePKS-NRPS hybrids, one terpene cyclaseand three dimethylallyl tryptophan syn-thases. Their genes often occur in clusterswith genes for different modifying en-zymes, transcription factors and trans-porters. Three additional genes may be ofparticular interest for host specificity, a R.commune-specific PKS gene as well as aPKS and a NRPS gene, both occurring iso-late-specifically. Comparative analyses ofthe metabolic profiles of wild-type andPKS deletion mutants are being carriedout to resolve identity and function of thecorresponding polyketide products.

Fungal effector proteinsEffector proteins are secreted during hostcolonization to optimize the fungal livingconditions. A sub-group, species-specifi-cally occurring effector proteins, are thecore issue of our work. About 8% of the R.commune genes code for the fungal se-cretome (similar numbers apply to theother Rhynchosporium species). These in-

clude the genes NIP1, NIP2und NIP3, whichwe previously described to contributequantitatively to fungal virulence. NIP3 ispresent as a single gene in all BCG spe -cies, whereas NIP1 is only found in R. com-mune (albeit in only about half of the iso-lates tested worldwide) and in R. ortho -sporum. Both gene products are stimula-tors of the H+-ATPase in the plasma mem-brane of host cells. NIP2, whose mode ofaction is not known, also occurs as a sin-gle gene in the CCG species, whereas theBCG species harbor NIP2 gene families ofup to ten members. These families evolvedlargely before the divergence of the BCGspecies. Therefore, they – as well as NIP1und NIP3 – could have been important inthe host jump of the common ancestor. Tofunctionally analyze the NIP2 genes we arecurrently developing an RNAi-based genesilencing system. Using in silico methodswe identified seven R. commune-specificeffector genes (RcSPs). Surprisingly, fun-gal deletion mutants showed strongergrowth and some also caused an earlierdevelopment of disease symptoms thanthe wild-type (Fig. 3). The function of theseeffectors therefore appears to lie in atten-uating fungal development. This suggeststhat optimizing fungal development in the

host plants aims at extending the bio tro -phic phase of pathogenesis at the ex-pense of the necrotrophic phase.

RésuméRhynchosporium appears to exemplify thatadaptation of a microorganism does notintend to provoke maximum damage to itsplant host. Stabilization of fungal biotro -phic development by secreted effectorsmay suggest that already the ancestors ofthe fungus lived as endophytes and not aspathogens on their original host plant.

Fünf Rhynchosporium-Arten wurden bisher beschrieben, die mit hoher Wirtsspezifität eine Blattfleckenkrankheit aufverschiedenen Grasarten einschließlich der Getreide Gerste und Roggen verursachen. Ihre Genome wurden auf dasVorkommen von Genen untersucht, die eine Rolle bei der Anpassung an die jeweilige Wirtspflanze spielen könnten.

Dazu gehört die genetische Maschinerie zur sexuellen Rekombination ebenso wie zellwandabbauende Enzyme und artspe-zifisch vorkommende Enzyme des Sekundärstoffwechsels. Darüber hinaus wurden durch Genomvergleich Effektorgene iden-tifiziert, die spezifisch nur in R. commune vorkommen, deren Deletion die Pilzentwicklung jedoch überraschenderweise ver-langsamt. Die durch die Effektoren offenbar bewirkte Ausdehnung der biotrophen Phase der Pilzentwicklung zu Lasten dernekrotrophen Phase könnte darauf hindeuten, dass der Pilz bzw. ein gemeinsamer Vorfahr ursprünglich als Endophyt lebte.

CollaboratorsMarius Felder, StefanTaudien, Matthias PlatzerLeibniz Institute on Aging –Fritz Lipmann Institute, Jena,Germany

Martin Münsterkötter, Ulrich GüldenerInstitute of Bioinformaticsand Systems Biology,Helmholtz Center Munich,Neuherberg, Germany

Thomas Wolf, Ekaterina ShelestLeibniz Institute for NaturalProduct Research and Infec-tion Biology – Hans Knöll In-stitute, Jena

Kevin AshelfordUniversity of Cardiff, UK

Anna AvrovaThe James Hutton Institute,Dundee, Scotland

Bruce D.L. FittUniversity of Hartfordshire,Hatfield, UK

Richard J. HarrisonNIAB EMR, East Malling, UK

Kevin M. King, David J. HughesRothamsted Research, Harp-enden, UK

Konrad H. PaskiewiczUniversity of Exeter, UK

49

The Rhynchosporium leaf spot diseaseHost-specific fungi of the genus Rhyncho -sporium cause a leaf spot disease on ce-reals and on a variety of other sweet gras -ses (Poaceae). For barley yield losses ashigh as 40% have been reported, although5-10% are probably more common ac-counting for a loss in earnings of 450-500Mio €/a in the EU countries. The fungalspecies fall into two major phylogeneticgroups that can be discerned by theirspore shapes. The beaked conidia group(BCG) encompasses R. commune, R. seca -lis and R. agropyri, which are pathogenicto barley (Hordeum vulgare), rye (Secalecereale) and different couch gras ses (Ag -ropyron spp.), respectively. These evolu-tionary young species presumably origi-nate from the host jump of a common an-cestor in Northern Europe. The cylindricalconidia group (CCG) contains R. lolii andR. orthosporum, which are pathogen ic toperennial ryegrass (Lolium peren ne) andorchard grass (Dactylis glomerata), re-spectively. R. commune, the best-studiedmember of the genus, grows extracellu-larly between cuticle and outer epidermalcell walls of barley leaves (Fig. 1). The typ-ical disease symptoms occur after a longsymptomless period that can last for sev-eral months in the field. Its mode of lifeclassifies the fungus as a he mibiotroph.

Comparative genomics of the Rhyn-chosporium genusThe close relationship and evolutionaryhistory of the BCG species make themmost suitable for unraveling of the mech-anisms, which enable the individual fungito adapt to their host species. Therefore,the genomes of the Rhynchosporium spe -cies were sequenced and annotated abinitio. The genome of R. commune isolateUK7 was developed as the reference gen -ome with a total size of 55 Mb and c. 30%protein-coding sequence amounting toabout 12,200 genes. To approach thequestion of host specificity the genomeswere screen ed for genes of meiosis andsexual reproduction, of cell-wall degrad-ing enzymes and secondary metabolismand of effector proteins.

PhylogenyMultilocus DNA sequence comparisons al-lowed us to confirm the classification ofthe Rhynchosporium genus into the As-comycete class of Leotiomycetes and toestablish the relationship to more distantlyrelated fungal species. Genome-wide sin-gle nucleotide polymorphisms then re-solved the intra-genus phylogeny (Fig. 2):speciation of R. agropyri occurred shortlybefore R. commune and R. secalis di-verged, but long after the evolution of theCCG branch.

Sexual reproductionSexual stages of Rhynchosporium havenever been observed. Nevertheless bothmating type loci characterizing hetero -thallic Ascomycetes, MAT1-1 and MAT1-2,

were found in equimolar ratio in mostfield populations. We now detected thatthe entire genetic machinery required forsexual reproduction and, hence, for gen-erating biological variability is present inthe Rhynchosporium genome.

Host cell wall degradationThe number of enzymes encoded in theRhynchosporium genome that are in-volved in the degradation of host cellwalls turned out to be characteristic forhemibiotrophic and biotrophic monocot-infecting fungi. However, clues for a pos-sible role in the expression of fungal hostspecificity are missing.

48

Molecular Communication in Plant-Pathogen InteractionsHead: Wolfgang Knogge

Jan HoffmannBachelor Student

Susanne KirstenTechnical Assistant

Daniel PenselinPhD Student

Nadine WöltjeBachelor Student

Group Members

Fig. 1: Rhynchosporium commune on a barley primary leaf. The micrographs (up-per panels) show fungal structures stained with Trypan Blue: germinating sporesand penetrating germ tubes (left), subcuticular hyphae starting stroma deve-lopment (center), advanced state of stroma development (right). Severe diseasesymptoms 14 dpi under growth chamber conditions (bottom panel). White barsrepresent 50 µm.

Fig. 2: Phylogenetic tree of the genus Rhynchosporium. y BP: years before present.

Fig. 3. Growth accelerationupon effector gene deletion.Left panel: Fungal biomass(with 90% confidence inter-vals) after 14 d of pathogene-sis of wild-type (WT) and dele-tions mutants DRcSP1-9. Right panel: Biomass increaseof WT and deletion mutantDRcSP9 during pathogenesisand disease phenotype 14 dpi(left: control leaves, upperright: DRcSP9 - fully necroticleaf, lower right: WT - leaf withchlorotic and necrotic sec -tions).

Page 26: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

zymes for the biosynthesis of antimicro-bial metabolites (e.g. camalexins, indoleglucosinolates). This suggests a MAPKphospho-mediated control of the defensemetabolome (Lee et al 2015). Phosphory-lation of several WRKY transcription fac-tors play a role in transcriptional control ofgene expression. In the case of WRKY46,phosphorylation by MAPKs induces itsdegradation (Sheikh et al 2016). We alsoidentified a number of MAPK-targeted VQ-motif-containing proteins (MVQs) that in-teract with specific members of WRKYtranscription factors and regulate MAMP-

induced gene expression. Some of theseMVQs show nucleo-cytoplasmic localiza-tion while a few exhibit exclusive nuclearfoci signals (Fig. 1); the latter may be sitesof active transcription. These MVQs arethus likely transcriptional co-regulators.With the help of our IPB Proteome Analyt-ics group, we want to detect the phospho-rylation sites in the MAPK targets and elu-cidate how MAPKs reprogram cellularevents to orchestrate defense signaling.

AvrRpt2 is one of the first Pseudomonassyringae effector proteins demonstrated

to be delivered into host cells. We recentlyuncovered a novel (potential) virulencefunction of AvrRpt2, where it specificallyblocked MAMP-induced activation of MPK4and MPK11, but not of MPK3 and MPK6(Fig. 2). This distinct inhibition of a subsetof MAPKs presumably enables the patho -gen to fine-tune plant defense control. Im-portantly, this MAPK inhibiting activity isindependent of the known immunity sup-pressing functions of AvrRpt2 such as au -xin signaling modulation and cleavage ofthe membrane-localized defense regula-tor RIN4. Plants engineered to expressAvrRpt2 are more susceptible to patho -gens (Fig. 2). Since homologs are found inseveral important pathogens of crops andplant-associated bacteria, AvrRpt2-like ac-tivities may contribute more to plant-mi-crobe interactions than previously unan-ticipated.

Altogether, the long term aim is to improvedisease resistance in crop plants by gar-nering the knowledge gained from ourstudies on defense and pathogenesis stra -tegies of the host and the pathogen, re-spectively.

Pflanzen erkennen Mikroorganismen aufgrund von Pathogen-abgeleiteten Signalen, die von spezifischen Rezeptorenin der pflanzlichen Membran gebunden werden. Diese Bindung induziert über komplexe Signaltransduktionswege dieExpression von Abwehrgenen und bewirkt dadurch eine Aktivierung multipler Abwehrreaktionen. Charakteristisch für

die Signaltransduktion sind die transiente Erhöhung der zytosolischen Kalziumkonzentration, die Aktivierung von Ionenkanä -len und MAP-Kinasen sowie die Akkumulation von reaktiven Sauerstoffspezies. Ziel unserer Forschungsarbeiten ist es, Kompo -nenten von Abwehr-Signalwegen zu identifizieren und deren Funktion aufzuklären. Beispiele für kürzlich erzielte Ergebnissesind die Identifizierung bisher unbekannter MAP-Kinase-Substrate und pathogener Virulenzfunktionen. Langfristig könnensolche Erkenntnisse zur Herstellung von Pflanzen mit erhöhter Krankheitsresistenz in der Landwirtschaft genutzt werden.

CollaboratorsUlla Bonas, Ingo Heilmann, Gunther ReuterUniversity of Halle, Germany

Gitta CoakerU.C. Davis, USA

Hillel FrommTel Aviv University, Israel

Kazuhito FujiyamaOsaka University, Japan

Magdalena KrzymowskaInstitute of Biochemistry and Biophysics,Poland

David MackeyOhio State University, USA

Stefanie RanfTU Munich, Germany

Tina RomeisFreie Universität Berlin, Germany

Imre SomssichMPIZ Cologne, Germany

Nese SreenivasuluInternational Rice Research Institute, Philip-pines

Joachim UhrigUniversity of Göttingen, Germany

51

As plants are the basis for all food sources,the challenges to feed the increasing worldpopulation will rely mostly on optimizingcrop yield. Plants recognize pathogensand other adverse conditions to mountcountering measures to restrict patho -gens and mitigate stress. Pathogens, onthe other hand, deploy effectors that sup-press plant defense signaling and manip-ulate other plant pathways for their ownbenefit. Under favorable environmentalconditions, this can lead to successful pa -thogen ingress and proliferation. Infectionrelies on the interactions between hosts,pathogens and the environment, which isconceptualized as the disease trianglemodel in plant pathology. Our research in-terest centers on two of the early signalingevents induced after the recognition ofconserved pathogen-derived molecules(typically termed Microbe-Associated Mo-lecular Patterns, MAMPs): viz. calcium andmitogen-activated protein kinase (MAPK)signaling. In parallel, we also study patho -gen effectors that target and inactivateMAPK signaling.

The activation of ion channels/pumps atthe plasma membrane is one of the earli-est responses after MAMP perception – in-cluding an increase in cytosolic calcium.Calcium is an ubiquitous ion but also a se cond messenger. Calcium sensing pro-teins detect the changes in cellular cal-cium levels and translate this to down-stream responses, e.g. defense gene ex-pression. We established a multiwell-platesystem (Trempel et al 2016a) to monitorMAMP-induced cytosolic calcium increasein Arabidopsis plants. In a high-through-put genetic screen for plants with altered

calcium signature, we isolated several mu-tants in MAMP receptors and receptor-as-sociated components (e.g. the receptor-like cytoplasmic kinases, BIK1 and PBL1).Mutations in N-glycosylation pathwaysneeded for receptor quality control werealso identified (Trempel et al 2016b).These findings highlight the potential ofthis screen to identify receptors (and as-sociated components) for novel/orphanMAMPs, which we proved by identifyingthe first putative plant lipooligosaccharide(LPS) receptor (Ranf et al 2015). The struc-tural differences to its animal counterpartindicate a convergent evolution for LPSsensors and also that it is not possible tosimply use homology-based cloning toidentify the corresponding receptors. The

search for LPS receptors in both plantsand animals has further been plagued bycontamination problems of LPS prepara-tions, including commercial sources (Ranfet al 2016).

Downstream of calcium, MAMPs inducethe activation of four Arabidopsis MAPKs,MPK3, MPK4, MPK6 and MPK11. As theseMAPKs also govern growth and develop-ment processes, a conundrum in MAPKstudies is the control of signaling speci-ficity. The appropriate response is pre-sumably controlled, in part, by pathway-specific MAPK substrates. Our goal is toidentify the MAPK substrates with de-fense-related roles. By expressing a con-stitutively-active MAPK-kinase, we mimicin vivo activation of MPK3 and MPK6 inplants without the complications of otherpathogen-induced pathways. These plantsshow a cellular reprogramming at multiplelevels of gene and protein expressionsuch as transcriptional, post-transcription -al, translational, post-translational steps,and also re-compartmentalization. Notab -ly, proteins controlling defense were alsodetected, such as key regulators and en-

50

Cellular SignalingHeads: Dierk Scheel & Justin Lee

Manaswita BaruahPhD Student, Erasmus Mundus Fellow

Nicole BauerTechnical Assistant

Lennart Eschen-LippoldPostdoctoral Scientist

Samuel GrimmMaster Student

Marina HäußlerTechnical Assistant

Xiyuan JiangPhD Student

Annekatrin MissalPhD Student

Florian RistMaster Student

Naheed TabassumPhD Student

Fabian TrempelPhD Student

Lore WestphalSenior Scientist

Martin WeyhePhD Student

Group Members

Fig. 1: Corresponding to their function as transcriptional co-regulators, the MAPK-targe-ted VQ-motif-containing proteins, MVQ1 and MVQ8, show nucleocytoplasmic or nu-clear-speckled localization, respectively. For visualization, the MVQs were transientlyexpressed in Arabidopsis protoplasts as GFP-fusion proteins (green). To aid orientationof the cellular structures, the nucleus is highlighted (arrow) and chloroplast autofluo-rescence (red) and bright field photos are also included. (Scale bar: 10 µm)

Fig. 2: The Pseudomonas syringae (Ps) effector protein, AvrRpt2, blocks MAMP-in-duced activation of MPK4/11 but not MPK3/6. (A) Activated MAPKs were monitoredin protoplasts expressing the indicated AvrRpt2 homologs (using an antibody thatrecognizes phosphorylated forms of MAPKs, a-pTEpY). Note that the MAPK-inhibit -ing activity is independent of RIN4 cleavage (Compare blue and red arrows) withthe AvrRpt2 homolog from the soil/rhizosphere bacterium, Burkholderia pyrrocinia(Bp). (Aa = an inactive homolog from the oat pathogen, Acidovorax avenae). (B) Plantswith dexamethasone(DEX)-inducible AvrRpt2 expression are more susceptible toBotrytis cinerea infection, suggesting AvrRpt2 interferes with plant defense.

Page 27: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

tans-induced accumulation of the hy-droxycinnamic acid amide coumaroylag-matine (CA). In vitro assays showed thatsynthetic CA inhibits spore germination,but not mycelial growth of P. infestans.This observation implies that, to act as anantimicrobial compound, CA has to bepresent on the leaf surface. Interestingly,in P. infestans-infected potato leaves, CAaccumulates intra-, but not extracellular -ly, suggesting that the host plant potatois not able to secrete CA efficiently.

The biosynthesis of CA in Arabidopsis re-quires the enzyme agmatine coumaroyltransferase (ACT). The gene encodingACT is highly expressed after P. infestansinoculation. Expression analyses revealeda co-expressed gene encoding the mul-tidrug and toxin extrusion (MATE) trans-porter DTX18. Arabidopsis mutants with adefective DTX18 gene are unable to se-crete CA, suggesting that the transporteris required for export of this compound.Expression of both Arabidopsis genes,

ACT and DTX18, but not of ACT alone, inpotato conferred the ability to secrete CAin response to P. infestans infection. Infact, extracellular CA levels in these trans-genic potato plants were up to 20 foldhigher than those in Arabidopsis. Wehave thus identified a second chemicaldefense system in Arabidopsis, which isactivated during the nonhost resistanceresponse against P. infestans.

Der Oomycet Phytophthora infestans ist der Erreger der Kraut- und Knollenfäule, der wirtschaftlich bedeutendsten Kar-toffelkrankheit. Um die Grundlagen der pflanzlichen Abwehr gegen P. infestans zu verstehen, untersuchen wir dieNichtwirtsresistenz der Modellpflanze Arabidopsis thaliana. Dabei konzentrieren wir uns auf frühe Abwehrreaktionen

auf der Blattoberfläche.

Als Antwort auf eine Inokulation mit P. infestans akkumuliert und exportiert Arabidopsis Sekundärmetaboliten. Durch unge-richtetes Metabolitenprofiling wurden Indolderivate identifiziert, die durch den ABC-Transporter PEN3 exportiert werden.Das Hydroxyzimtsäureamid Coumaroylagmatin (CA), das ebenfalls extrazellulär akkumuliert, wird von der Agmatin-Couma-royl-CoA-Transferase synthetisiert. Co-Expressions-Analysen führten zur Identifizierung des MATE-Transporters DTX18, derfür den Export von CA notwendig ist. Durch Expression der Arabidopsisgene ACT und DTX18 in Kartoffelpflanzen gelang derNachweis, dass DTX18 für den Transport von CA verantwortlich ist.

53

Late blight disease, caused by the oo my -cete Phytophthora infestans, is a devas-tating and, economically, the most impor-tant potato disease worldwide. To identifyand characterize resistance mechanismsagainst this destructive pathogen, we areanalyzing responses of the host plant po-tato and the nonhost plant Arabidopsisthaliana.

A susceptible potato can be made moreresistant against P. infestans by pre-treat-ment with the pathogen-associated mo-lecular pattern (PAMP) Pep-13, an oligo -peptide from an extracellular transgluta-minase of the oomycete. Pep-13 inducesstrong local defense responses, such asan oxidative burst, the accumulation ofjasmonic and salicylic acid and hypersen-sitive cell death. Importantly, Pep-13 treat-ment leads to enhanced resistance againstsubsequent infections (Fig. 1).

To elucidate the mechanisms of this en-hanced resistance, a candidate gene ap-

proach was pursued. Microarray analysesrevealed the activation of more than 700genes upon Pep-13 treatment. Functionalanalyses with selected candidate geneswere performed by down-regulating theirexpression in transgenic potato plants byRNA interference or by overexpressingthe genes in potato and other plants.

In our studies, we concentrate on earlyevents in the plant – pathogen interac-tion. Pep-13-activated genes annotatedto encode receptor-like kinases are beinganal yzed, as are genes whose productsmight play a role in preventing pathogenentry. Thus, the importance of secretionfor the formation of callose-containingcell wall fortifications was demonstratedin potato plants with reduced expressionof the syntaxin gene SYR1. In line withthis, genes encoding enzymes for themetabolism of phosphatidylinositides(PIs) are regulated by Pep-13 as well.Since PIs have a report ed role in secre-tory processes, they might be of impor-

tance for the pathogen defense responseas well.

Arabidopsis is able to prevent colonizationby P. infestans. Again, early events in theplant – pathogen interaction are of impor-tance to control pathogen entry. As an es-sential part of the preinvasion resistanceto P. infestans, Arabidopsis accumulatesand secretes indole compounds on its leafsurface (Fig. 2). These indoles were iden-tified by untargeted metabolite profiling incollaboration with the group Metabol o m -ics. They are hydrolysis products of 4-meth oxy indolglucosinolate, generated bythe atypical myrosinase PEN2 and trans-ported to the leaf surface by the ABCtransporter PEN3. The lack of these com-pounds correlates with compromised pe -netration resistance, indicating the impor-tance of chemical defense at the cell pe-riphery.

Untargeted profiling of leaf surface meta -bolites, moreover, revealed the P. infes-

52

Induced Pathogen DefenseHeads: Sabine Rosahl & Dierk Scheel

Melanie DobritzschPhD Student

Ramona LandgrafPhD Student

Andreas MaternPhD Student

Linda NietzschmannPhD Student

Juliane RauschePhD Student

Jasmin ResoBachelor Student

Ulrike SmolkaTechnical Assistant

Group Members

Fig. 1: Model of PAMP-triggeredimmunity in potato.Perception of the PAMP Pep-13 bya putative receptor-like kinase ini -tiates a signal transduction cas -cade, leading to the activation ofdefense genes.

Fig. 2: Chemical defense of Arabidopsis against P. infestans. Upon attempted penetrationby P. infestans, Arabidopsis plants synthesize and export indole and phenolic com-pounds to the pathogen entry site. Model according to Lipka et al. (2005), Stein et al.(2006), Bednarek et al. (2009) and Dobritzsch et al (2016).

CollaboratorsBirgit Dräger, Gerd HauseUniversity of Halle, Germany

Markus Geisler, Felix MauchUniversity of Fribourg, Switzerland

Page 28: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

5554

tabolite family of regulated peaks, or forfamilies of interest, their statistical behav-iour can be examined.

With this portfolio of metabolomics tools,we have become a partner in the BMBFfunded German network of bioinformat-ics infrastructures (de.NBI). Goal of de.NBIis to improve the availability and accessi-bility of bioinformatic tools and services tothe biomedical community.

Together with Dr. Emma Schymanski, wecontinue to organise the CASMI contestseries: the Critical Assessment of SmallMolecule Identification. We publish chal-lenge spectra and invite the communityto submit identification hypotheses for anunbiased comparison of the availabletools. Each CASMI edition is held by a dif-ferent local organisation team with sup-port by Emma Schymanski and SteffenNeumann.

In all of the above developments, we havereproducible research and Open Data inmind. The focus on scripted analyses al-lows to easily repeat all or individual steps.

One challenge combining different dataanalysis methods is that they are imple-mented in various languages and tools notalways with interoperability in mind. TheEU H2020 project PhenoMeNal is devel-oping an efficient e-Infrastructure in bio-medical metabolomics life-sciences. TheIPB is leading a workpackage on integra-tion of metabolomics tools into the Galaxyworkflow system, which is well-estab-lished in the areas of Genomics and Tran-scriptomics data analysis.

While the Galaxy workflow system allowsto combine diverse tools into commonre-usable workflows, the ever growingnumber of sample in today’s metabo - l omics experiments can bring a re-searcher’s desktop computer to its knees.High-performance compute clusters(HPC) are capable of handling large ex-periments, but are not available to all re-searchers. PhenoMeNal is working to runthese workloads in any one of the emerg-ing public and scientific cloud systems,using state-of-the-art software containersfor easy deployment of the metabo lo -mics software tools.

Die Arbeitsgruppe beschäftigt sich mit Datenbanken und Anwendungen für das Management und die Analyse von Me-tabolomicsdaten. Die Auswertungen werden in Java und der Statistiksprache R durchgeführt und durchgängig alsOpen Source zur Verfügung gestellt.

Der erste Schritt in der Verarbeitung von Massenspektrometriedaten ist die Signalverarbeitung, um die Rohdaten in einfachePeaklisten zusammenzufassen und zu annotieren.

Für die biologische Interpretation ist die Identifikation der Metabolite nötig. Das IPB ist Mitglied im MassBank Konsortiumund entwickelt die in-sillico-Methode MetFrag für die Fälle, in denen keine Referenzspektren existieren.Im EU Projekt Pheno-MeNal arbeiten wir mit Partnern an der Etablierung einer effektiven e-Infrastruktur zur Analyse von Metabolomicsdaten undderen Integration mit weiteren -omics Datensätzen aus den Lebenswissenschaften in wissenschaftlichen Cloud-Installatio-nen.

55

Today, mass spectrometry is a key tech-nology for metabolomics research. Due toimmense technological advances in massspectrometry over the last years, theamount and complexity of the data pro-duced has been growing rapidly. We aredeveloping Open Source algorithms, datastandards, databases and tools which arerequired for the analysis of metabolomicsexperiments.

For the software development we use dif-ferent methods, such as the statistics en-vironment R and various Bioconductorpackages (Fig. 1). Compute intensive cal-culations are executed on the IPB cluster.

The first step in a metabolomics data pro-cessing pipeline is the processing of sig-nals, to reduce complex chromatographicdata into peak lists, and align several peaklists from different samples into a data ma-trix. We are co-maintaining the successfulBioconductor package XCMS, which isdownloaded more than 7000 times peryear. We also created the CAMERA pack-age to annotate ion species typicallyfound in electrospray ionisation massspectrometry (ESI-MS). These tools ac-cept raw data from almost any mass spec-trometer after conversion to the openXML data format mzML, or the Excel-com-patible mzTab. The specification, exam-ples and implementations were createdby the community, organised in the Pro-teomics Standards Initiative and includecontributions from the IPB.

XCMS has been celebrating the 10th an-niversary of its initial publication by GarySiuzdak et al. from the Scripps. Currently,XCMS is undergoing a major rewrite toadapt it to today’s ecosystem of interact-ing Bioconductor packages. This is donein close collaboration with Johannes Rai -ner (EURAC, Bozen, Italy), who is modern -ising e.g. the way parallel processing ishandled, or the interaction with the MSn-base package (Laurent Gatto, Cambridge,UK).

Multiple statistical methods can be ap-plied to metabolomics and also multi-omics-data sets, ranging from univariateto multivariate approaches. The statisticalanalysis of metabolomics experiments willreveal a number of interesting metabo-lites. For any further biological interpreta-tion, it is required to identify their struc-ture. The processing and analysis of tan-dem mass spectrometry is a key technol-ogy for the identification of small mole-cules.

The IPB Halle is member of the MassBankconsortium, the first open database ofreference spectra. We develop an eco -system of tools and workflows aroundMassBank. The spectral database is animportant resource for metabolomics re-searchers, but also the foundation for thedevelopment of computational massspectrometry meth ods, where the spec-tra are used to train and validate compu-tational models.

Since reference spectra are often expen-sive (both in consumables and chemicals,but even more so in manpower) to obtain,reference libraries will never be coveringas many compounds as can be found ingeneral purpose compound databases.Therefore, we are developing computa-tional approaches to support metaboliteannotation, e.g. the MetFrag system. Thistool uses the tandem mass spectrum andthe calculated mass of the compound asinput to search chemical structure data-bases such as KEGG, PubChem or Chem-Spider for matching molecules. MetFraghas evolved in the last years, and has gonethrough algorithmic and scoring refine-ments. New features include the retrievalof reference, data source and patent infor-mation viaChemSpider and PubChem webservices. Candidates can be filtered orscored differently based on criteria like oc-currence of certain elements and/or sub-structures, and retention time informationcan now be calculated. The MetFrag corealgorithms are available through the webapplication (Fig. 2), the Java based com-mand line, and now also as R package met -fRag, and integrated into the workflowframework Galaxy (see below).

For an integrated analysis of metaboliteprofiles and structure-characterizing tan-dem mass spectra we developed the Met-Family tool (Fig. 3) together with G. Balcke(Department Cell an Metabolic Biology).Now the statistical analysis can be directlyenriched with information about the me -

54

Bioinformatics & Mass SpectrometryHead: Steffen Neumann

Rene MeierPostdoctoral Scientist

Susan MönchgesangPhD Student

Kristian PetersPostdoctoral Scientist

Christoph RuttkiesPhD Student

Sarah ScharfenbergPhD Student

Daniel SchoberPostdoctoral Scientist

Hendrik Treutler PhD Student

Group Members

CollaboratorsMasanori AritaNational Institute of Genet-ics, Mishima, Japan

Sebastian BöckerUniversity of Jena, Germany

Werner BrackHelmholtz Centre for Envi-ronmental Research (UFZ),Leipzig, Germany

Ivo Große, Stefan PoschUniversity of Halle, Germany

Oliver KohlbacherUniversity of Tübingen, Ger-many

Takaaki NishiokaGraduate School of Agricul-ture, Kyoto, Japan

Kazuki SaitoRiken Plant Science Center,Yokohama City, Japan

Susanna Sansone, Phillipe Rocca-SerraOxford University, UK

Emma SchymanskiEawag, Dübendorf, Switzer-land

Christoph SteinbeckEuropean Bioinformatics In-stitute, Hinxton, Cambrigde,UK

Fig.1: R packages for Metabolo-mics and Mass Spectrometry.

Fig. 2:

Screenshotof the Met-Frag web ap-plication.

Fig. 3: Combinedme tab olite profiling(PCA, left) andstructural characte-rization (spectralclustering, right)with MetFamily.

Page 29: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

tal set ups were analyzed with an experi-mental workflow to investigate, if (i) plantexudation behavior is driven by the plantfamily or (ii) the species itself. The compar-ison of root and exudates results will helpto reveal if, (iii) root metabolism correlateswith the exuded profile and (iv) whetherresults from the laboratory reflect a natu-ral environment. Up to now the results in-dicate that exudation in the field is verycomplex, due to the large number of ex-uded metabolites. It is influenced bygrowth form in case of primary metabo-lism and, moreover, by species in case ofthree of the five forbs. So far 79 metabo-lites were identified and the number willbe increased by further identificationswith our expertise in the field of advancedmass spectrometry. Besides the elucida-tion of the metabolites of wild plants, thisproject is embedded in a large coopera-tion setup between ecologists, microbiol-ogists and molecular scientists. Since datawere collected on the same plants andfields in each discipline, the combinationby using innovative correlation tools andstatistical approaches will provide a novelview on the role of exudates in microbialinteraction and the correlation of root me -tabolites and exudates to other plant traitslike C/N content, root size and neighborplants.

Themenschwerpunkt der Forschungsgruppe ist die Detektion, Identifizierung und Quantifizierung von Pflanzenmeta-boliten sowie die Aufklärung von Stoffwechselraten. In der Abwehr der Pflanze unter biotischem und abiotischemStress erfüllen insbesondere die zahlreichen und heterogenen Sekundärmetabolite sehr spezifische Aufgaben, weshalb

diesen besondere Aufmerksamkeit gewidmet wird. Der aktuelle Forschungsfokus der Gruppe liegt auf der Interaktion derPflanze mit ihrer unterirdischen Umwelt: Wurzelmetabolismus und Exsudationsdynamik, d.h. die kontrollierte Abgabe vonMetaboliten in den umgebenden Boden. Die Analyse der Metabolite erfolgt über Flüssigkeits- oder Gaschromatographie-ge-koppelte Massenspektrometrie. Dabei dienen gewebe- und organspezifische Analysen der genauen Lokalisation der Meta-boliten. In Kooperation mit der Arbeitsgruppe Bioinformatik und Massenspektrometrie werden zudem effektive Ansätze zurDatenanalyse entwickelt und öffentlich verfügbar gemacht.

CollaboratorsCarsten MilkowskiUniversity of Halle, Germany

Silke Ruppel, Katja WitzelLeibniz Institute of Vegetable and OrnamentalCrops, Großbeeren, Germany

Alga ZuccaroUniversity of Cologne

57

During development and in response tovariable environmental conditions, plantsexhibit altering metabolite patterns.Among these low molecular weight com-pounds, the numerous and heteroge-neous secondary metabolites play crucialroles in plant development, adaptationand defense. Using liquid and gas chro-matography-coupled mass spectrometry,the metabolomics research group is spe-cialised on the sensitive metabolite detec-tion, identification and quantification aswell as elucidation of turnover rates ofthese metabolites. In cooperation with theBioinformatics and Mass Spectrometrygroup, versatile tools for data analysishave been developed and made publiclyavailable.

The main research focus is the interactionof plants with their below-ground environ-ment via exudation, which is the control -led, highly specific release of metabolitesfrom roots into the soil, especially underdistinct stress and environmental condi-tions. To determine the origin of exudates,metabolic precursors and transportationprocesses, are analyzed.

We use several experimental setups (hydro-ponics, climate chambers, field conditions)to analyse metabolites in Arabidopsis, gras -ses and forbs. A standardised workflow in-cludes sampling, sample pre paration, se-paration by GC or LC, and detection byESI-ToF-MSn, APCI- ToF-MSn or EI alongwith several procedures for quality controland the application of efficient methods

for data analysis (Fig 1). Our untargetedprofiling spans feature extraction andalignment, normalisation, adduct group-ing and relative quantification. These datacan further on be used for statistical analy-ses, e.g. PCA, variance analyses, featurecorrelation, discriminant analyses etc.Thus, relevant features can be subjectedto absolute quantification and substanceidentification. We continuously extend ourmetabolite atlas, which currently containsseveral hundreds of secondary com-pounds, e.g. phenylpropanoids, Brassica -ceae-specific glucosinolates, their precur-sors and degradation products, phyto -alexins, indoles, several fatty acid andamino acid derivatives. Our GC-MS anno-tation list enables the automated annota-tion and quantification of about 150 meta -bolites covering carbohydrates, aminoacids, organic acids, sterols, lipids andamines. The quantification, identificationand data integration of several analyticalplatforms, is followed by mapping of theseinformation on metabolic pathways to re-veal biological conclusions.

The Dynamics of Exudation: Carbonflux from Photosynthesis to ExudatesThe metabolic origin and the time dynam-ics of exudates, meaning carbon flux con-nection between photosynthesis and exu-dation via metabolite translocation andmetabolic turnover, is still hardly under-stood. The application of 13CO2 instead ofthe normal 12CO2 labels the carbon in me -tabolites downstream of photosynthesis.The labeled metabolites are tracked inleaves, roots and exudates via our massspectrometry methods. Time-course har-vesting and compartmentalization allowsthe description of time-dependent chan -ges in metabolite abundances and theirlabeling status. This provides insight intothe dynamics of a) carbon fixation in theaboveground plant, b) day and night de-pendent metabolite turnover, c) transpor -tation of (labeled) metabolites into theroots, and d) the exudation of metabolites. Already three hours after the applicationof 13CO2, labeled metabolites were detec -

ted in the exudates. Among those weresugars and organic acids demonstratingearly and high 13C proportions in leaveswith a gradual decrease in labeling overthe root to the exudates. Most secondarymetabolites (e.g. glucosinolates, indol de-rivatives) exhibited a time span of six to 20hours until labeling could be detected inexudates. In plant tissue, labeling of sec-ondary metabolites was discovered ear-lier, consistent with the observed labelingpatterns in carbohydrates and organicacids. However, the labeling time courseswere metabolite specific and partially verycomplex. Currently, labeling informationon about 150 identified metabolites (GC-MS, LC-MS, respectively) is available.

Besides manual targeted annotations, anuntargeted analysis pipeline was devel-oped for the detection and annotation ofisotope patterns, which revealed up to1500 metabolite isotope clusters in LC-MSdata and more than 1000 in GC-MS dataof shoots, roots and exudates. Multivariateanalysis of labeling proportions (fromknown and unknown metabolites) clus-tered metabolites towards connectedmetabolic pathways and to same biologi-cal functionality, which eased identifica-tion.

The Role of Exudates in BiodiversityBesides typical laboratory approaches tounravel the plant’s behavior of exudation,this working group deals also with theplant’s influence in the rhizosphere undernatural conditions. This is a blind spot inbasic research, so it is of great interestwhat kind of functionality exudates fulfil inthe biodiversity of the rhizosphere. Thus,our Metabolomic research group is apply-ing untargeted metabolite profiling on ex-udates and root metabolites of two grass-land growth forms, grasses and forbs, in aDFG-funded project. Ten different speciesof these life forms were grown in the Ger-man Biodiversity Exploratories under nat-ural conditions, as well as in a phytocham-ber under controlled conditions. Samplesof exudates and roots of both experimen-

56

MetabolomicsHead: Dierk Scheel

Sophie DietzPhD Student

Stefanie DöllPostdoctoral Scientist

Julia GöhrickeTechnical Assistant

Karin GorzolkaPostdoctoral Scientist

Siska HerklotzMaster Student

Nora HermesScientific Assistant

Sylvia KrügerTechnical Assistant

Nadine StrehmelPostdoctoral Scientist

Group Members

Fig. 1: The general workflow of metabolite profiling applied in the Metabolomics Re-search Group. Diverse plant species with different experimental treatments are ana-lysed. Gas chromatography (GC) and liquid chromatography (LC) in combinationwith various advanced MS technologies and bioinformatics tools serve for metaboliteprofiling in exudate and plant tissue samples with quantification, statistic and iden-tification approaches. C/N: carbon/nitrogen, H/D exchange: hydrogen/deuteriumexchange, APCI: atmospheric pressure chemical ionization, EI: electron impact ioni-zation, ESI: electron spray ionization.

Page 30: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

59

rape) suppressing UGT84A9 reveal plasticity andmolecular regulation of the phenylpro panoidpathway. Phytochemistry 124, 46-57.

Hoehenwarter, W., Mönchgesang, S., Neumann, S.Majovsky, P.,Abel, S. & Müller, J. Comparative ex-pression profiling reveals a role of the root apo -plast in local phosphate response. BMC PlantBiol. 16:106.

Küster, N., Rosahl, S. & Dräger, B. Potato plantswith genetically engineered tropane alkaloidprecursors. Plantadoi:10.1007/s00425-016-2610-7.

Mönchgesang, S., Strehmel, N., Schmidt, S., West-phal, L., Taruttis, F., Müller, E., Herklotz, S., Neu-mann, S. & Scheel, D. Natural variation of rootsexudates in Arabidopsis thaliana - linking meta -bolomic and genomic data. Sci Rep. 6: 29033.

Mönchgesang, S., Strehmel, N., Trutschel, D.,Westphal, L., Neumann, S. & Scheel, D. Plant-to-plant variability in root metabolite profiles of 19Arabidopsis thaliana accessions is substance-class-dependent. International J. Mol. Sci. 17(9),1565.

Nettling, M., Treutler, H., Cerquides, J. & Grosse,I. Detecting and correcting the binding-affinitybias in ChIP-seq data using inter-species infor-mation. BMC Genomics 17: 347.

Penselin, D., Münsterkötter, M., Kirsten, S., Felder,M., Taudien, S., Platzer, M., Ashelford, K., Paskie -wicz, K. H., Harrison, R. J., Hughes, D. J., Wolf, T.,Shelest, E., Graap, J., Hoffmann, J., Wenzel, C.,Wöltje, N., King, K. M., Fitt, B. D. L., Güldener, U.,Avrova,A. & Knogge, W. Comparative genomicsto explore phylogenetic relationship, crypticsexual potential and host specificity of Rhyn-chosporium species on grasses. BMC Genomics17, 953.

Ranf, S., Scheel, D. & Lee, J. Challenges in the iden-tification of microbe-associated molecular pat-terns in plant and animal innate immunity: a casestudy with bacterial lipopolysaccharide. Molec-ular Plant Pathology 17(8), 1165-1169.

Rocca-Serra, P., Salek, R. M., Arita, M., Correa, E.,Dayalan, S., Gonzalez-Beltran, A., Ebbels, T., Goo -dacre, R., Hastings, J., Haug, K., Koulman, A.,Nikolski, M., Oresic, M., Sansone, S.-A., Schober,D., Smith, J., Steinbeck, C., Viant, M. R. & Neu-mann, S. Data standards can boost metabo lo -mics research, and if there is a will, there is away. Metabolomics 12: 14.

Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender,J. & Neumann, S. MetFrag relaunched: incorpor -

ating strategies beyond in silico fragmentation.J. Cheminform. 8: 3.

Sheikh, A. S., Eschen-Lippold, L., Pecher, P., Hoe-henwarter, W., Sinha, A. K., Scheel, D. & Lee, J.Regulation of WRKY46 transcription factorfunction by mitogen-activated protein kinases inArabidopsis thaliana. Front Plant Sci. 7: 61.

Strehmel, N., Mönchgesang, S., Herklotz, S., Krü -ger, S., Ziegler, J. & Scheel, D. Piriformospora in -dica stimulates root metabolism of Arabidopsisthaliana. Int. J. Mol. Sci. 17: 1091.

Trempel, F., Kajiura, H., Ranf, S., Grimmer, J., West-phal, L., Zipfel, C., Scheel, D., Fujiyama, K. & Lee,J. Altered glycosylation of exported proteins, in-cluding surface immune receptors, compromi -ses calcium and downstream signaling responsesto microbe-associated molecular patterns in Ara-bidopsis thaliana. BMC Plant Biol. 16: 31.

Treutler, H. & Neumann, S. Prediction, detection,and validation of isotope clusters in mass spec-trometry data. Metabolites 6(4). doi:10.3390/ metabo6040037.

Treutler, H., Tsugawa, H., Porzel,A., Gorzolka, K.,Tissier, A., Neumann, S. & Balcke, G. U. Discov-ering regulated metabolite families in untargetedmetabolomics studies. Anal. Chem. 88(16), 8082-8090.

Wohlgemuth, G., Mehta, S. S., Mejia, R. F., Neu-mann, S., Pedrosa, D., Pluskal, T., Schymanski, E. L.,Willighagen, E. L., Wilson, M., Wishart, D. S.,Arita,M., Dorrestein, P. C., Bandeira, N., Wang, M.,Schulze, T., Salek, R. M., Steinbeck, C., Nainala, V.C., Mistrik, R., Nishioka, T. & Fiehn, O. SPLASH, ahashed identifier for mass spectra. Nature Bio -tech. 34(11), 1099-1101.

Book Chapters 2016Faden, F., Eschen-Lippold, L. & Dissmeyer, N.Normalized quantitative western blotting basedon standardized fluorescent labeling. In: PlantProteostasis 1450: Meth. Mol. Biol. (M. Lois & R.Matthiesen eds.) Springer Verlag New York, S.247-258. ISBN 978-1-4939-3757-8.

Lassowskat, I., Hoehenwarter, W., Lee, J. & Scheel,D. Phosphoprotein enrichment combined withphosphopeptide enrichment to identify putativephosphoproteins during defense response inArabidopsis thaliana. In: Environmental Respon -ses in Plants 1398: Meth. Mol. Biol. (P. Duque ed.)Springer Verlag New York, S. 373-383,ISBN 978-1-4939-3354-9.

Schober, D., Salek, R. M. & Neumann, S. Towardsstandardized evidence descriptors for metabo-lite annotations. In: CEUR Workshop Proceed-ings, Vol. 1692: Proceedings of the 7th Workshopon Ontologies and Data in Life Sciences (pp. E5). http://ceur-ws.org/Vol-1692/paperE.pdf.

Trempel, F., Ranf, S., Scheel, D. & Lee, J. Quantita-tive analysis of microbe-associated molecularpattern (MAMP)-induced Ca2+ transients inplants. . In: Environmental Responses in Plants1398: Meth. Mol. Biol. (P. Duque, ed.) Springer Ver-New York, S. 331-344. ISBN 978-1-4939-3354-9.

Master Theses 2016Rist, Florian: MVQ1-6: Datenbankanalyse zurKoexpression und funktionelle Untersuchungeiner konservierten C-terminalen Region, Mar-tin-Luther-Universität Halle-Wittenberg, Natur-wissenschaftliche Fakultät III, Fachbereich Agrar-und Ernährungswissenschaften, 12.02.2016

Müller, Erik:Automatic keyword assignment fornatural language descriptions of experiments inthe life sciences. Martin-Luther-Universität Hal -le-Wittenberg, Naturwissenschaftliche FakultätIII, Fachbereich Informatik, 26.07.2016

Doctoral Theses 2016Dobritzsch, Melanie: Hydroxyzimtsäureamideals Abwehrstoffe gegen Phytophthora infestansin Arabidopsis thaliana und Solanum tuberosum.Martin-Luther-Universität Halle-Wittenberg, Na -turwissenschaftliche Fakultät I, Fachbereich Bio -logie, 24.05.2016

Küster, Nadine: Modifikation des Nortropanal-kaloid-Stoffwechsels in Solanum tuberosum L.durch Knockdown und Überexpression von Bio -synthesegenen. Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I,Fachbereich Pharmazie, 26.07.2016

Landgraf, Ramona: Charakterisierung des PAMP-induzierbaren Transporters ABCG1 aus Sola -num tuberosum. Martin-Luther-Universität Hal -le-Wittenberg, Naturwissenschaftliche FakultätI, Fachbereich Biologie, 13.09.2016

Penselin, Daniel: Genomvergleich und Effektor-charakterisierung von Rhynchosporium com-mune. Martin-Luther-Universität Halle-Witten-berg, Naturwissenschaftliche Fakultät I, Fach-bereich Biologie, 02.05.2016

58

Publications 2015Altenburger, R., Ait-Aissa, S., Antczak, P., Back-haus, T., Barceló, D., Seiler, T.-B., Brion, F., Busch,W., Chipman, K., López de Alda, M., de AragãoUmbuzeiro, G., Escher, B. I., Falciani, F., Faust, M.,Focks, A., Hilscherova, K., Hollender, J., Hollert,H., Jäger, F., Jahnke, A., Kortenkamp, A., Krauss,M., Lemkine, G. F., Munthe, J., Neumann, S., Schy-manski, E. L., Scrimshaw, M., Segner, H., Slobod-nik, J., Smedes, F., Kughathas, S., Teodorovic, I., Tin-dall, A. J., Tollefsen, K. E., Walz, K.-H., Williams, T.D., Van den Brink, P. J., van Gils, J., Vrana, B., Zhang,X. & Brack, W. Future water quality monitoring- Adapting tools to deal with mixtures of pollu-tants in water resource management. Sci. TotalEnviron. 512–513, 540–551.

Buhtz, A., Witzel, K., Strehmel, N., Ziegler, J., Abel,S. & Grosch, R. Perturbations in the primary me-tabolism of tomato and Arabidopsis thalianaplants infected with the soil-borne fungus Ver-ticillium dahliae. PLoS ONE 10, e0138242.

Kühnlenz, T., Westphal, L., Schmidt, H., Scheel, D.& Clemens, S. Expression of Caenorhabditis el-egans PCS in the AtPCS1-deficient Arabidopsisthaliana cad1-3 mutant separates the metal tol-erance and nonhost resistance functions of phy-tochelatin synthases. Plant Cell Environm. 38,2239-2247.

Lahrmann, U., Strehmel, N., Langen, G., Frerig-mann, H., Leson, L., Ding, Y., Scheel, D., Herklotz,S., Hilbert, M. & Zuccaro, A. Mutualistic root en-dophytism is not associated with the reductionof saprotrophic traits and requires a noncom-promised plant innate immunity. New Phytolo-gist 207, 841–857.

Lee, J., Eschen-Lippold, L., Lassowskat, I., Bött -cher, C. & Scheel, D. Cellular reprogrammingthrough mitogen-activated protein kinases. Front.Plant Sci. 6, 940.

Libiseller, G., Dvorzak, M., Kleb, U., Gander, E.,Eisenberg, T., Madeo, F., Neumann, S., Trausinger,G., Sinner, F., Pieber, T. & Magnes, C. IPO: a toolfor automated optimization of XCMS parame-ters. BMC Bioinformatics 16, 118.

Moreno, P., Beisken, S., Harsha, B., Muthukrish-nan, V., Tudose, I., Dekker,A., Dornfeldt, S., Tarut-tis, F., Grosse, I., Hastings, J., Neumann, S. & Stein-beck, C. BiNChE: A web tool and library forchemical enrichment analysis based on theChEBI ontology. BMC Bioinformatics 16, 56.

Nettling, M., Treutler, H., Grau, J., Keilwagen, J.,Posch, S. & Grosse, I. DiffLogo: a comparative vi-sualization of sequence motifs. BMC Bioinfor-matics 16, 387.

Ranf, S., Gisch, N., Schäffer, M., Illig, T., Westphal,L., Knirel, Y. A., Sánchez-Carballo, P. M., Zähringer,U., Hückelhoven, R., Lee, J. & Scheel, D. A lectinS-domain receptor kinase mediates lipopolysac-charide sensing in Arabidopsis thaliana. NatureImmunol. 16, 426–433.

Ruttkies, C., Strehmel, N., Scheel, D. & Neumann,S. Annotation of metabolites from GC/APCI-MS/MS data using an in silico generated com-pound database and MetFrag. Rapid Commun.Mass Spectro. 29, 1521-1529.

Stanstrup, J., Neumann, S. & Vrhovšek,U. Pre-dRet: prediction of retention time by directmapping between multiple chromatographicsystems. Anal. Chem. 87, 9421–9428.

Trutschel,D., Schmidt, S., Grosse. I. & Neumann,S. Joint analysis of dependent features withincompound spectra can improve detection of dif-ferential features. Front. Bioeng. Biotechnol. 3,129.

Vinaixa, M., Schymanski, E. L., Neumann, S., Na -varro, M., Salek, R. M. & Yanes, O. Mass spectraldatabases for LC/MS and GC/MS-based meta -bol omics: state of the field and future prospects.TrAC Trends Analyt. Chem. 78 (2016) 23-35.

Ziegler, J., Schmidt, S., Chutia, R., Müller, J., Bött -cher, C., Strehmel, N., Scheel, D., Abel, S. Non-targeted profiling of semi-polar metabolites inArabidopsis root exudates uncovers a role forcoumarin secretion and lignification during thelocal response to phosphate limitation. J. Exp.Bot. 67 (2016) 1421-1432.

Bachelor Theses 2015Hoffmann, Jan: Charakterisierung neuer Effek-torkandidaten von Rhynchosporium commu -ne. Hochschule Anhalt, Fachbereich Ange-wandte Biowissenschaften und Prozesstechnik,05.02.2015

Kemmler, Emanuel: XCMS Parameteroptimie -rung mit genetischen Algorithmen. Martin-Lu -ther-Universität Halle-Wittenberg, Naturwis-senschaftliche Fakultät III, Fachbereich Infor-matik, 19.05.2015

Reso, Jasmin: Klonierung eines PAMP-respon-siven Promotors aus Solanum tuberosum L.Hochschule Anhalt, Fachbereich AngewandteBiowissenschaften und Prozesstechnik, 26.11.2015

Master Theses 2015Herklotz, Siska: Metabolische Untersuchungender mutualistischen Interaktion von Arabidopsisthaliana und Piriformospora indica. Martin-Luther-Universität Halle-Wittenberg, Naturwis-senschaftliche Fakultät I, Fachbereich Biologie,17.11.2015

Scharfenberg, Sarah: Global probabilistic anno-tation of metabolites. Martin-Luther-UniversitätHalle-Wittenberg, Naturwissenschaftliche Fa -kul tät III, Fachbereich Informatik, 18.05.2015

Wöltje, Nadine: Charakterisierung zweier Effek-torgene des Gerstenpathogens Rhynchospo-rium commune. Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I,Fachbereich Biologie, 16.07.2015

Publications 2016Brack, W., Ait-Aissa, S., Burgess, R. M., Busch, W.,Creusot, N., Di Paolo, C., Escher, B. I., Hewitt, L.M., Hilscherova, K., Hollender, J., Hollert, H.,Jonker, W., Kooli, J., Lamoree, M., Muschket, M.,Neumann, S., Rostkowski, P., Ruttkies, C., Schol -lee, J., Schymanski, E. L., Schulze, T., Seiler, T.-B., Tin-dall, A. J., De Aragão Umbuzeiron, G., Vrana, B. &Krauss, M. Effect-directed analysis supportingmonitoring of aquatic environments - An in-depthoverview. Sci.Total Environ. 544, 1073–1118.

Brömme, T., Schmitz,C., Moszner, N., Burtscher,P., Strehmel, N. & Strehmel, B. Photochemical ox-idation of NIR photosensitizers in the presenceof radical initiators and their prospective use indental applications. ChemistrySelect. 1, 524–532.

Dobritzsch, M., Lübken, T., Eschen-Lippold, L.,Gorzolka, K., Blum, E., Matern, A., Marillonnet, S.,Böttcher, C., Dräger, B. & Rosahl, S. MATE trans-porter-dependent export of hydroxycinnamicacid amides. Plant Cell 28, 583-596.

Eschen-Lippold, L., Jiang, X., Elmore, J. M., Mackey,D., Shan, L., Coaker, G., Scheel, D. & Lee, J. Bacte-rial AvrRpt2-like cysteine proteases block acti-vation of the Arabidopsis mitogen-activated pro-tein kinases, MPK4 and MPK11. Plant Physiol.171, 2223-2238.

Eschen-Lippold, L., Scheel, D. & Lee, J. Teaching anold dog new tricks: Suppressing activation of spe-cific mitogen-activated kinases as a potential vir-ulence function of the bacterial AvrRpt2 effectorprotein. Plant Sign. Behav. 11(12): e1257 456

Hettwer, K., Böttcher, C., Frolov, A., Mittasch, J.,Albert, A., von Roepenack-Lahaye, E., Strack, D.& Milkowski, C. Dynamic metabolic changes inseeds and seedlings of Brassica napus (oilseed

Publications and other Activities of the Department Stress and Developmental Biology

Page 31: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

Department of Cell and Metabolic BiologyHead: Professor Alain TissierSecretary: Ildikó Birkás

Abteilung Stoffwechsel- und ZellbiologieLeiter: Professor Alain TissierSekretariat: Ildikó Birkás

6160

Wie werden spezifische Metabolite produziert? Wie istihre Biosynthese reguliert? Welche Rolle spielen sie inder Reaktion der Pflanze auf ihre Umwelt? Dies sind

grundlegende Fragen, die in unserer Abteilung beantwortet wer-den sollen, wobei insbesondere spezifische Organe, Gewebeoder Zelltypen und/oder die Interaktion von Pflanzen mit Mikroor-ganismen im Mittelpunkt stehen. Pflanzliche Metabolite – ob sienun als Abwehr- oder Signalstoffe fungieren – werden an spezi-fischen Orten und zu bestimmten Zeiten produziert, um ihreFunktion zu erfüllen. Diese räumlich und zeitlich kontrollierte Bio -synthese und Freisetzung spezia li sierter Metabolite wird anhandeiniger Modell-Systeme untersucht.

Ein solches System, das in der AG Glanduläre Trichome & Iso-prenoidbiosynthese (A. Tissier) untersucht wird, besteht aus densekretorischen Zellen glandulärer Trichome. Diese spezialisiertenStrukturen, die sich auf der Oberfläche der oberirdischen Teilevieler Pflanzen befinden, können große Mengen verschiedenerSubstanzen auf die Blattoberfläche abgeben, was bis zu 15 % derBlattbiomasse ausmachen kann und gleichzeitig die erste Vertei-digung einer Pflanze gegenüber Pathogenen und herbivoren In-sekten darstellt. Da hierbei vollständige Biosynthesewege in ein -zelnen Zellen zu finden sind, stellen diese ein gutes System dar,komplette Biosynthesen aufzuklären. Ausgehend von Transcrip-tomics-Ansätzen werden diese nach Kandidatengenen anhandvon Ähnlichkeiten zu bekannten Enzymklassen durchsucht. Die -ser Ansatz wurde bereits erfolgreich zur Aufklärung der Biosyn-these von sesquiterpenoiden und diterpenoiden Verbindungenin Tomate, Tabak, Rosmarin und Salbei genutzt. Wie die sekre-torischen Zellen der Trichome solch eine hohe Produktivität er-reichen, ist ein anderer Fokus dieser Gruppe, wobei die Ver bin -dung zwischen Primär- und Sekundärstoffwechsel untersuchtwird.

In der AG Phenylpropanoidstoffwechsel und Proteinbiochemie(T. Vogt) stehen Biosynthese und Funktion von Konjugaten derPhenylpropanoide im Vordergrund. Charakteristische Vertreterdieser Stoffe werden im Tapetum, einem anderen hochspeziali -sierten Gewebe, synthetisiert und auf die Oberfläche reifenderPollen abgegeben. Dort sind sie in löslicher, aber auch gebun-dener Form zu finden. Ihr Vorhandensein in allen höheren Pflan -zen lässt auf eine wichtige, jedoch noch unbekannte Funktion inder Pflanze schließen, die aufgeklärt werden soll.

Ebenfalls hoch-spezialisierte Zellstrukturen sind die Arbuskelnvon Mykorrhizapilzen, die innerhalb der Pflanzenwurzel gebildetwerden und das wichtigste Organ für den Austausch von Mine -ral- und Nährstoffen zwischen Pflanze und Pilz in dieser mutualis -tischen Symbiose darstellen. In der AG Jasmonatfunktion & Myk-orrhiza (B. Hause) werden hierbei die frühen Ereignisse der Inter-aktion mittels Transcriptomics und Metabolomics-Ansätzen un-tersucht. Es sollen spezifische Metabolite einschließlich der dazu -gehörigen Stoffwechselwege identifiziert werden, die die Pflanzein Reaktion auf die Anwesenheit vom Pilz produziert. Wie kleineMoleküle Entwicklung und Differenzierung von Pflanzenorganen,-geweben und -zellen steuern, ist eine Frage, die ebenfalls vonder AG Jasmonatfunktion & Mykorrhiza beantwortet werden soll.Jasmonate sind bekannt für ihre Rolle in der Induktion von pflanz -lichen Abwehrprozessen, sie haben aber auch eine Funktion inder Pflanzenentwicklung, wie z.B. der Entwicklung von Blüten. Ver-gleichende Transkriptom- und Metabolom-Analysen von Blüten -organen unterschiedlicher Entwicklungsstadien von Wildtyp-Pflanzen und einer Jasmonat-insensitiven Mutante haben Unter-schiede aufgezeigt, die die Basis für ein neues Modell der Blü ten -organentwicklung in Tomate darstellen.

Die Rekonstitution von komplexen Biosynthesewegen spezifi-scher Metabolite ist nicht nur hilfreich für das bessere Verständ-nis dieser Wege, sondern ermöglicht auch die Entwicklung neuer,alternativer Produktionssysteme für wertvolle Substanzen in Pflan -zen oder Mikroorganismen. Um das zu erreichen, sind hochef-fiziente Klonierungssysteme notwendig. Solch eine Technologieist die Golden Gate Technik, die von S. Marillonnet (AG Syntheti-sche Biologie) entwickelt wurde. Die modulare Klonierungstech-nik ermöglicht es uns, neue Wege zu gehen, um metabolischeWege und Signalketten zu konstruieren. Solches Signalketten-Engineering, um die Produktion von sekundären Metaboliten bes -ser zu kontrollieren, ist auch ein Forschungsschwerpunkt der AGGlanduläre Trichome & Isoprenoidbiosynthese. Darüber hinauswerden die Golden-Gate-Werkzeuge am IPB breit eingesetzt, waszu zahlreichen Kooperationsprojekten innerhalb der Abteilung,aber auch innerhalb des IPB führte.

How specific metabolites are produced, how their biosyn-thesis is regulated, and what roles they play in the re-sponses of plants to their environment are fundamental

questions that our Department is trying to answer. These are ad-dressed in the context of specific organs, tissues or cell typesand/or in the context of plant-microorganisms interactions. Me -ta bolites, whether they are defense or signaling compounds, aredelivered at specific places and times to fulfill their function.Within our Department, this space- and time-controlled biosyn-thesis and delivery of specialized metabolites is being investi-gated in the context of a few model systems.

One such system, studied in the Research group Glandular Tri-chomes & Isoprenoid Biosynthesis (A. Tissier), is the secretorycells of the glandular trichomes. These specialized structures, lo-cated on the surface of the aerial parts of many plant species areable to deliver onto the leaf surface massive amounts of com-pounds which may represent up to 15% of the leaf biomass andrepresent a first line of defense against pathogens of herbivores.Because complete pathways are exclusively localized to thesecells, they constitute a good system to elucidate their biosynthe-sis. This is done primarily by transcriptomics and mining throughthose for candidate genes potentially involved in the pathwaysof interest on the basis of similarity to known enzyme classes.This approach has been used to elucidate sesquiterpenoid andditerpenoid pathways in tomato, tobacco, rosemary and sage, re-spectively. How these cells achieve such a high productivity isalso a major focus of the group, by investigating the connectionsbetween primary and specialized metabolism.

In the research group Phenylpropanoid metabolism & ProteinBiochemistry (T. Vogt), the biosynthesis and function of phenyl-propanoids is being investigated in flower organs. Specific phe-nolamides and flavonoid glycosides are synthesized in the tape-tum, another highly specialized tissue, and delivered onto thesurface of maturing pollen grains, where they occur both in sol-uble and insoluble forms. Although their function is still elusive,their occurrence across all higher plant species suggests an im-portant fundamental role which is actively being searched for.

Mycorrhizal arbuscules are other highly specialized cellular struc-tures, which are formed in the symbiotic interaction between my-corrhizal fungi and the roots of higher plants. They constitute the

major interaction point and are key to the exchange of mineralsand nutrients between the plant and the fungus. This interactionis studied in the research group Jasmonate Function & Mycor-rhiza (B. Hause). One research focus is on the early events of theinteraction. Transcriptomic and metabolomic approaches are im-plemented to identify specific molecules and associated path-ways, which are induced in the plant root as it encounters thefungus. How small molecules can control the development anddifferentiation of organs, tissues and cell types is also a major in-terest of the research group Jasmonate Function & Mycorrhiza.The jasmonates are well known for their role in the induction ofdefense processes, but they also have an important function inplant development, in particular for the differentiation of flowerorgans. Comparative transcriptomics and metabolomics of flowerorgans of wild-type and jasmonate-insensitive mutants of tomatoat different stages of development has revealed significant dif-ferences, which form the basis of a new model of flower organdifferentiation.

Reconstituting complex biosynthesis pathways of specializedmetabolites can be very helpful, not only to better understandthem, but also to develop alternative production systems forhigh-value compounds either in plants or in microorganisms. Toachieve this, highly efficient cloning strategies are required. Gol -den Gate is one such technology which was developed by Syl -vestre Marillonnet, leader of the research group Synthetic Biol-ogy. This modular cloning technology allows us to contemplatenovel approaches for metabolic and signaling pathway engineer-ing. Such signaling pathway engineering is being developed inthe research group Glandular Trichomes & Isoprenoid Biosynthe-sis to better control the induction of the production of secondarymetabolites by plants. Furthermore, Golden Gate cloning toolsare now widely used in the IPB and have led to a number of col-laborations between the research group Synthetic Biology andother groups of the IPB.

Page 32: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

be tween proteins of the pathways, andtransport of isoprenoid metabolites withinand outside the cell.

In TERPMED (www.terpmed.eu), a projectfinanced by the European Commission(2011-2013), we have been investigatingthe biosynthesis of phenolic diterpenessuch as carnosic acid (CA) and carnosol(COL) in Rosemary (Rosmarinus officinalis)and Greek sage (Salvia fruticosa). These

compounds have high antioxidant activi-ties and have been shown to elicit anti-ox-idative pathways in neuron cells, makingthem potential candidates for the treat-ment of neurodegenerative disorders. Thebiosynthesis of carnosic acid, which re-quires two diterpene synthases and twocyto chrome P450 oxygenases has nowbeen completely elucidated (Fig. 3).

Finally, in SMARPLANTS, a synthetic biol-ogy project funded by the BMBF (2015-2018) in the frame of the ERANET ERA-Syn-Bio (https://www.erasynbio.eu/), we aredeveloping tools to engineer orthogonalsignal propagation in plants.

Glanduläre Trichome sind spezialisierte Organe auf der Oberfläche oberirdischer Teile vieler Landpflanzen. In ihren me-tabolisch aktiven, sekretorischen Zellen produzieren sie Sekundärstoffe, die eine chemische Barriere gegenüber Schäd-lingen darstellen. In Solanaceen, die unsere Modellpflanzen zur Untersuchung der Biosynthese und Entwicklung von

glandulären Trichomen darstellen, sind Terpenoide die dominanten Produkte. In Tomaten wird die Biosynthese von Sesquiter-pen-Carboxysäuren sowie die Entwicklung und die Differenzierung von glandulären Trichomen untersucht. Die dadurch ge-wonnenen Kenntnisse könnten zur Züchtung neuer Tomatensorten, die eine erhöhte Resistenz gegen herbivore Insekten haben,verwendet werden. Außerdem ist die Analyse des metabolischen Netzwerks dieser Zellfabriken von großem Interesse, insbe-sondere um die Verbindungen zwischen primärem und sekundärem Metabolismus aufzuklären. Dies könnte die Pflanzen- oderMikroorganismen-basierte Herstellung von Naturstoffen durch metabolic-engineering-Ansätze deutlich verbessern.

CollaboratorsUlla BonasUniversity of Halle, Germany

Marc BoutryUniversité Catholique de Louvain, Belgium

Harro BouwmeesterUniversity of Wageningen, the Netherlands

Angelos KanellisUniversity of Thessaloniki, Greece

Rob SchuurinkUniversity of Amsterdam, the Netherlands

Albert Boronat, Albert FerrerUniversity of Barcelona, Spain

Ric de VosPlant Research International, Wageningen,the Netherlands

CompaniesYoram EyalVolcani Center, Bet Dagan, Israel

Klaus PellengahrOrganobalance GmbH, Berlin, Germany

Michael HahnElektrochemie Halle, Germany

Thomas StölzelAB Sciex, Darmstadt, Germany

63

Glandular trichomes are specialized or-gans protruding at the surface of manyplant species that are typically made ofone or several stalk cells surmounted byone or several secretory cells. The secre-tory cells can produced large amounts ofa variety of compounds which can be vo -latile, such as phenylpropanoid deriva-tives, mono- or sesquiterpenes, or non-vo -latiles, such as sugar esters or diterpenes.Glandular trichomes have attracted the at-tention of plant biochemists for a numberof years for several reasons: the secretionof glandular trichomes has been shown inmany instances to confer a protectionagainst herbivore pests; in addition, thespecialized biosynthetic pathways leadingto the final products are often exclusivelyexpressed in the glandular cells, facilitat-ing their identification and characteriza-tion; finally, their high productivity makesthem an interesting target for metabolicengineering. Due to extensive genetic andgenomic resources, Solanaceae speciessuch as tomato (Solanum lycopersicumand related wild species) and tobacco (Ni -co tiana sp.) constitute a good model forthe study of glandular trichomes.

In its type VI glandular trichomes, the wildtomato species S. habrochaites producesa variety of sesquiterpenoids that conferresistance against herbivore pests. Oneimportant aspect is the architecture of the

type VI glandular trichomes, where theterpenoids are produced. We found thatin S. habrochaites the four glandular cellsare surrounded by an extracellular enve-lope, giving it the appearance of a ball,and furthermore that an intercellular cav-ity has developed between those cells, al-lowing the storage of large quantities ofsecreted compounds. In the early stagesof development, a conspicuous yellow-green autofluorescence can be observedwhich disappears as the trichome ma-tures. Intriguingly, this fluorescence has acompletely different distribution in a chal-cone isomerase mutant which shows de-fects in trichome development and pro-duction of terpenoids in the trichomes(Fig. 1). This indicates that flavonoids some -how regulate trichome development by ayet unknown mechanism. Efforts to iden-tify the auto-fluorescent compound andthe underlying mechanism are currentlyunder way.

In addition, one of our objectives is to un-derstand how the specialized secretorycells of the glandular trichomes achievetheir massive metabolic productivity. Inparticular, we would like to uncover the re-lationships between central metabolismand the isoprenoid specialized pathways.For this, we performed a comparative ana -lysis between leaves and glandular tri-chomes using transcriptomics, meta bo lo -

mics, 13C-labeling and prote o mics. Theprincipal features can be summarized asfollows: 1) the glandular cells are photo-synthetic but have low CO2 fixation activ-ity in comparison to leaf cells, suggestingthat photosynthesis delivers chemical en-ergy and reducing power primarily for thebiosynthesis of secondary metabolites; 2)accordingly, sucrose imported from theleaf constitutes the major carbon source;3) a C4-like metabolism seems to be inplace to improve the carbon efficiency ofthese cells; 4) several mechanisms are in-duced to detoxify reactive oxygen spe -cies, including high amounts of poly-un-saturated fatty acids and glutathione. Aputative model is shown in Figure 2.

Homeostasis of Isoprenoids (H.I.P) is a co-operative ERA-CAPS (www.eracaps.org) 3-year project (2014-2017) funded by theDFG where we are investigating the sub-cellular localization of isoprenoid pathwayenzymes in plants, potential interaction

62

Glandular Trichomes and Isoprenoid SynthesisHead: Alain Tissier

Benedikt AthmerBioinformatician

Gerd BalckeResearch Associate

Stefan BennewitzPostdoctoral Scientist

Nick BergauPhD Student

Carolin BernholzPhD Student

Mandy Dorn Technical Assistant

Evelyn FunkeBachelor Student

Rebecca FalkeMaster Student

Kathleen HelmstedtResearch Associate

Anja Henning Technical Assistant

Swanhild LohseResearch Associate

Jacqueline MathyBachelor Student

Lukas MüllerBachelor Student

Kira NeidhardtPhD Student

Anja PrangeTechnical Assistant

Franziska PröhlMaster Student

Humberto Ramirez-MedinaGuest Scientist

Kathleen RothePostdoctoral Scientist

Petra SchäferTechnical Assistant

Ulschan SchelerPhD Student

Tom SchreiberPostdoctoral Scientist

Vincent SchwalgunMaster Student

Marc TamisierErasmus Fellow

Romy TöpferPhD Student

Lisa TranelisBachelor Student

Sebastian ZabelResearch Assistant

Group Members

Fig. 1: Fluorescence and bright fieldmicroscopy of detached type VI tri-chomes from Solanum lycopersi-cum LA4024 (wild type) andLA1049 (chalcone isomerase mu-tant). Immature type VI trichomes atthe 4–cell stage exhibit a bright yel-low-green autofluorescence in thewild type (A), whereas in the chal-cone isomerase mutant this fluores-cence is concentrated in discretespots, which appear to co-localize tovesicles visible in the bright fieldimage. The horizontal white bar re-presents 20 µm.

Fig. 2: A putative model of centralcarbon and energy metabolism inGT of tomato. Abreviations: AcCoA:Acetyl-CoA; C6: hexose; CBB Cycle:Calvin-Benson-Bassham cycle; CIT:citrate; DMAPP: dimethylallyl diphos-phate; GA3P: glyceraldehyde-3-phos-phate; GSH: glutathione; IPP: isopen-tenyl diphosphate; MAL: malate; MEP:methylerythritol 4-phosphate path-way; MEV: mevalonate pathway; OA:oxaloacetate; OPP: oxidative pentosephosphate pathway; PUFAs: polyun-saturated fatty acids; PYR: pyruvate;Rib5P: ribulose-5-phosphate; ROS: re-active oxygen species. CO2 is in redin reactions where it is released andin green in reactions where it is fixed.

Fig. 3: Overview of the biosynthesis pathway of phenolic diterpenes in rose-mary (Rosmarinus officinalis) and Greek sage (Salvia fruticosa). GGPP: geranyl-geranyl diphosphate; CPP: copalyl diphosphate; CPS: CPP synthase; KSL: Kaurene syn-thase like enzyme. GGPP is cyclized to miltiradiene through the sequential action of twoterpene synthases, respectively CPS and a KSL. The conversion of miltiradiene to abieta-triene may occur spontaneously. Based on yeast expression, cytochrome P450 monooxy-genases were found to catalyze the conversion of abietatriene to carnosaldehyde and car-nosic acid.

Page 33: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

TEM LAYER 1 [ATML1], Fig. 2). Whe ther thetransgene expression resulted in an al-tered number of trichomes will be moni-tored in T2 plants.

A third project is focused on the tissue-and cell-specific localization of JA. To date,there is only one method available for non-invasive detection of JA based on degra-dation of a fluorescent protein after accu-mulation of active JAs. Therefore, we aimto establish a JA detection system basedon the JA-induced rise of fluorescent pro-teins in living cells. Using promoters ofhighly JA-responsive genes of A. thaliana,JA-specific cis-elements were selectedand used for the construction of a synthe -tic, JA-specific promoter. Although the se-lected cis-elements conferred specificityexclusively to JA, their expression strengthwas not sufficient to allow visualization instably transformed plants. Therefore, anamplification system utilizing artificial TALeffectors was introduced (collaborationwith research group Marillonnet). In a sec-ond approach, synthetic TFs with func-tional similarity to JA-regulated TFs werecreated in combination with synthetic pro-moter-reporter systems (collaborationwith research group Tis sier). Activity andspecificity of both systems is currentlymonitored through GFP fluorescence intransient (Arabidopsis protoplasts, leaves

of N. benthamiana) and stable (Arabidop-sis) transformation systems.

In nature, plants interact with numerousmicroorganisms, among them beneficialfungi (e.g., the arbuscular mycorrhizal fun-gus [AMF] Rhizophagus irregularis) as wellas pathogenic oomycetes (e.g., Aphano -myces euteiches). To understand the firststeps of interaction of Medicago trunca-tula roots with symbionts and pathogens,changes in the pattern of root exudatesand root volatiles, as well as of transcriptswere analyzed. In terms of the numbers ofexudated compounds, the contact of rootswith the symbiont induced stronger reac-tions than that with pathogen and resultedin the predominant exudation of saponins.

Modulation of the saponin production bytransgenic overexpression or knockdownof β–amyrin synthase, a key enzyme in sa -ponin biosynthesis, did not change, how-ever, plant’s interaction with R. irregularissuggesting that these compounds mightnot affect plant’s interaction with AMF. Thetranscriptomic data revealed that A. eutei -ches had a much stron ger impact on thenumber of significantly regulated genesthan R. irregularis. Among the candidategenes induced by A. eutei ches, a putativesesquiterpene synthase (STS) was identi-fied. Overexpression of STS in yeastshowed its enzymatic activity, whereas aM. truncatula sts mutant failed to producevolatile sesquiterpenes after infection (Fig.3). Most importantly, the sts mutant plantsexhibited an increased susceptibility to-wards A. euteiches in compa rison to thecorresponding wild type pointing to afunction of sesquiterpenes in defenseagainst root pathogens.

Viele der pflanzlichen Antworten auf Umweltfaktoren werden durch das Phytohormon Jasmonsäure (JA) vermittelt, dasaber auch Entwicklungsprozesse der Pflanze reguliert. Mittels zytologischer, biochemischer und molekularer Methodenwird die Rolle von JA vorrangig in der Entwicklung von Blüten und von glandulären Trichomen der Tomate analysiert. In

beiden Projekten liegt der Fokus auf der funktionellen Charakterisierung von JA-regulierten Transkriptionsfaktoren. Danebensollen Methoden entwickelt werden, die eine zell- und gewebespezifische Detektion von Jasmonsäure ermöglichen. Hinsichtlichder Interaktionen von Medicago truncatula mit bodenbürtigen Mikroorganismen wurden Exsudat- und Trans kriptmuster vonWurzeln nach Ko-Kultivierung mit einem Symbiont und einem Pathogen bestimmt. Hier steht besonders die Rolle einer Sesqui-terpen-Synthase im Vordergrund, die spezifisch nach Kontakt der Wurzel mit dem Pathogen induziert wird.

CollaboratorsSusanne Baldermann, M. SchreinerLeibniz Institute of Vegetable and OrnamentalCrops, Großbeeren, Germany

James J. GiovannoniCornell University, Ithaca, USA

Gerd HauseUniversity of Halle, Germany

Joachim KopkaMax Planck Institute of Molecular Plant Physi-ology, Potsdam-Golm, Germany

Ondřej Novák, Miroslav StrnadPalacký University, Olomouc, Czech Republic

Yoshihiro Okabe University of Tsukuba, Japan

65

Jasmonates (JAs) are ubiquitously occur-ring signaling compounds mediating theresponse of plants to biotic and abioticstress, but are also involved in the regu-lation of developmental processes. Phe-notypic analyses of JA-insensitive mu-tants indicated the involvement of JA inflower development. In contrast to themale sterile phenotype of the correspon-ding Arabi dopsis thaliana mutant, the to -mato mutant jasmonate-insensitive1 (jai1)is female sterile, but additionally showsalterations in the development of maleflower organs: jai1 exhibits disturbedpollen development accompanied by in-creased stamen desiccation at later de-velopmental stages. Transcript and meta -bolite profiling suggest a role of JA as po sitive regulator of pollen nutrition atearly development and as an inhibitor ofa premature function of ethylene at laterstages to ensure proper timing in flowerdevelopment. Genetic proof by creatingdouble mutants of jai1 with an ethylene-insensitive mutant (NeverRipe) showedthat ethylene insensitivity compensatedpartially missing JA function.

To get deeper insights into the role of JAsin development of tomato female flowerorgans, JA-related gene expression inovu les was monitored. Among genes dif-ferentially expressed in ovules of wildtype and jai1 were two MYB-transcrip-tions factors (TFs). For one of them weshowed that (i) it is located in the nucleusas visualized by transient expression inNicotiana bentha miana (Fig. 1), (ii) it ex-hibits transcriptional activity in yeast, and

(iii) it interacts with certain JAZ proteinsas revealed by yeast-two-hybrid experi-ments and bimolecular fluorescence com-plementation (BiFC). Most importantly,both selected TFs will be functionally cha -racterized by overexpression in jai1, butalso by creating knock-out mutants viaCRISPR-Cas9 and TILLING approaches:Overexpression of these TFs in jai1 shouldrescue female fertility, where as knock-outsin wild type should alter flower develop-ment similar to jai1. Interestingly, plantsmutated in one of the TFs failed to de-velop seeds. To elucidate targets of thisTF, comparative transcript profiling usingcarpels of wild type, jai1 and the respec-tive mutant will be done.

Beside their role in flower development,jasmonates are important regulators offormation of type-VI glandular trichomesin tomato. On the one hand, treatment of

young leaves with JA results in enhancednumbers of trichomes; on the other hand,jai1 plants exhibit a significantly reducednumber of glandular trichomes. In collab-oration with the research group Tissier,we are interested to identify and charac-terize genes involved in JA-regulated in-duction of type-VI glandular trichomes.The transcriptome of developing leaves ofthe JA-treated wild type (enhanced tri-chome number) was compared with thatof jai1 (reduced trichome number). Amongthe differentially regulated genes, four pu-tative TFs were identified, which mightact as positive or negative regulators oftrichome formation. Putative positivelyand negatively reg ulatory TFs were over-expressed in jai1 and in wild type, respec-tively, all either under the control of aubiquitously active (Cauliflow er MosaicVirus 35S) or an epidermis-specific pro-moter (ARABIDOPSIS THALIANA MERIS-

64

Jasmonate Function & MycorrhizaHead: Bettina Hause

Carolin AlfsMaster Student

Anne BauermeisterBachelor Student

Susanne DobritzschPhD Student

Cornelia GruberMaster Student

Ulrike HuthTechnical Assistant

Chandan Chiniga KemparajuPhD Student

Dorothée KlemannPhD Student

Yulong LiPhD Student, Fellow of the ChinaScholarship Council

Clemens MundoBachelor Student

Sunayana RathiGuest Scientist

Ramona SchubertPhD Student

Peter SlabyMaster Student

Hagen StellmachTechnical Assistant

Lea von SiversBachelor Student

Heena YadavPhD Student, Erasmus Mundus Fel-low

Group Members

Fig.1: Functional analysis of a MYB transcription factor expressed in ovules oftomato. a. The selected MYB transcription factor is located in the nucleus of plant cells. A fu-sion of its genomic DNA with GFP was transiently expressed in leaves of N. bentha-miana. Note the GFP signal (green fluorescence) visible in nuclei. Plastids show redautofluorescence. Bar represents 20 µm.b. Fruits of a wild type and of a plant mutated by CRISPR-Cas9 in the gene encoding aMYB transcription factor. The fruits of the mutant failed to develop seeds. Bars represent5 mm.

Fig. 2: Test for cell andtissue specificity ofthe ATML1 promoter intomato. a. Tomato plantlets afterstable transformation; b. Cross-section of astained, transgenic leafexpressing ATML1::GUSshowing the activity ofATML1 promoter in epi-dermal layers of tomatoleaf (blue staining). Barrepresents 20 µm.

Fig. 3: Sesquiterpenes emitted by roots of Medicago truncatulawild type plantsafter inoculation with the pathogen A. euteiches but not by roots of the sesqui-terpene synthase mutant. a. M. truncatula plants used for collection of root volatiles; b. Three sesquiterpenes emitted from wild type roots are strongly down regulated ormissing in sts mutant.

Page 34: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

mutagenesis of conserved amino acids inSPDS1, functional expressing of recombi-nant wildtype and mutant enzymes, aswell as kinetic data.

Supported by the Brazilian ScienceFoundation (CNPq) a project was initi-ated trying to identify UV-/blue-light in-

ducible epidermal promotors as rapidstress mar kers for impaired light qualityand quantity. By using a modular LED-based light system, various GFP-reporterconstructs of putative light responsiveepidermal genes were screened in tran-sient N. benthamiana and stable Ara-bidopsis lines, respectively for their re-

sponse towards enhanced UV-A/bluelight stress. Among various candidates,the promotors of flavonol synthase (FLS)and of ketoacyl CoA synthase show alight response and appear as promisingcandidates for optimization of experi-mental conditions (Fig. 2).

Arabidopsis-Pollen akkumulieren auf ihrer Oberfläche neben Hydroxyzimtsäureamiden (HCAAs) Flavonol-3-O-Sopho-roside. Die identifizierten glucosylierenden Enzyme wurden für die in vitro-Synthese C-14-markierter Flavonolsopho-roside genutzt, um potentielle Tapetum-spezifische Flavonoid-Transporter zu identifizieren. Die Tapetum-spezifische

Expression eines MATE-ähnlichen Kandidaten wird zurzeit mittels Promotor-GFP/GUS-Reporterlinien überprüft. In einem wei-teren Projekt wurde die Arabidopsis-Spermidin-Synthase 1 funktionell charakterisiert. Diese ist für die Produktion der HCAAsim Tapetum essentiell. Theoretische Berechnungen und experimentelle Befunde basierend auf positionsspezifischen Muta-tionen konservierter Aminosäuren favorisieren eine katalytische Triade als Reaktionsmechanismus dieses Enzyms. Mittelsmodularer LED-Lichttechnik wird zudem nach Promotoren epidermal aktiver Gene gesucht, die durch UV-Licht steuerbarsind. Entsprechende Kandidaten werden über transiente und stabil transformierte Pflanzen selektiert.

CollaboratorsTatiana BilovaUniversity of Petersburg, Russia

Fernando CotinguibaUniversity of Rio, Brazil

Ilka Haferkamp University of Kaiserslautern, Germany

Matthias Menzel Fraunhofer Institute for Microstructure ofMaterials and Systems, Halle, Germany

Hans-Peter Mock Leibniz Institute of Plant Genetics andCrop Plant Research, Gatersleben. Ger-many

67

Two major classes of compounds accu-mulate on the pollen surface of Arabidop-sis and various other plant species: hy-droxycinnamoylamides (HCAAs) and fla -vonoid-3-O-b-D-1,2-linked diglycosides.While the biosynthesis of both types ofphenylpropanoids have been clarified inrecent years, functional and regulatoryaspects are missing. How much HCAAsessentially contribute to the rigidity andmechanical strength of the pollen exineis still not clear. Measurements done incollaboration with the Fraunhofer Insti-tute for Microstructure of Materials andSystems (Halle) show that the modulus ofelasticity in pollen of wildtype is in-creased compared to that of HCAA-defi-

cient plants. Flavonol/HCAA-double mu-tant lines have been created to further in-vestigate the relevance of phenylpro pan -oids for pollen performance. Flavonol so -phoroside production by heterologouslyexpressed UGT78D2 and UGT79B6 is cur-rently used to synthesize 14C-labeleld sub-strates for putative tapetal flavonolglyco-side transporters. Candidate genes thatwere selected based on organ-specificexpression data, have been functionallyexpressed in microbial systems, and arecurrently being tested in cooperationwith Ilka Haferkamp (University of Kai sers -lautern) for transport activity towards var-ious flavonol mono- and -diglycosides.Expression of UGT79B6 could be verified

by stable Arabidopsis Promotor-GFP-re-porter lines as localized specifically in thetapetum (Fig. 1), consistent with in silicoand in vitro information.

In a second project the group has beenworking on spermidine synthase, the keyenzyme required for the polyamine partof HCAAs in the Arabidopsis tapetum. Incollaboration with the modelling-groupof Wolfgang Brandt (Dept. NWC) a newtriade-type of reaction mechanism forthis type of aminopropyltransferase wasproposed, initially based on quantum me-chanical calculations and in silico model-ing data. The proposed mechanism wasexperimentally verified by site directed

Phenylpropanoid Metabolism & Protein BiochemistryHead: Thomas Vogt

Tais C. Bastos-SoaresGuest Scientist

Mohammed Ali BouladMaster Student

Stephan GrunewaldPhD Student

Kerstin Manke Technical Assistant

Jakob Ruickoldt Bachelor Student

Group Members

66

Fig. 1: Stable UGT79B6-promotor-GFP-reporter line of Arabidopsis line and localization of UGT79B6 in flower buds by ananti-GFP antibody and a secondary antibody linked to fluorescent dye Alexa 488.DAPI-stained nuclei are marked in blue.

Fig. 2: Selective Promotor-GFP constructs after transient transformation and infiltration of N. benthamiana and subsequent48 hour exposure to enhanced blue light light conditions. AtML1, Arabidopsis meristematic layer 1 promoter: KCS6, ketoacyl-CoA synthase: 35S, constitutive 35S promotor. A, normal light; B enhanced blue/UV-light. Additional LEDs of spectral intensities of40 µmol/m2 s (370 nm) and 50 µmol/m2 x s (400 nm).

Page 35: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

moters, plus a designer TAL effector placedfor example under control of a tissue-spe-cific promoter (Fig 2). Using this strategy,all genes placed under control of a STAPwill be co-expressed in the same cells of aplant in which the designer TAL effectorwill be expressed, for example in petals orpollen.

Development of parts and vectors forexpression in yeastYeast genetic engineering can be done by

introducing genetic material either on oneof the yeast chromosomes or on extra-chromosomal replicating episomes. Weare developing vectors and parts for engi-neering yeast using both approaches.One of the advantages of the MoClo sys-tem is to allow production of libraries ofconstructs rather than only individual con-structs. This can be done by using a libraryof parts in an assembly reaction ratherthan using only selected individual parts.As an example, a library of constructs forbeta-caro t ene biosynthesis was made,where the promoter and terminators ofeach construct were randomly clonedfrom libraries of ten promoters and tenterminators (Fig. 3). Therefore no two con-structs from this library are expected to beidentical and best-working promoters/ter-minators can be screened for by color inthis case. We are also developing vectorsand parts for integrating constructs on theyeast chromosome using the CRISPR/Cas9 system. For example, using theseparts, we have integrated libraries of con-structs for beta-carotene biosynthesis onone of the yeast chromosomes. Each linecontains a similar construct but with dif-ferent promoters and terminators. The dif-ferences in relative expression levels of

the three genes of the pathway result inlines producing different amount of caro -tenoids, including betaca rotene and othercaro tenoid precursor intermediates.These lines display different phenotypesincluding a range of colors from yellow toorange to red, as well as different growthrates.

Engineering of plant biosynthetic pathways

We are interested in biosynthetic pathwaysresponsible for production of colorful me -tabolites such as betalains, anthocyan insand carotenoids, as these can be used asmodel pathways for toolbox development.One carotenoid derivative of interest isbixin which is used industrially as a naturalfood colorant. Bixin is produced by theseeds of the tree Bixa orellana, and isthought to be produced by enzymaticcleavage and modification of the caro ten -oid precursor lycopene. We are now look-ing for the genes coding for enzymes ofthe pathway for engineering in heterolo-gous hosts.

Das Hauptziel der Gruppe ist die Entwicklung von Werkzeugen für die synthetische Biologie. Die aktuellen Projekte ba-sieren auf dem von uns entwickelten modularen Kloniersystem MoClo, das innerhalb des IPB und weltweit intensivgenutzt wird. Dieses System erlaubt die Assemblierung komplexer Multigenkonstrukte mit Hilfe einfacher Ein-Topf-

Reaktionen. Wir arbeiten an der Weiterentwicklung dieses Systems mittels Generierung von Expressionsvektoren für multipleWirte einschließlich Hefen und Bakterien. Wir entwickeln auch Bibliotheken einzelner Module wie Promotoren und Termina-toren zur besseren Kontrolle von Genexpression in ausgewählten Wirten. Diese Werkzeuge werden zur Rekonstituierung vonStoffwechselwegen wie z. B. der Biosynthese von Anthocyanen, Betalainen oder Carotinoiden in heterologen Wirten angewandt.

CollaboratorsDaniela BüttnerUniversity of Halle, Ger-many

Jonathan JonesJohn Innes Institute, Nor-wich, UK

69

Plant genetic engineering has a great po-tential to improve agriculture. Potential ex-amples include the production of plantsthat would require fewer fossil fuel-basedagrochemicals for maximal growth andproductivity, or the production of plantscapable of making novel chemical com-pounds that could be used as a renewablefeedstock for the chemical industry or forenergy production. Genetic engineeringof industrial microorganisms such as yeastor bacteria also offers many possibilitiessuch as the cost effective production of anumber of valuable plant or fungal chem-ical compounds that may be present attoo low levels in the native host.

Our group has two main interests: (1) thedevelopment of tools to enable and facili-tate plant and microbial genetic engineer-ing, and (2) use of these tools to engineersynthetic biosynthetic pathways for pro-duction of chemical compounds of inter-est in plants or industrial microorganisms.

Development of tools for synthetic biology

All projects that we are working on arebased on the modular cloning system Mo-

Clo that we have developed a few yearsago. The MoClo system consists of seriesof vectors that allow a user to assemblemultigene constructs using a series ofone-pot assembly steps, starting from a li-brary of standard parts (Fig 1). Standardparts consist of basic genetic elementssuch as promoters, coding sequences andterminators, cloned in a way to fit a stan-dard structure, in this case, flanking of theDNA sequence encoding the part by twoBsaI restriction sites in opposite orienta-tions. Selected standard parts of interestare then assembled using a first GoldenGate cloning reaction, using the restric-tion enzyme BsaI and ligase, resulting inlevel 1 constructs containing a functionaltranscription unit. Level 1 constructs canthen be assembled using a second Gol denGate cloning reaction, this time using theenzymes BpiI and ligase, to make multi-gene constructs. This process can be re-peated to create increasingly large con-structs.

While the basic strategy for assembly ofmultigene construct is now well estab-lished and functional being widely used

around the institute and world-wide, theMoClo system can still grow by produc-tion of novel parts, for example to enableprecise expression strategies in a desiredorganism under defined conditions. Whilenative promoters and terminators are use-ful, synthetic promoters and terminatorsoffer the advantage of being able to ex-press a gene of interest without interfer-ence with the native regulatory sequencesof the host organism.

Development of synthetic plant promotersOne project consists in the developmentof promoter libraries to co-express sev-eral genes of interest in the same celltype of a plant. With this system (devel-oped in collaboration with the group ofAlain Tis sier), synthetic promoters weremade consisting of a binding site for asynthetic designer TAL effector (a 19 bpsequence) flanked by random sequence.These synthetic TAL activated promoters(STAPs) become active only when boundto a corresponding designer TAL effector.Multigene constructs are then made con-taining the genes that need to be co-expres sed under control of synthetic pro-

68

Synthetic BiologyHead: Sylvestre Marillonnet

Ramona GrütznerTechnical Assistant

Claudia HornTechnical Assistant

Matthias KantekMaster Student

Michael WalterResearch Associate

Christoph WosiekMaster Student

Group Members

Fig.1: Basic biological parts cloned as level 0 modules are assembled in multigene constructs in several cloning steps. Each cloningstep is based on Golden Gate cloning, a method that allows one-pot DNA assembly of multiple DNA fragments.

Fig 2: Tissue-specific expression of asyn thetic betanin biosynthesis pathwayin Nicotiana benthamiana. Flowers ofwild type and transgenic Nicotiana ben-thamiana plants expressing three genesrequired for betanin biosynthesis in ma -ny tissues (1), petals (2) or pollen (3).

Fig 3: Construction of a li-brary of carotenoid produ-cing yeast cells.

A: A library of constructs ismade using two one-pot as-sembly steps starting fromtwo libraries of ten promo-ters and ten terminators andthree genes required for bio-synthesis of beta-carotene.The library prepared usingE.coli cells is then transfor-med into yeast cells.

B: Library of carotenoid con-structs transformed into yeast cells.

Page 36: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

71

Böttcher, C., Dräger, B. & Rosahl, S. MATE Trans-porter-dependent export of hydroxycinnamicacid amides. Plant Cell. 28, 583-596.

Frolov,A., Bilova, T., Paudel, G., Berger, R., Balcke,G., U., Birkemeyer, C. & Wessjohann, L. A. Earlyresponses of mature Arabidopsis thaliana plantsto reduced water potential in the agar-basedpolyethylene glycol infusion drought model. J.Plant Physiol. 208, 70-83 (2017).

Frolov, A., Bilova, T., Paudel, G., Greifenhagen, U.,Lukasheva, E., Schilyaev, N., Brauch, D., Soboleva,A., Didio, A., Chantseva, V., Mavropolo-Stolya ren -ko, G., Grishina, T., Smolikova, G., Osmolovskaya,N., Balcke, G. U., Milkowski, C., Stefanov, V., Med -vedev, S., Birkemeyer, C. & Wessjohann, L. A. Im-pact of plant proteine glycation in ageing andstress response: potential mechanisms, bio-che mistry and biological role. Acta Naturae 8,225.

Hazmana, M., Hause, B., Eiche, E., Riemann, M. &Nick, P. Different forms of osmotic stress evokequalitatively different responses in rice. J. PlantPhysiol. 202, 45-56.

Hettwer, K., Böttcher, C., Frolov, A., Mittasch, J.,Albert, A., von Roepenack-Lahaye, E., Strack, D.& Milkowski, C. Dynamic metabolic changes inseeds and seedlings of Brassica napus (oilseedrape) suppressing UGT84A9 reveal plasticityand molecular regulation of the phenylpro pan -oid pathway. Phytochemistry 124, 46-57.

Janik, K., Mithöfer,A., Raffeiner, M., Stellmach, H.,Hause, B. & Schlink, K. An effector of apple pro-liferation phytoplasma targets TCP transcriptionfactors - a generalized virulence strategy of phy-toplasma? Mol Plant Pathol.doi: 10.1111/mpp. 12409.

Jud, W. Fischer, L., Canaval, E., Wohlfahrt, G., Tis -sier, A. & Hansel, A. Plant surface reactions: anopportunistic ozone defense mechanism im-pacting atmospheric chemistry. Atmos. Chem.Phys. 16, 277-292.

Otto, M., Naumann, C., Brandt,W., Wasternack,C. & Hause, B. Activity regulation by heteromer-ization of Arabidopsis allene oxide cyclase familymembers. Plants 5: 3.

Paudel, G., Bilova, T., Schmidt, R., Greifenhagen,U., Berger, R., Tarakhovskaya, E., Stöckhardt, S.,Balcke, G. U., Humbeck, K., Brandt, W., Sinz, A.,Vogt, T., Birkemeyer, C., Wessjohann, L. & Frolov,A. Osmotic stress is accompanied by proteinglycation in Arabidopsis thaliana. J. Exp. Bot.doi:10.1093/jxb/erw395.

Scheibner, F., Schulz, S., Hausner, J., Marillonnet,S. & Büttner, D.Type III-dependent translocationof HrpB2 by a nonpathogenic hpaABC mutantof the plant-pathogenic bacterium Xantho mo -nas campestris pv. Vesicatoria. Appl. Environ. Mi-crobiol. 82, 3331-3347.

Scheler, U., Brandt, W., Porzel, A., Rothe, K., Man-zano, D., Božić, D., Papaefthimiou, D., Balcke, G.U., Henning,A., Lohse, S., Marillonnet, S., Kanellis,A. K., Ferrer, A. & Tissier, A. Elucidation of thebiosynthesis of carnosic acid and its reconstitu-tion in yeast. Nature Communications 7, 12942.doi:10.1038/ncomms12942.

Taylor, I., Wang, Y., Seitz, K., Baer, J., Bennewitz, S.,Mooney, B. P. & Walker, J. C. Analysis of phospho-rylation of the receptor-like protein kinaseHAESA during Arabidopsis floral abscission.PLOS One. 11: e0147203.

Treutler, H., Tsugawa, H., Porzel,A., Gorzolka, K.,Tissier, A., Neumann, S. & Balcke, G. U. Discov-ering regulated metabolite families in untargetedmetabolomics studies. Anal. Chem. 88(16), 8082-8090.

Wasternack, C. & Hause, B. OPDA-Ile – a newJA-Ile-independent signal? Plant Signaling & Be-havior, 11(11), e1253646.

Book Chapters 2016Bilova, T., Greifenhagen, U., Paudel, G., Lukasheva,E., Brauch, D., Osmolovskaya, N., Tarakhovskaya,E., Balcke, G. U., Tissier,A.,Vogt, T., Milkowski, C.,Birkemeyer, C., Wessjohann, L. & Frolov, A. Gly-cation of plant proteins under environmentalstress - methodological approaches, potentialmechanisms and biological role. In: Abiotic andBiotic Stress in Plants - Recent Advances andFuture Perspectives (Shanker, A. K., ed.) Shanker,C. Rijeka, ISBN 978-953-51-2250-0. doi: 10.5772/61860.

Schreiber, T. & Tissier, A. Libraries of syntheticTALE-activated promoters: methods and appli-cations. In: Synthetic biology and metabolic engi -neering in plants and microbes, Part B: metabo-lism in plants Ed. Methods in Enzymology 576.Academic Press. pp. 361-378. ISBN: 9780128045398 doi: 10.1016/bs.mie.2016.03.004.

Bachelor Theses 2016Mathy, Jacqueline: Etablierung des VIGS-Systemszur Untersuchung trichom-spezifischer Gene inTomate. Hochschule Anhalt, Fachbereich Ange-

wandte Biowissenschaften und Prozesstechnik,20.06.2016

Ruickoldt, Jakob: Charakterisierung und gezielteMutagenese rekombinanter Arabidopsis thalianaSpermidinsynthase 1. Martin-Luther-UniversitätHalle-Wittenberg, Institut für Biochemie undBiotechnologie, 09.09.2016

Master Theses 2016Boulad, Mohamad Ali: Characterization of Ara-bidopsis spermidine synthase 1 by homologymodeling and site directed mutagenesis. Martin-Luther-Universität Halle-Wittenberg, Institut fürBiochemie und Biotechnologie, 23.03.2016

Georgieff, Christian: Development of tools forengineering of bixin and other secondary meta -bolite pathways in yeast. Martin-Luther-Univer-sität Halle-Wittenberg, Institut für Pharmazie,27.04.2016

Gruber, Cornelia: Solanum lycopersicumMYB21- Untersuchungen zur Interaktion mit JAZ-Pro-teinen und Herstellung von Tomaten-Mutantenmittels CRISPR/Cas9. Martin-Luther-UniversitätHalle-Wittenberg, Institut für Biologie, 08.09.2016

Helmstedt, Kathleen: Charakterisierung der Re-duktasen des MEP-Weges und zweier Ferredox-inproteine in Nicotiana tabacum. Martin-Luther-Universität Halle-Wittenberg, Institut für Bio-chemie und Biotechnologie, 28.06.2016

Schwalgun, Vincent: Untersuchung und Charak-terisierung der Kohlenstoffdioxid-Fixierung inglandulären Trichomen von Solanum habrochai -tes LA1777. Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotech-nologie, 29.01.2016

Doctoral Theses 2016Dobritzsch, Susanne: Jasmonate in der Entwick-lung der weiblichen und männlichen Organe derTomatenblüte. Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät 1,22.03.2016

Klemann, Dorothee: Early responses of Medi ca -go truncatula roots after contact with the sym-biont Rhizophagus irregularis or the pathogenAphanomyces euteiches, Martin-Luther-Univer-sität Halle-Wittenberg, NaturwissenschaftlicheFakultät 1, 29.02.2016

70

Publications 2015Bergau, N., Bennewitz, S., Syrowatka, F., Hause,G. & Tissier, A. The development of type VI glan-dular trichomes in the cultivated tomato Sola -num lycopersicum and a related wild species S.habrochaites. BMC Plant Biol. 15: 289.

Božić, D., Papaefthimiou, D., Brückner, K., de Vos,R. C. H., Tsoleridis, C. A., Katsarou, D., Papaniko-laou, A., Pateraki, I., Chatzopoulou, F. M., Dimitri-adou, E., Kostas, S., Manzano, D., Scheler, U., Fer-rer, A., Tissier, A., Makris, A. M., Kampranis, S. C.& Kanellis, A. K. Towards elucidating carnosicacid biosynthesis in Lamiaceae: Functional char-acterization of the three first steps of the path-way in Salvia fruticosa and Rosmarinus officina -lis. Plos ONE 10: e0124106.

Brandt, W., Manke, K. & Vogt, T. A catalytic triad– Lys-Asn-Asp – is essential for the catalysis ofthe methyl transfer in plant cation-dependentO-methyltransferases. Phytochemistry 130, 130-139.

Brückner, K., Schäfer, P., Weber, E., Grützner, R.,Marillonnet, S. & Tissier, A. A library of synthetictranscription activator-like effector-activatedpromoters for coordinated orthogonal gene ex-pression in plants. Plant J. 82, 707-716.

Dobritzsch, S., Weyhe, M., Schubert, R., Dindas,J., Hause, G., Kopka, J. & Hause, B. Dissection ofjasmonate functions in tomato stamen develop-ment by transcriptome and metabolome analy-ses. BMC Biology 13: 28.

Fellenberg, C. & Vogt, T. Evolutionary conservedphenylpropanoid pattern on angiosperm pollen.Trend Plant Sci. 20, 212-218.

Hazman, M., Hause, B., Eiche, E., Nick, P. & Rie-mann, M. Increased tolerance to salt stress inOPDA-deficient rice ALLENE OXIDE CY-CLASE mutants is linked to an increased ROS-scavenging activity. J. Exp. Bot. 66, 3339-3352.

Heinze, M., Brandt, W., Marillonnet, S. & Roos, W.Self and Non-Self in the control of phytoalexinbiosynthesis: plant phospholipases A2 with alka-loid-specific molecular fingerprints. Plant Cell27, 448-462.

Klopotek, Y., Franken, P., Klaering, H.-P., Fischer,K., Hause, B., Hajirezaei, M.-R. & Druege, U. Ahigher sink competitiveness of the rooting zoneand invertases are involved in dark stimulationof adventitious root formation in Petunia hy-brida cuttings. Plant Sci. 243 (2016) 10-22.

Lischewski, S., Muchow, A., Guthörl, D. & Hause,B. Jasmonates act positively in adventitious rootformation in petunia cuttings. BMC Plant Bio -lolgy 15: 229.

López-Ráez, J.A., Fernández, I., García. J.-M.,Berrio, E., Bonfante, P., Walter, M. H. & Pozo, M.J. Differential spatio-temporal expression of ca -rotenoid cleavage dioxygenases regulates apoca -rotenoid fluxes during AM symbiosis. Plant Sci.230, 59-69.

Matschi, S., Hake, K., Herde, M., Hause, B. & Ro -meis, T. The Calcium-dependent protein kinaseCPK28 regulates development by inducinggrowth phase-specific, spatially restricted alter-ations in jasmonic acid levels independent of de-fense responses in Arabidopsis. Plant Cell 27,591-606.

Nagel, R., Bernholz, C., Vranová, E., Košuth, J.,Bergau, N., Ludwig, S., Wessjohann, L., Gershen-zon, J., Tissier, A. & Schmidt, A. Arabidopsis tha -liana isoprenyl diphosphate synthases producethe C25 intermediate geranylfarnesyl diphos-phate. Plant J. 84, 847–859.

Patron, N. J., Orzaez, D., Marillonnet, S., War ze -cha, H., Matthewman, C., Youles, M., Raitskin, O.,Leveau, A., Farré, G., Rogers, C., Smith, A., Hib-berd, J., Webb, A. A. R., Locke, J., Schornack, S.,Ajioka, J., Baulcombe, D. C., Zipfel, C., Kamoun,S., Jones, J. D. G., Kuhn, H., Robatzek, S., van Esse,H. P., Sanders, D., Oldroyd, G., Martin, C., Field, R.,O’Connor, S., Fox, S., Wulff, B., Miller, B., Breaks-pear, A., Radhakrishnan, G., Delaux, P.-M., Loqué,D., Granell, A., Tissier, A., Shih, P., Brutnell, T. P.,Quick, W. P., Rischer, H., Fraser, P. D., Aharoni, A.,Raines, C., South, P. F., Ané, J.-M., Hamberger, B.R., Langdale, J., Stougaard, J., Bouw meester, H.,Udvardi, M., Murray, J. A. H., Ntou kakis,V., Schäfer,P., Denby, K., Edwards, K. J., Osbourn, A. & Ha se -loff, J. Standards for plant synthetic biology: acommon syntax for exchange of DNA parts.New Phytol. 208, 13-19.

Pedranzani, H., Rodríguez-Rivera, M., Gutiérrez,M., Porcel, R. , Hause, B. & Ruiz-Lozano, J. M. Ar-buscular mycorrhizal symbiosis regulates physi-ology and performance of Digitaria erianthaplants subjected to abiotic stresses by modulat-ing antioxidant and jasmonate levels. Mycorrhiza26 (2016) 141-152.

Walter, M.H., Stauder, R. & Tissier, A. Evolutionof root-specific carotenoid precursor pathwaysfor apocarotenoid signal biogenesis. Plant Sci.233, 1-10.

Book Chapter 2015Marillonnet, S. & Werner S. Assembly of multi-gene constructs using Golden Gate cloning. In:Glyco-Engineering: Methods and Protocols. (Ca -stilho,A., ed.) Springer Verl. New York, S. 269-284.ISBN 978-1-4939-2760-9.

Bachelor Theses 2015Bauermeister, Anne: Hormonprofiling in mykor -rhizierten Wurzeln von Medicago truncatula.Martin-Luther-Universität Halle-Wittenberg, In-stitut für Biochemie und Biotechnologie,15.07.2015

Funke, Evelyn: Genexpression und Lokalisationvon Enzymen des Mevalonatstoffwechsels in Ni -cotiana tabacum. Martin-Luther-Universität Hal -le-Wittenberg, Institut für Biochemie und Bio -tech nologie, 04.11.2015

Mundo, Clemens: Analyse der zellspezifischenGenexpression ausgewählter Transkriptionsfak-toren in Blättern der Tomate (Solanum lycoper-sicum cv. MicroTom). Martin-Luther-UniversitätHalle-Wittenberg, Institut für Biochemie undBiotechnologie, 16.09.2015

von Sivers, Lea: Charakterisierung der Blüten -entwicklung von Jasmonat- und Ethylen-insensi-tiven Mutanten der Tomate (Solanum lycoper-sicum cv. MicroTom). Martin-Luther-UniversitätHalle-Wittenberg, Institut für Biochemie undBiotechnologie, 18.09.2015

Master Thesis 2015Pröhl, Franziska: Untersuchungen zur Mor-phologie und Entwicklung der Typ VI glandulärenTrichome in Tomate. Martin-Luther-UniversitätHalle-Wittenberg, Institut für Biochemie undBiotechnologie, 24.09.2015

Publications 2016Arnold, M. D., Gruber, C., Floková, K., Miersch,O., Strnad, M., Novák, O., Wasternack, C. & Hau -se, B. The recently identified isoleucine conju-gate of cis-12-Oxo-Phytodienoic acid is partiallyactive in cis-12-Oxo-Phytodienoic acid-specificgene expression of Arabidopsis thaliana. PLoSONE, 11(9), e 0162829.

Bergau, N., Navarette Santos, A., Henning, A., Bal-cke, G. U. & Tissier, A. Autofluorescence as a sig-nal to sort developing glandular trichomes byflow cytometry. Front. Plant Sci. 7: 949.

Bilova, T., Lukasheva, E., Brauch, D., Greifenhagen,U., Paudel, G., Tarakhovskaya, E., Frolova, N., Mit-tasch, J., Balcke, G. U., Tissier, A., Osmolovskaya,N., Vogt, T., Wessjohann, L. A., Birkemeyer, C., Mil -kowski, C. & Frolov, A. A snapshot of the plantglycated proteome: structural, functional, andmechanistic aspects. J. Biol. Chem. 291, 7621-7636.

Dobritzsch, M., Lübken, T., Eschen-Lippold, L.,Gorzolka, K., Blum, E., Matern, A., Marillonnet, S.,

Publications and other Activities

of the Department Cell and Metabolic Biology

Page 37: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

7372

on the substrate. The modification of thesubstrate can occur in various forms, suchas mono or multi-monoubiquitination. Sev-eral rounds of ubiquitination can result inubiquitin chains. The topology of the ubiq-uitin chains depends on which of theseven different lysines of ubiquitin areused to link ubiquitin molecules to eachother (Fig. 2A). Notably the chain linkageand therefore, the fate of the modifiedprotein, are determined by the E2-E3 pair(Fig. 2B).

Our work has highlighted the function ofa set of plant U-box type E3 ubiquitin lig-ases (PUBs) that contribute to the damp-ening of the immune response after patho -gen perception and thus to maintain thephysiological homeostasis. We showedthat that PUBs shut down specific vesicletrafficking pathways potentially involvedin the secretion or recycling of proteins tosupport degradation of activated recep-tors (Fig. 3). Related PUB E3s were shownto directly target activated immune recep-tors. Ubiquitination may thus contribute tothe effective clearance of these signalingmodules and their transport into the vac-uole. Hence, ubiquitin modulates plant re-sponses by mediating both the degrada-tion of components of the vesicle traffick-ing machinery, as well as cargo proteinssuch as receptor kinases.

Indeed, PUB E3 ligases are able to mediatethe generation of different types of ubiq-

uitin chains, when combined with differ-ent E2 enzymes. These E2-E3 combina-tions also lead to the generation of differ-ently linked poly-ubiquitin chains (Fig. 2).It is therefore critical to study the function

of an E3 ubiquitin ligase within the contextof the cooperating E2, because the biolog-ical activity will be different. The interactionwith specific E2 may be determined byva rious factors such as the cellular con-text, tissue and the induction of signalingpathways. Furthermore, one E3 may inter-act simultaneously with various E2 and me-diate the modification of one or several

substrates with different types of ubiquitinchains. We have generated novel tools thathave allowed us to engage this higher or-der of complexity of the ubiquitin-modifi-cation-system.

Ubiquitinierung, also die Verknüpfung von Ubiquitin mit Zielproteinen wird von drei nacheinander agierenden Enzymenkatalysiert, wobei der letzte Schritt von einer Ubiquitinligase übernommen wird, die maßgeblich für die Spezifizitätund das Ergebnis der Ubiquitinierung verantwortlich ist. Die Ubiquitinierung führt zu einer neuen Bestimmung des

Zielproteins innerhalb der Zelle, z. B. dem Abbau oder Transport in andere zelluläre Kompartimente. Die Neubestimmungdurch Ubiquitinierung wird durch die Art der Modifizierung vermittelt, z.B. Mono-Ubiquitinierung oder Poly-Ubiquitinierung.Die Nachwuchsgruppe befasst sich mit der Untersuchung der Ubiquitinierung mit Augenmerk auf der Analyse der regulato-rischen Funktionen von Ubiquitinligasen während der Immunantwort. Unsere Forschungen ergaben, dass spezifische LigasenKomponenten des intrazellulären Vesikeltransports ansteuern und diese durch Ubiquitinierung regulieren. Darüber hinauswird die weitere detaillierte Untersuchung der molekularen Mechanismen des Ubiquitinierungsprozesses durch interdiszi-plinäre Ansätze angestrebt. Die Erforschung dieser Prozesse eröffnet die Möglichkeit, resistentere Sorten zu entwickeln unddamit einen Beitrag zur Erhöhung der Erträge und zur Sicherung der Nahrungsmittelqualität zu leisten.

73

Research in our group is broadly centredon the immune response of plants and theinvolvement of the posttranslational mod-ification of proteins by the attachment ofubiquitin. Ubiquitin is a highly conserved76 amino acid protein present in all eu-karyotic organisms, which serves as a sig-nal that changes the fate of a protein inseveral different ways.

Plants are able to sense environmentalcues and respond to them rapidly and ef-ficiently. The attachment of ubiquitin,known as ubiquitination, allows plants torapidly modify the activity, localizationand concentration of many proteins. Theperception of pathogens during an infec-tion triggers signaling cascades leading tothe activation of defense reactions that re-quire the coordination of a myriad of cel-lular processes. Ubiquitination allowsplants to rapidly respond to pathogen in-fection, but is also generally required toorchestrate cellular processes involved atall stages of normal plant physiology suchas development and photosynthesis. Akey function of ubiquitination is to main-tain proteostasis by acting as a key signalfor the three major protein degradationpathways namely, the proteasomal, vac-uolar and autophagy.

As in animals, plants perceive pathogensthrough receptors located at the plasmamembrane. They activate signaling cas-cades that must be tightly regulated, andubiquitination-dependent degradation pro-vides critical feed-back loops to warrantan appropriate response. One importantaspect is the dampening of immune re-sponses. Uncontrolled immune responseslead to reduced growth and thus, to yieldlosses, or even tissue damage due to un-restricted cell death (Fig. 1).

Activated receptors are endocytosed andtransported via vesicle trafficking to thevacuole where they are degraded. Vacuo-lar degradation represents a major routeto control the levels of membrane proteinsincluding immune receptors, and their de -gradation is required to dampen signaling.In non-plant systems it is well known thatubiquitination serves as a signal requiredfor the transport of membrane proteinssuch as the internalization from the plas -ma membrane, as well as during the for-mation of multivesicular compartmentsthat ultimately fuse to the vacuole/lyso-some.

Therefore, understanding the basis of theubiquitination process and identifying the

involved players will offer new solutions tocurrent challenges faced by agriculture.

Ubiquitination, is directed onto specificsubstrates by an enzymatic cascade. Spe -cificity is conveyed by the E3 ubiquitin lig-ase, which acts as an adaptor, bringingsubstrate and the E2 ubiquitin-conjugat-ing enzyme into close proximity. The E2-ubiquitin conjugate catalyses the attach-ment of ubiquitin onto an available lysine

72

Jacob BlaffertMaster Student

Giulia FurlanPhD Student

Kathrin KowarschickTechnical Assistant

Filip PetkovichUndergraduate Student

Alexandra SchattUndergraduate Student

Ooi-Kock ThePostdoctoral Scientist

Ilona TurekPostdoctoral Scientist

Marco ZietzMaster Student

Group Members

Independent Junior Research Group

Ubiquitination in ImmunityHead: Marco Trujillo

Fig. 1: Activation of immune responsesresult in growth reduction.Plants grown in the presence of mole-cules that activate the immune re-sponse show reduced growth. The re-duced growth can be best observedby the shortened root of plants werethe responses are turned on. Thegrowth penalty is directly proportionalto the strength of the immune re-sponse.

Fig. 2. The type of ubiquitin chain determines the fate of modified proteins(A) The ubiquitin protein is 76 amino acids in length and contains seven lysine residues (shown in red) that can be used to generatepoly-ubiquitin chains. (B) Ubiquitination of a target protein (T) involves a sequential cascade of enzymatic activities. The ubiquitin-activating enzyme (E1) forms a thioester linkage with the ubiquitin (yellow). Next, ubiquitin is passed to a ubiquitin-conjugating en-zyme (E2). The E2-ubiquitin complex interacts with the ubiquitin ligase (E3), which facilitates the transfer of the ubiquitin from theE2 to a lysine residue in the target protein. Different E2-E3 combinations can result poly-ubiquitin chains linked via different lysines.These different types of ubiquitin chains result in alternative fates of the tagged protein.

Fig. 3: Ubiquitination targets of PUBE3 ligases are localized to the endo-membrane system. Shown is a mi-crography of a PUB-target labelledwith a fluorescent protein, which lo-calizes to reticulate (web-like) struc-tures resembling the endoplasmicreticulum (ER).

Gerd HauseUniversity of Halle, Germany

Jonathan Jones, Cyril ZipfelThe Sainsbury Laboratory Norwich, UK

Hirofumi NakagamiRIKEN CSRS, Japan

Patrick SchweizerIPK Gatersleben, Germany

Collaborators

Page 38: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

Molecular and functional analysis of pro-tein recognition and degradation in plants

Proteins belong to the fundamental equip-ment of each organism’s cell and play cru-cial roles in numerous biochemical andcell biological contexts. They are only ableto function properly if their abundanceand shape are correct. Protein folding isone of the major determinants of their sta-bility and it is vital to know mechanisms ofrecognition and degradation of proteinsthat need to be destructed and how intra-cellular protein abundance is controlled.Biotic and abiotic stress stimuli likedrought, salinity, extreme temperatures,heavy metals, pathogen infection andchemicals lead to osmotic and oxidativestresses. This may irreversibly damage pro-teins by misfolding during formation andthus compromise the entire cell. Abioticstress is considered to be the primarycause for adverse protein folding in plantsand leads to a reduction of the averageyields for major crop plants by more than50% worldwide. Therefore, it represents aserious threat to agriculture and also theenvironment.

The proteome must be precisely guardedto function properly. This takes place onthe level of protein abundance (prote os -tasis) and by specialized protein qualitycheckpoint systems that are responsiblefor targeted recognition and removal ofproteins that harbor specific destructionsignals, so-called degrons. One of these

protein removal systems is the N-end rulepathway (NERD) which is considered to bepart of the Ubiquitin proteasome system(Dissmeyer et al., New Phytol. 2017). De-spite their clear involvement in cardinal cel-lular functions, only few roles of the plantNERD have been identified.

Importantly, NERD dysfunction is associ-ated with physiological malfunctions, se-vere diseases in mammals, improper re-sponses to biotic and abiotic stress inplants, and adversely influence cell pro-liferation, organ growth, and seed germi-nation. A long-term goal of our lab is tounderstand the biological significance ofNERD in the context of development andbiotechnology by elucidating protein qual-ity checkpoints and proteostatic control.

N-end rule pathway in development andorgan size determinationWe recently identified the first substrate ofone subdivision of NERD in plants (Donget al., Genes Dev. 2017). The core organsize regulatory protein BIG BROTHER isresponsible for proper cell proliferationand size determination and therefore forthe overall size of organs such as leaves.It can be cleaved by a protease which ex-poses an otherwise latent degron. This inturn can be recognized by a so-calledNERD N-recognin, the plant E3 Ubiquitinligase PROTEOLYSIS1 (PRT1). We also hadonly recently demonstrated that PRT1 is in-deed an E3 Ubiquitin ligase and can there-

fore act as a key element of protein fate de-termination in plants (Mot et al., New Phy-tol. 2017). This molecular interplay repre-sents an example for feedback loop regu-lation of central genetic factors of cell andorgan differentiation on the level of pro-teostasis.

N-end rule pathway in plant response toenvironmental stressesA recent study of our lab revealed the mo-lecular mechanisms of plant stress re-sponse to abiotic stress with agronomicrelevance and involvement of NERD. Wefound that genetic responses to low oxy-gen levels such as after submergence ofplants under water, water-logging or flood-ing are initiated by a precise biochemicalreaction which takes place at the N-termi-nus of a certain class of transcription fac-tors of the group of ETHYLENE RESPONSEFACTORS (ERFs; White et al., Nature Com-mun. 2017). At the N-terminal, various post-translational modifications occur, namelyMethionine excision, Cysteine dioxygena-tion to sulfinic acid by PLANT CYSTEINEOXIDASES followed by a key determinantof recognition by NERD, that is arginyla-tion by ARGINYL TRANSFERASE1 (ATE1).

N-end rule pathway in biotechnologyWe have a strong interests in applicationand translational science and one focus ofour lab is therefore on using NERD for pro-tein stabilization. We can generate switch-able systems for protein activity and phe-

notypes on demand in living organisms,namely plant model systems and cell cul-tures but also key production platforms forbiotechnology. This work, the low-temper-

ature degron approach, is now patentedand has implications in Synthetic Biologyand Molecular Farming especially for themanufacture of high-value proteins, toxic

proteins but also bioactive small moleculecompounds (Faden et al. Nature Commun.2016; Faden et al., Biol. Chem. 2014).

Der Fokus meines Labors liegt im Bereich des gerichteten Proteinabbaus, in mit fehlerhafter Proteinhomöostase ein-hergehenden Phänotypen, gestörten genetischen Interaktionen der Proteinqualitätskontrolle und deren Auswirkun-gen auf die pflanzliche Fitness. Die molekularen Grundlagen der damit verbundenen Enzym–Substrat-Interaktionen

und biotechnologische Anwendungen unserer Resultate sind weitere zentrale Themen. Momentan sind wir besonders an derRolle des Proteinabbaus und posttranslationeller Modifikationen in der Antwort gegenüber von Stressen interessiert, die auserhöhter Temperatur, Trockenheit, sowie dem Befall mit bakteriellen und pilzlichen Krankheitserregern resultieren. Wir sindan Translation und an Anwendungen unserer Forschung interessiert und haben eine Proteinstabilisierungstechnik entwickelt,die es erlaubt, verschiedene Projekte im Feld der konditionellen genetischen Komplementierung, der Synthetischen Biologieund des Molecular Farming zu lancieren.

7574

Frederik FadenPhD Student

Christian GörnerGuest Scientist

Maria KleckerPhD Student

Dieter LangeMaster Student

Elisabeth MaluckMaster Student

Stefan MielkeMaster Student

Augustin Catalin MotPostdoctoral Scientist

Christin NaumannPhD Student

Pavel ReichmanPhD Student

Michaela ReißlandResearch Assistant

Mara ScheunemannGuest Scientist

Group Members

Independent Junior Research Group

Protein Recognition and DegradationHead: Nico Dissmeyer

Michael W. BevanJohn Innes Centre, Norwich, UK

Doug CossarPlantForm Corporation, Ontario, Canada

R. Jürgen DohmenUniversity of Cologne, Germany

Emily FlashmanUniversity of Oxford, UK

Emmanuelle GracietMaynooth University, Ireland

Tom GrossmannVU University Amsterdam, The Netherlands

Hirofumi HarashimaRIKEN, Japan

Dirk InzéVIB-UGent Centre for Plant Systems Biology,Belgium

Holger von MöllermoloX GmbH Berlin, Germany

René ZahediLeibniz Institute for Analytical Sciences,Dortmund, Germany

Collaborators

Fig. 1: Application of the lt-degron system. a) Production of pro-teins in conditional alleles and b) example for the establishmentof phenotypes on demand in vivo (Faden et al., Nature Commun.2016).

Fig. 2: Switching protein function. a) Switching regulators for leafhair development via the lt-degron from mutant to wild type. b)Switching highly active enzymes in vivo by conditional inactivationas new tool for tuning of activity levels via protein degradation (Fa-den et al., Nature Commun. 2016).

Fig. 3: Missing link uncovered on atomic level. Molecular mecha-nism of N-terminal Cysteine oxidation followed by arginylation(White et al., Nature Commun. 2017).

Fig. 4: PRT1 is an E3 ubiquitin ligase and element of the N-end rulepathway. Specific binding on peptide arrays depending on theN-temrinal amino acid (Dong et al., Genes Dev. 2017).

Page 39: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

for improvement of enzymatic activity bydirected evolution. A fast and reliable de-tection method needs to be developedsince the screen of thousands of mutantsin a microtiter plate assay is laborious andvery time-consuming. Instead of relyingon a substrate detection method, onecould as well apply a growth selection as-say. The enzyme of interest is used toproduce a C-source or amino acid indis-

pensable for survival of the cell. Withinthis cell growth selection assay, largeamounts of mutants (up to 109) can bescreened at the same time.

The research outline for the next six yearsas an independent junior group leader atthe IPB are presented here. The researchprovides several links to distinguished re-search groups in Halle.

Eine wichtige Eigenschaft von Enzymen ist ihre Promiskuität (engl. promiscuity = fremdgehen) – die Katalyse von Re-aktionen mit nicht-natürlichen Substraten und verschiedener Mechanismen. Durch Kombination mit chemischen An-sätzen können neue industriell-relevante enzymatische Reaktionen erschlossen werden. Insbesondere sind wir in un-

serer Gruppe hierbei an C-C-bindungsknüpfenden Enzymen interessiert.

In Vorarbeiten konnten wir bereits im E. coli-Zelllysat ein Enzym entdecken, welches Carbonyl-Olefinierungsreaktionen ka-talysiert (Weissenborn, Löw et al. ChemCatChem 2016, 8, 1636-1640). Diese bislang in der Biokatalyse unbekannte Reaktionhat das Potenzial als umweltfreundliche Alternative zu momentan verwendeten Syntheseverfahren in der Chemischen In-dustrie eingesetzt zu werden.

Unsere Forschung fokussiert sich auf drei Bereiche: i) Promiskuitätsanalyse, die Entdeckung neuer enzymatischer Reaktio-nen ii) Biokatalytische Charakterisierung der neuen Enzyme und iii) die Entwicklung von Zellwachstumsselektions-Assays.

77

Methods for the Development of NovelEnzyme Activities

Biocatalysts which mediate the formationof C-C bonds and those which enableconvergent synthesis remain largely unde-veloped. Despite the growing toolbox ofcommercially available enzymes whichare capable of catalysing functional groupinterconversions with exceptional regio-and stereoselectivity. Expansion of the bio-catalytic toolbox to incorporate such en-zymes, as well as the development of bio-catalysts mediating non-natural reactions,facilitate synthetic design in an entirelydifferent way.

The Wittig reaction is one of the most im-portant C-C bond forming reaction inchemical industry. The reaction of analdehyde or ketone and a phosphoniumylide leads to the formation of a C=C dou-ble bond. This carbonyl-olefination pro-vides access to carotenoids which are 500million dollar annual turnover chemicals.The commercially most significant caro te -n oids are canthaxanthin (fish feeding),astaxanthin (salmon), lycopene (vitaminpills) and zeaxanthin (dietary supplement).Unwanted site-reactions, as well as thestoichiometric production of phosphineoxide and the need of toxic alkyl-halides,could be overcome by using a biocatalyticapproach. Prominent biocatalysts per-forming C-C bond formation are aldol a -ses, cyanohydrin lyases and thiamine di -phosphate-dependent lyases. A major dis-

advantage of these lyases is the limitedsubstrate scope and low activities. Due tothese reasons, there is a need for novelbiocatalytic C-C bond forming reactions.

Any protein can be evolved to the condi-tions or substrates needed using di-rected evolution approaches. However,this technique is only feasible to improveexisting activities. Two methods can beapplied to gain initial activities for novelprotein reactions: i) de novo enzyme de-sign and ii) exploitation of the inherentenzyme promiscuity – the capability tocatalyze reactions with non-natural sub-strates and conditions. Dan Tawfik – oneof the leading figures in protein evolution– claims promiscuity to be an essentialfeature of cells for evolution and adap-tion to changing environments. Thescreening of a large set of highly diverseproteins such as in a cell lysate is there-fore an interesting method to explorenew biocatalytic reactions and activitiesbased on the inherent enzyme promiscu-ity.

Exploitation of the inherent enzymepromiscuity to find biocatalysts for theWittig reactionA screening of E.coli lysate possessing anenormous variety and potentially promis-cuous proteins was performed in previ-ous studies (Lab of Prof. Bernhard Hauer,Stutt gart). E.coli bacteria contain ap prox -ima te ly 4000 different proteins. Ethyl di-

azoacetate as carbene precursor and arange of different ketones and aldehydeswere applied to investigate the catalyticpotential of the cell lysate (Scheme 1).The initial experiment verified the forma-tion of the Wittig-type product ethyl cin-namate and its derivatives, respectively(see Weissen born, Löw et al. Chem-CatChem 2016, 8, 1636-1640). The dis-covery of the corresponding biocatalystYfeX was carried out by protein purifica-tion in combination with proteomics.

This experimental approach, the biocat-alytic potential of YfeX and further devel-opments shall be the central research fo-cus divided in three important modules(Fig. 1).

Module I: Exploitation of Enzyme PromiscuityThe screening of thousands of differentproteins and protein classes in one ex-perimental setup with a highly sensitivedetection device is a powerful tool.Since proteins carry an inherent promis-cuity, each enzyme is able to perform amultitude of non-natural reactions. Theprevious described analysis of promiscu-ous biocatalysts of E. coli proves the po-tential of the approach and could also becarried out with other organisms like ex -tre mo philes and plant cells.

Module II: Biocatalytic studyAfter identification of the biocatalyst –like the haem-protein YfeX – the enzymewill be characterised and modified. Forinstance, employing site-saturation mu-tagenesis of YfeX’s active site residuesshould provoke enhanced diastereose-lectivity of the carbonyl-olefination beingof great industrial importance.

Module III: Directed EvolutionThe biophysically characterised promis-cuous protein serves as a starting point

76

Michelle Kammel PhD Student

Anja Knorrscheidt PhD Student

Rica Patzschke Technical Assistant

Independent Junior Research Group

Bioorganic ChemistryHead: Martin Weissenborn

Fig. 1: Schematic overview of the different modules in the proposed research

Scheme1: The biocatalytic Wittig-type carbonyl-olefination of benzaldehydewith ethyl diazoacetate. The blue parts of the substrates and the product shallillustrate the similarity to the Wittig reaction.

Group Members

Page 40: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

ological changes in protein abundance. Targeted proteomics approaches are wellestablished in the group as a comple-ment to discovery proteomics. They al-low researchers to selectively determinethe abundance of sets of proteins withthe highest accuracy, repeatability andsensitivity. We have optimized targetedprotein analysis using inclusion lists andretention time scheduled selected ionmonitoring (SIM) scanning and parallel

reaction monitoring (PRM) on the Orbi-trap Velos Pro and the QExactive Plus.

The importance of post translational mo d -ification (PTM) cannot be overempha-sized. Reversible, multi-site PTM has asmuch an impact on protein function astranslation of the nascent polypeptide it-self. The mass shift incurred by covalentattachment of a chemical moiety makesmass spectrometry the ideal technique

for analysis of PTM. This was particularlyadvanced by HR/AM measurement offragment ion masses with the QExactivePlus mass spectrometer which allows in-terpretation of MS/MS spectra and as-signment of PTMs to peptide primarystructure with low error probability. Wehave performed a host of both directedand undirected phospho-proteomics stud -ies that quantify site-specific proteinphosphorylation. One uncovered a linkbetween abiotic stress and photosynthe-sis and primary metabolism by way of dif-ferential phosphorylation of STN7. An-other specifically targeted a small set ofphosphopeptides produced by multipleenzyme cleavage and could help eluci-date mechanisms behind protein interac-tions that modulate plant innate immu-nity. Protein ubiquitylation has also beenextensively studied by us and in one in-stance it was possible to map and quan-tify ubiquitylation on substrates relevantto hormone sensing.

The Proteome Analytics research groupconducts a wide range of mass spectro m -etry based proteomics applications to-gether with scientists from in- and outsideof the IPB. The group collaborates closelywith colleagues on all aspects of phyto-logical studies from design to experimen-tation, data analysis and interpretation ofthe results. We investigate the institute’scentral research themes from the per-spective of conditional changes in thestate of the totality of cellular proteins.

Die Arbeitsgruppe Proteomanalytik vereint modernste Proteom-Wissenschaft und Pflanzenforschung. Die hochauflö-sende Massenspektrometrie ist die zur Proteinidentifizierung und -quantifizierung angewandte Kerntechnologie derArbeitsgruppe.

Kürzlich haben wir eine pflanzenspezifische Deep-Proteomics-Strategie etabliert und optimiert. Diese macht es möglich6000 bis 9000 Proteine aus einer Pflanzengewebeprobe zu quantifizieren. Sie wurde zusammen mit Metabolomics und ge-richteter Proteomanalyse angewandt, um eine Rolle des Pflanzenhormones Auxin/IAA in der Immunantwort von Arabidopsisthaliana näher zu beleuchten. Des Weiteren wurden verschieden Gewebe im Lauf des Entwicklungszyklus gemessen undProteinexpressionsdaten von fast 16000 open reading frames (60% des proteinkodierenden Arabidopsis-Genoms) gesam-melt. Diese werden verwendet um proteomweite sowie global und lokal korrelierte Proteinabundanz zu erforschen.

CollaboratorsSacha Baginsky, Ingo Heilmann, Martin Schattat, Christian SchmelzerUniversity of Halle, Germany

Gerold Beckers, Joost van DongenUniversity of Aachen, Germany

Frederick BörnkeLeibniz-Institute of Vegetable and Orna-mental Crops, Großbeeren, Germany

Yan Mei ChenChina Agricultural University, Beijing, China

Tina RomeisFreie Universität Berlin, Germany

79

The spatio-temporal remodeling of theproteome, the cellular complement of allproteoforms, is a primary phenotype de-terminant. As such we are interested inquantifying protein expression dynamics,i.e. the changing abundance, subcellularlocalization, post translational modifica-tion and interaction of proteins in variousbiological scenarios. It is our goal therebyto gain an understanding of the intricatemechanisms of plant proteome biology.

Liquid chromatography and mass spec-trometry are currently the methods ofchoice, bringing unprecedented accu-racy, sensitivity and coverage to prote o -mics science. We operate two high reso-lution accurate mass (HR/AM) mass spec-trometers, an Orbitrap Velos Pro and aQExactive Plus, that are on-line with ultraperformance liquid chromatography (na -no-UPLC) capable of driving long col -umns with pressures of up to 1000 bar.These analytics are complemented witha gamut of state of the art protein identi-fication and quantification software (Mas-cot Server, Proteome Discoverer 2.1, MaxQuant, Perseus, Progenesis QIP, Scaffold,MapMan) that empower us to follow di-verse lines of research.

In the past, studies of plant proteomeshave been hamstrung by a lack of sensi-tivity. Only the most abundant cellularproteins could be measured, which oftenled to unsatisfactory results of little nov-elty. Our research group has streamlinedand optimized the discovery proteomicsapproach and adapted it to plants. Thistechnology now allows us to routinely

quantify from 6,000 to 9,000 proteins(protein groups) per tissue sample with atleast one unique peptide and a peptideand protein FDR threshold of 1%.

A primary research interest of the groupis the effects of phytohormones in bioticand abiotic stress adaption. In a proof ofconcept study we have applied the deepproteomics strategy to Arabidopsis tha l -iana seedlings treated with flg22 for 15hours to gain insights into the PAMP de-pendent restructuring of the proteome inthe pattern triggered immunity (PTI) re-sponse following signaling and transcrip-tional reprogramming. The abundance ofaround 2,000 proteins changed in sevenand ten day old seedlings following PAMPexposition and around 800 of thesecould be mapped to various avenues ofthe PTI network. A substantial number ofauxin/IAA responsive proteins were af-fected. Complementation of this broadcoverage of the PTI responsive proteomewith metabolomics and targeted pro-teomics measurements is currently un-derway. This will shed more light on theinterplay of the canonical defense phyto-hormones salicylic acid, jasmonate andethylene but also on the role of auxin inthe hormone signal signature in reshaping

the proteome to resist pathogen attack.Deep proteomics measurements of vari-ous tissues throughout plant develop-ment were also carried out. They led tothe accumulation of mass spectrometricevidence of nearly 16,000 protein codinggenes which is about 60% of Arabidopsisthaliana open reading frames. This exten-sive coverage of the Arabidopsis genomeis being used to investigate proteomewide correlation of protein abundance indifferent tissues as well as correlated lo-cal protein expression of genes in smallerand larger neighborhoods.

Additionally we have spent considerabletime benchmarking the state of discoveryproteomics focusing especially on tech-nological contributions and contributionsof naturally occurring differences in pro-tein abundance to the inter-sample vari-ability in protein abundance estimates.The inter-sample variability was decom-posed into variability introduced by theentire technology itself and variable pro-tein amounts inherent to individual plantsof the Arabidopsis thaliana Col-0 acces-sion. The technical component was con-siderably higher than the biological inter-sample variability suggesting an effecton the degree and validity of reported bi-

78

MHD Rami Al ShweikiMaster Student

Mona BassalMaster Student

Manka Marceline FuhStudent

Tobias HerrResearch Assistant

Petra MajovskyTechnical Assistant

Domenika ThiemeTechnical Assistant

Group Members

Cutting edge mass spectrometry is used to measure peptides and proteins.

Deep coverage of the Arabidopsis thaliana proteome.

Interdepartmental Research Group

Proteome AnalyticsHead: Wolfgang Hoehenwarter

Page 41: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

8180

Master Theses 2015Jacob Blaffert: Analysis of the intracellular localization of PUB22,Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaft -liche Fa kultät I, Fachbereich Biologie, 07.08.2015

Marco Zietz: Functional analysis of the MAPK3 mediated phos-phorylation of the exocyst subunit Exo70B2, Martin-Luther-Uni-versität Halle-Wittenberg, Naturwissenschaftliche Fakultät I, Fach-bereich Biologie, 15.02.2016

Book Chapter 2016Trujillo, M. Analysis of the immunity-related oxidative bursts by aLuminol-based assay. In: Environmental Responses in Plants 1398:Meth. Mol. Biol. (Duque, P. ed.) Springer Verlag New York 2016, S.323-329. ISBN 978-1-4939-3354-9DOI: 10.1007/978-1-4939-3356-3_26.

Publications and other Activities

of the Junior Research GroupsPublications and other Activities

of the Interdepartmental Research Group

RG Ubiquitination in Immunity RG Proteome Analytics

Master Thesis 2015Stefan Mielke: Conditional expression of toxic proteins in plantsutilizing the N-end rule pathway, Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I, Fachbereich Biolo-gie, 03.02.2015

Publications 2015 / 2016Venne, A. S., Solari, F. A., Faden, F., Paretti, T., Dissmeyer, N. & Zahedi,R. P. An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to studyproteolytic events in Arabidopsis tha li ana. Proteomics 15, 2458-2469.

Faden, F., Ramezani, T., Mielke, S., Almudi, I., Nairz, K., Froehlich, M.S., Höckendorff, J., Brandt, W., Hoehenwarter, W., Dohmen, R. J.,Schnittger, A. & Dissmeyer, N. Phenotypes on demand via switch-able target protein degradation in multicellular organisms. NatureComm. 7:12202.

Harashima, H., Dissmeyer, N., Hammann, P., Nomura, Y., Kramer, K.,Nakagami, H. & Schnittger, A. Modulation of plant growth in vivoand identification of kinase substrates using an analog-sensitivevariant of CYCLIN-DEPENDENT KINASE A;1. BMC Plant Biology16(1), 1-19.

Book Chapters 2016Faden, F., Eschen-Lippold, L. & Dissmeyer, N. Normalized quanti-tative western blotting based on standardized fluorescent labeling.In: Plant Proteostasis 1450: Meth. Mol. Biol. (L. M. Lois & R.Matthiesen, eds.) Springer Verlag New York, 2016, S. 247-258. ISBN 978-1-4939-3757-8. Doi: 10.1007/978-1-4939-3759-2_20.

Klecker, M. & Dissmeyer, N. Peptide arrays for binding studies ofE3 ubiquitin ligases. In: Plant Proteostasis 1450: Meth. Mol. Biol. (L.M. Lois & R. Matthiesen, eds.) Springer Verlag New York, 2016, S.85-94. ISBN 978-1-4939-3757-8Doi: 10.1007/978-1-4939-3759-2_7.

Naumann, C., Mot, A. C. & Dissmeyer, N. Generation of artificialN-end rule substrate prote ins. In: Plant Proteostasis 1450: Meth.Mol. Biol. (L. M. Lois & R. Matthiesen, eds.) Springer Verlag NewYork, 2016, S. 55-83. ISBN 978-1-4939-3757-8. Doi: 10.1007/978-1-4939-3759-2_6.

Patent 2016Dissmeyer, N. & Schnittger, A. Rapid depletion and reversible ac-cumulation of proteins in vivo. Pat. No. PCT/EP2016/053849.

Publications 2015 Chen, Y., Hoehenwarter,W. Changes in the phosphoproteome andmetabolome link early signaling events to rearrangement of pho-tosynthesis and central metabolism in salinity and oxidative stressresponse in Arabidopsis. Plant Physiol. 169, 3021-3033.

Köhler, D., Montandon, C., Hause, G., Majovsky, P., Kessler, F., Ba-ginsky, S. & Agne, B. Characterization of chloroplast protein importwithout Tic56, a component of the 1-Megadalton trans locon atthe inner envelope membrane of chlo roplasts. Plant Physiol. 167,972-990.

Köhler, D., Dobritzsch, D., Hoehenwarter, W., Helm, S., Steiner, J. M.& Baginsky, S. Identification of protein N-termini in Cyanophoraparadoxa cyanelles: transit peptide composition and sequence de-terminants for precursor maturation. Front. Plant Sci. 6: 559.

Schräder, C. U., Heinz, A., Majovsky, P. & Schmel zer, C. E. H. Finger-printing desmosine-containing elastin peptides. J. Am. Soc. MassSpectrom. 26, 762-773.

Book Chapter 2015Thomas, M., Huck, N., Hoehenwarter, W., Conrath, U. & Beckers,G. J. Combining metabolic (15)N labeling with improved tandemMOAC for enhanced probing of the Phosphoproteome In: PlantPhosphoproteomics: Methods and Protocols 1306: Meth. Mol. Biol.(W. X. Schulze, ed.) Springer Verlag 2015, S. 81-96, ISBN: 978-1-4939-2647-3.

Publications 2016Faden, F., Ramezani, T., Mielke, S., Almudi, I., Nairz, K., Froehlich, M.S., Höckendorff, J., Brandt, W., Hoehenwarter, W., Dohmen, R. J.,Schnittger, A. & Dissmeyer, N. Phenotypes on demand via switch-able target protein degradation in multicellular organisms. Na-ture Comm. 7: 12202.

Gladilovich, V., Greifenhagen, U., Sukhodolov, N., Selyutin, A.,Singer, D., Thieme, D., Majovsky, P., Shirkin, A., Hoehenwarter, W.,Bonitenko, E., Podolskaya, E. & Frolov, A. Immobilized metal affinitychromatography on collapsed Langmuir-Blodgett iron(III) stearatefilms and iron(III) oxide nanoparticles for bottom-up phospho-proteomics. J. Chromatogr. A. 1443, 181-190.

Hoehenwarter, W., Mönchgesang, S., Neumann, S. Majovsky, P.,Abel, S. & Müller, J. Comparative expression profiling reveals arole of the root apoplast in local phosphate response. BMC PlantBiol. 16: 106.

Mora Huertas, A. C., Schmelzer, C. E. H., Hoehenwarter, W., Hey-roth, F. & Heinz, A. Molecular-level insights into aging processesof skin elastin. Biochimie 128 - 129, 163-173.

Sheikh, A. S., Eschen-Lippold, L., Pecher, P., Hoehenwarter, W.,Sinha, A. K., Scheel, D. & Lee, J. Regulation of WRKY46 transcrip-tion factor function by mitogen-activated protein kinases in Ara-bidopsis thaliana. Front Plant Sci. 7: 61.

Bookchapter 2016Lassowskat, I., Hoehenwarter, W., Lee, J. & Scheel, D. Phospho-protein enrichment combined with phosphopeptide enrichmentto identify putative phosphoproteins during defense response inArabidopsis thaliana. In: Environmental Responses in Plants 1398:Meth. Mol. Biol. (P. Duque, ed.) Springer Verlag 2016, S. 373-383. ISBN 978-1-4939-3354-9.

Master Thesis 2016MHD Rami Al Shweiki, Benchmark validation of label free quan-tification in proteomics, Martin-Luther-Universität Halle-Witten-berg, Naturwissenschaftliche Fakultät I - Fachbereich Biologie,19.02.2016

RG Protein Degradation and Recognition

Page 42: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

83

ropäischen Förderprogrammen, Stipendien und Informationsver-anstaltungen zur Antragstellung. Das Informationsportfolio bein-haltet neben der persönlichen Beratung auch regelmäßig er-scheinende Drittmittel-Newsletter. Darüber hinaus pflegt die Ref-erentin Kontakte zu Drittmittelgebern, Projektträgern, nationalenKontaktstellen und Netzwerken, einschließlich des Wissen schafts-Campus Halle.

Die Rückmeldungen der Wissenschaftlerinnen und Wissen schaft -ler haben deutlich gezeigt, dass die gezielte persönliche Informa -tion über konkrete Aus -schreibungen im je-weiligen Fachbereichbesonders wichtig undzielführend ist. Diestrifft ebenfalls auf dieindividuelle Identifi zie -rung pas sender Sti -pendienprogrammefür Doktoranden oderPostdoktoranden zu.

Darüber hinaus pflegtdie Referentin das Pa -tentportfolio des IPB.Dieses beinhaltet dieKommunikation mit Er -fin dern, Patentanwäl-ten und der ESA-Pa -tentverwertungsagentur. Zudem unterstützt sie die Mit ar bei ter/innen bei unter neh me ri schen Ambitionen sowie bei der Gestal-tung von Kooperations verträgen.

Finanzen und ControllingIn der AG Finanzen werden die Erstellung des Programmbudgetsund der Verwendungsnachweise für die institutionelle und dieprojektbezogene Förderung koordiniert. Der Geschäftsführung,den Abteilungs- und AG-Leitungen des IPB stehen regelmäßigBerichte zur Budgetsteuerung und Entwicklung wichtiger Kenn-zahlen zur Verfügung.

Im Jahr 2016 wurde die Kostenrechnung des IPB grundlegend,den aktuellen Informationsbedürfnissen entsprechend, überar-beitet. Nach anschließender Prüfung durch die BDO AG Wirt -schaftsprüfungsgesellschaft wurde bescheinigt, dass im IPB die

systemseitigen Voraussetzungen gegeben sind, eine eindeutigeTrennung von wirtschaftlichen und nicht wirtschaftlichen Tä tig -keiten vorzunehmen.

NachhaltigkeitsmanagementIm Herbst 2016 wurde anlässlich der Konferenz SISSI (Sustain-ability in Science) des BMBF der Leitfaden für Nachhaltigkeits-management in außeruniversitären Forschungseinrichtungen(LeNa) der Öffentlichkeit präsentiert. Der Leitfaden wurde in ei -nem Verbundprojekt des BMBF in Zusammenarbeit zwischen der

Fraunhofer-Gesel l -schaft, der Helmholtz-und der Leibniz-Ge -meinschaft entwi ckelt.Mitarbeiter/innen derAbteilung AdmIN desIPB haben im Le Na-Projekt die Leibniz-Gemeinschaft im Teil-projekt Bau und Be-trieb vertreten. Dabeiwaren insbesonderedie Erfah rungen desIPB im Energiemanage-ment wichtig.

Im Jahr 2013 wurde imIPB ein systematischesEnergiemanagement

eingeführt. Bis Ende des Jahres 2016 konnte durch eine Viel zahlvon Maßnahmen, die insbesondere auf die Verbrauchs- und Kos-tentreiber (Kälte, Lüftung) abzielen, der Stromverbrauch um ca.18 Prozent gegenüber dem Jahr 2012 reduziert werden. Paral leldazu wurden der Strombezug neu ausgeschrieben und andereVersorgungsverträge neu verhandelt. Die Kosten des Medienver-brauchs konnten so um rund 300 Tsd. Euro jährlich gesenkt wer-den. Dabei werden die Anlagen und Geräte des IPB seit dem 1. Januar 2016 zu 100 Prozent mit Ökostrom betrieben.

Auf Basis des LeNa-Leitfadens, wird eine Projektgruppe des Prä-sidiums der Leibniz-Gemeinschaft im Verlauf des Frühjahrs 2017beginnen, eine Empfehlung zur Einführung eines Nachhaltigkeits-managements innerhalb der Leibniz-Gemeinschaft vorzuberei -ten. Das IPB wird in der Projektgruppe den Bereich Liegenschafts-management verantworten.

Die Mitarbeiterinnen und Mitarbeiter des Instituts werden beiihren Kernaufgaben durch vielfältige Dienstleistungen der For -schungsförderung und Öffent lichkeitsarbeit, in den BereichenPersonal, Finanzen und Einkauf, Chemikalien, Information undDokumentation, Geräteservice und IT, Gärtnerei sowie Gebäudeund Liegenschaften unterstützt. Im Vordergrund stehen dabeidie Qualität der Dienstleistungen und die fachliche Sicherheit derProzesse.

Förderung der wissenschaftlichen und nichtwissen schaft li -chen Mitarbeiterinnen und MitarbeiterAllen Mitarbeiterinnen und Mitarbeitern des IPB wird ein breitesBeratungs- und Fortbildungsangebot in allen Phasen ihrer Be -schäftigung im IPB angeboten. Besonders im Fokus der Perso -nalarbeit stehen die Förderung des Nachwuchses im wissen -schaftlichen und nichtwissenschaftlichen Bereich sowie dieChancengleichheit.

Am IPB forschen drei unabhängige Nachwuchsgruppen (StandDez. 2016). Besonders gefreut haben wir uns darüber, dass sichin den Jahren 2013, 2014 und 2015 insgesamt vier junge Wis-senschaftlerinnen für das Leibniz-Mentoring-Programm qualifi -zieren konnten und zwei weitere Wissenschaftler/innen in dasYoung Leaders in Science-Programm der Schering Stiftung auf -genommen wurden.

Das Institut bildet derzeit zwölf Jugendliche in fünf verschiede-nen Berufen aus: Kauffrau/-mann für Büromanagement, Fach in -for ma tiker, Chemie- und Biologielaborantin sowie Gärtner fürZier pflan zenbau. Durch das Landesverwaltungsamt Sachsen-An-halt wur de dem IPB das Prädikat Erfolgreicher Ausbildungsbetrieb2015 verliehen.

Zum dritten Mal in Folge wurde das IPB 2016 mit dem PrädikatTotal E-Quality ausgezeichnet. In der Jurybegründung wurden dieerfolgreiche Gleichstellungspolitik, das vertrauensvolle Betriebs -klima, die Personalentwicklung sowie die innovativen Maßnah-men zur Nachwuchsförderung hervorgehoben.

Forschungsförderung und TransferIm Frühjahr 2014 wurde am IPB die Stelle einer Referentin fürForschungsförderung und Transfer eingerichtet. Als promovierteMolekularbiologin mit einschlägiger Erfahrung im Drittmittelbe -reich informiert und berät die Referentin die Mitarbeiter/innendes IPB über Möglichkeiten zur Beteiligung an nationalen und eu-

Abteilung Administration und InfrastrukturLeiterin: Christiane CyronSekretariat: Caroline Stolzenbach

82

Auszubildende des IPB im September 2015

Page 43: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

ringe Belastbarkeit des Saale-Radwanderwegs durch den Einsatzspezieller Gerätschaften und ein Vorgehen im sogenannten Pil -ger schrittverfahren (vor: Radweg aufschütten, zurück: Stützwandbefestigen) berücksichtigt. So ist es gelungen, die Arbeiten ander Stützwand im Sommer 2015 abzuschließen. Der Saale-Rad-

wanderweg konnte vorrübergehend wieder zur Nutzung frei ge -geben werden. Die Finanzierung der Maßnahme erfolgte im Um-fang von rund 1,3 Mio. Euro aus dem Aufbauhilfefond des Bundes. Die Sanierung des Radwegs wird im Laufe des Jahres 2017 erfol-gen.

8584

Neubau R2In seiner Sitzung im Dezember 2015 hat der Stiftungsrat des IPBder Errichtung eines Laborgebäudes Neubau R2 als Ersatz für La -borräumlichkeiten, die wegen bautechnischer Mängel und Ar-beitsschutzvorgaben aufgegeben werden müssen, zugestimmt. Im August 2016 wurde das Büro Kister Scheithauer Gross Archi -tekten und Stadtplaner GmbH, Köln/Leipzig, nach einem euro -paweit veröffentlichten Teilnahmewettbewerb und anschließen-dem Verhandlungsverfahren, mit der Planung des Neubausbeauftragt.

Jetzt, im Frühjahr 2017, stehen die Planungen des neuen Ge bäu -des kurz vor dem Abschluss. Das neue Gebäude wird zwölf nachneuesten sicherheitstechnischen Anforderungen ausgestatteteNaturstofflaborarbeitsplätze, zwei Sonderlaborarbeitsplätze, sie -ben Büroarbeitsplätze sowie Raum für Datenauswertung, Semi-nare und Pausenaufenthalt beherbergen. Für zunehmende Ar-beiten mit hohem Gefährdungsrisiko wird ein S2-Laborbereicheingerichtet. Das Investitionsvolumen ist mit 5,7 Mio Euro kal ku -liert. Die Finanzierung erfolgt aus einem bei der GWK beantragten

und genehmigten Sondertatbestand sowie durch Umwidmungim Rahmen der geltenden Bewirtschaftungsgrundsätze aus demProgrammbudget des IPB.

Hochwasserschaden 2013Durch das Hochwasser der Saale, im Frühjahr 2013, wurden diefast 150 Jahre alte Stützwand des IPB zur Saale hin und der Saale-Radwanderweg der Stadt Halle stark geschädigt. Der Saale-Rad-wanderweg musste gesperrt werden. Was anfänglich nur nacheinem größeren Reparaturvorhaben aussah, hat sich schnell alspolitischer Balanceakt unter Einbeziehung einer Vielzahl von Äm -tern der Stadt Halle entpuppt. Insbesondere musste über die Rei-henfolge der notwendigen Arbeiten entschieden werden: Solltezuerst die Stützwand des IPB saniert werden oder vorher der brü -chi ge Saale-Radwanderweg?

Das IPB hatte sich seinerzeit entschieden, mit den Arbeiten ander Stützwand den Anfang zu machen, da für die Sanierung desRadwegs noch vielfältige Planungsarbeiten in einem größerenKontext ausstanden. Bei allen Sanierungsarbeiten wurde die ge -

Planungsansicht des neuen Laborgebäudes R2

Bild: KSG architekten und stadtplaner GmbH

Daumen hoch für die Pflanzenforschung: Marco Tullner (links), damaliger Staatssekretär im Ministerium für Wissenschaft undWirtschaft des Landes Sachsen-Anhalt weihte im August 2015 gemeinsam mit der Geschäftsleitung sowie allen beteiligten Fir-men und Mitarbeitern die neue Stützmauer am Saale-Ufer ein.

Page 44: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

8786

Mitarbeiter der Abteilung Administration undInfrastruktur 2015 und 2016

Personalübersicht des IPB 2015 und 2016

PersonalLeiterin: Kerstin BalkenhohlAnne-Kathrin Ekelmann (bis April 2016)

Claudia Haferung

Felix Karnstedt

Maike Langlhofer

Cornelia Seidler

Caroline Stolzenbach

FinanzenLeiterin: Barbara WolfTanja Pareis

Andrea Walter

EinkaufLeiter: Clemens Schinke Alexandra Burwig

Max Mittelstaedt (bis April 2016)

Melanie Rasch

Information und DokumentationLeiter: Christoph KupiecAndrea Piskol

ChemikalienlagerLeiter: Martin C. N. Brauer

Geräteservice und ITLeiter: Tino KörnerTobias Abe

Holger Bartz

Ronald Scheller

GärtnereiProjektleiterin Innen: Petra Jansen, Projektleiterin Außen: Dagmar MartinNils Mosch (bis August 2016)

Christian Müller

Frank Noack

Philipp Plato

Lucas Teschner

Sabine Voigt

Kevin Vollmann (bis Dezember 2016)

Gebäude und LiegenschaftenLeiterin: Heike BöhmCarsten Koth

Michael Kräge

Felix Ölke

Klaus-Peter Schneider

Catrin Timpel

Eberhard Warkus

AuszubildendeJulius Bach (Gärtner für Zierpflanzenbau)

Adrian Große (Kaufmann für Büromanagement)

Frances Hintsche (Bürokauffrau, bis August 2016)

Stefan Löffler (Gärtner für Zierpflanzenbau)

Stefanie Müller (Biologielaborantin)

Hannah Rathay (Kauffrau für Büromanagement)

Nele Sedlick (Chemielaborantin)

Nancy Tang (Biologielaborantin)

Tarik Weiss (Fachinformatiker)

Elisabeth Wojtek (Kauffrau für Büromanagement)

Sophia Zedler (Kauffrau für Büromanagement)

2015 2016

Anzahl der Mitarbeiter/innen zum Stichtag 31.12. 186 178

Wissenschaftler/innendavon Frauen

10547

10749

Anteil der Vollbeschäftigten in % 58 58

Anteil der Teilzeitbeschäftigten in % 42 42

Anzahl der Planstellen 91 91

Beschäftigungspositionen 22 26

Drittmittelbeschäftigte 40 41

Anteil der weiblichen Beschäftigten (gesamt) in % 56 56

Fluktuationsrate in % 17 15

Durchschnittsalter der Beschäftigten in Jahren 36 37

Berufsausbildung- Bürokaufmänner/frauen- Gärter/innen für Zierpflanzenbau- Fachinformatiker/Systemintegration- Chemielaboranten/innen- Biologielaboranten/innen

942111

1042112

Erfolgreiche Berufsabschlüsse 2 3

Anzahl der Gastwissenschaftler (inkl. Stipendiaten)im Jahresdurchschnitt 29 33

Anzahl der studentischen und wissenschaftlichenHilfskräfte im Jahresdurchschnitt 41 35

Page 45: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

8988

Budget 2015 und 2016 Drittmittel 2015 und 2016

Das IPB wurde im Jahr 2016 aus

der Bund-/Länderfinanzierung

mit Zuwendungen in Höhe von

16.296 TEUR gefördert (2015:

14.166 TEUR). Drittmittel wur-

den für das Jahr 2016 im Um-

fang von 2.075 TEUR eingewor-

ben (2015: 3.599 TEUR). Zu-

sätzlich standen 2016 sonstige

Einnahmen (Vermietungen, Li-

zenzen, u.a.) in Höhe von 82

TEUR (2015: 78 TEUR) sowie

Kassenreste aus dem Vorjahr

zur Verfügung.

Ausgaben2015TEUR

2016TEUR

Grundfinanzierung

Personalausgaben 6.527 6.814

Sachausgaben 3.606 3.492

Zuweisungen/ Zuschüsse 580 678

Investionen 2.128 2.583

Zwischensumme 12.841 13.567

Drittmittelfinanzierung

Personalausgaben 1.559 1.657

Sachausgaben 338 263

Investionen 1.173 96

Zwischensumme 3.070 2.016

Sonstige Mittel

Personalausgaben 154 237

Sachausgaben 47 40

Investionen 10 22

Zwischensumme 211 299

Gesamtsumme 16.122 15.882

Investitionen2015 TEUR

2016TEUR

Geräteinvestitionen gesamtdavon institutionelldavon Mittel DritterRZ Kassenbestand Fluthilfefonds

2.2232.063

160

2.5842.466

2791

Bauinvestitionen gesamtdavon institutionelldavon Fluthilfefonds

1.08764

1.023

117117

Summe 3.310 2.701

Einnahmen nach Zuwendungsgeber2015 TEUR %

2016 TEUR %

Bund

DFG/ NV

DFG/ SFB

DFG/ SPP

DFG/ Era Net

EU

Land

Leibniz-Wettbewerb

Sonstige (DAAD, Mitgliedsbeiträge)

Stiftungen

Wirtschaft

443

512

380

126

95

418

1.132

306

84

94

10

12,3

14,2

10,

5

3,5

2,6

11,6

31,5

8,5

2,3

2,6

542

520

388

101

81

41

0

307

72

18

6

26,1

25,1

18,7

4,9

3,9

2,0

0,0

14,8

3,5

0,9

0,3

Zwischensumme

Kassenbestand Vorjahr

3.599

480

100 2.075

749

100

Gesamtsumme 4.079 2.824

DAAD Deutscher Akademischer Austauschdienst

DFG/ NV Normalverfahren der Deutschen Forschungsgemeinschaft

DFG/ SFB Sonderforschungsbereich der DFG

DFG/ SPP Schwerpunktprogramm der DFG

DFG/ Era Net Zusammenarbeit zwischen nationalen und regionalen

Forschungsförderorganisationen bzw. Programmagenturen

EU Europäische Union

Land Bundesland Sachsen-Anhalt

Page 46: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

9190

Presse- und ÖffentlichkeitsarbeitSylvia Pieplow

Mitarbeiter/Innen vor. Nach seinem Impulsvortrag kam er beidiesem Antrittsbesuch mit vielen Personen ins Ge spräch. Be son -ders am Herzen lagen ihm dabei die allgemeine Situation unsererNach wuchswissen schaftler. Ihre Wünsche, Sorgen und Prob-leme diskutierte er offen in einer separaten Ge sprächs runde. Das IPB ist auch in Halles Rathaus als lohnende Stätte des Vor -zeigens bekannt. Gerne kommt man auf uns zu rück, wenn Eh -rengäste die Saalestadt besuchen. Sehr beeindruckt von unserenForschungsarbeiten zeigte sich in einem sol chen Rahmen derBürgermeister unserer Partnerstadt Gre noble Éric Piolle, der imJuni 2016 in Halle verweilte. Im Oktober 2016 besuchten Mitglieder der Arab-German YoungAcademy das Institut. Ihren Wünschen entsprechend präsen-tierten wir ihnen unsere neuesten Ergebnisse aus der Trocken -stressfor schung.Zu einer abendfüllenden Diskussion über wissenschaftspoliti-sche Fragen hatten das IPB und der WissenschaftsCampus Halleam 18. Oktober 2016 ins Institut geladen. Unser Ehrengast warder damals amtierende Staatssekretär Professor Armin Willing-mann, der kurze Zeit später zum sachsen-anhaltinischen Minis-ter für Wirtschaft, Wissenschaft und Digitalisierung ernanntwurde. Als ehemaliger Rektor der Hochschule Harz und Präsi-dent der Landesrektorenkonferenz zeigte er sich kenntnis- undverständnisreich für die speziellen Probleme von Forschungs -einrichtungen.

Hohe Wissenschaft und hohe Kunst für alleJedes Jahr am ersten Freitag im Juli wird das IPB von Wissens-durst geflutet. Trotz Hitzewelle 2015, trotz Ferien und Fußball-EM 2016, besuchten uns jeweils 500 Gäste zur Langen Nachtder Wissenschaften. Unser Experimentalprogramm für Großund Klein ist seit vielen Jahren ein Highlight für viele Hallenser. Während Kräuterquiz, Düfteraten und Spitzenstecken sich alsFixpunkte im Programm bewährt haben, sorgen fleißige Helferje des Jahr wieder für Überraschungen mit neuen Versuchen. Sogab es vielfache Aha-Effekte bei unseren neuen Programm-punkten: Experi mente mit Was ser, Fett und Farben, ein verrück-tes Pflanzenmemory, Johanniskraut gegen Alzheimer, Pflanzeninfiltrieren und tanzende Proteine in 3D. Kunstausstellungen am IPB zeigen das Institut von seiner kultur-vollen Seite und sorgen für zusätzliche mediale Aufmerksam -keit. So erschienen sowohl die Menschenbilder von ThomasBurk hardt, gezeigt im September 2015, als auch die pünktlichzu den Händelfestspielen im Mai 2016 ausgestellten Händelpor-traits im Pop-Art-Stil von Bruno S. Otto mehrfach in der lokalenPresse. Eine Ausstellung in eigener Sache konzipierte Sylvia Pieplow imOktober 2016. Unter dem Motto Wissenschaft erleben sammel -

Hohe Präsenz in den Medien Mindestens 54 Beiträge erschienen in den Jahren 2015 und 2016über das Leibniz-Institut für Pflanzenbiochemie in den Printme-dien. Dabei hatten die wissenschaftlichen Themen einen hohenStellenwert; knapp 67 Prozent der Printartikel berichteten über-regional und meist ausführlich zu interessanten Forschungspro-jekten am IPB. Besonders erfreulich war die Lancierung unsererWirkstoff-Themen in der Apotheken Umschau, die mit 9,5 Mil-lionen Druckexemplaren das auflagenstärkste Journal in Deutsch-land ist und nach eigenen Angaben etwa 20 Millionen Menschenerreicht. Auch mit einem großen Artikel in Bild der Wissenschaftkonnten wir 2016 punkten.Die erstarkende Präsenz der Onlinemedien führt zurzeit zu ei -nem Wandel in den Printmedien. Die Pressearbeit am IPB unter-liegt daher einer ständigen Anpassung an die Gegebenheiten;vor allem die enorme Reichweite und Viralität der sozialen Me-dien sollen in Zukunft genutzt und im PR-Konzept strategischverankert werden. Dennoch war das Institut auch jetzt schonauf zahlrei chen Online-Portalen gut vertreten (gezählt wurden150 Einträge), unter anderem mit mehreren hervorgehobenenBeiträgen auf der Startseite der Leibniz-Gemeinschaft sowieauf dem offiziellen Pflanzenwissenschaftsportal des Bundes mi -nisteriums für Bildung- und Forschung www.pflanzenfor -schung.de.Über die reine Wissenschaftberichterstattung hinaus gehen dieNachrichten für unsere Webseiten, die neben ausgesuchtenForschungergebnissen immer auch Projekte am Rande aufgrei -fen. Themen wie Chancengleichheit, Energiemanagement, Aus -stellungen, Bau- und Bepflanzungsvorhaben, gehören ebenso

dazu, wie die erfolgreiche Teilnahme einzelner Mitarbeiter anWettbewerben und Wettkämpfen. Diese etwas breiter ge fassteDarstellung der Geschehnisse dient der positiven Ima ge pflege.Jung, dynamisch, lebendig und facettenreich - so sehen vieleMitarbeiter das IPB und genau dieses Bild wollen wir nach außentragen. 2015 und 2016 wurden 81 Nachrichten unter der RubrikNews unserer Webseiten veröffentlicht. Gegenüber den Vor-jahren ist das eine deutliche Steigerung von 45 Prozent. Ein ähn-liches Format in Druckform, bedient der IPB-News let ter, der vonPolitikern, Alumni, Medienvertretern und Mitarbeitern gleicher-maßen gern gelesen wird. Der IPB-Newsletter erschien 2015 und2016 in vier Ausgaben. Die Titelthemen drehten sich um Gol -den-Gate-Klonierung, pflanzliche Stressreaktionen, Phytohor-mone und Massenspektrometrie. Für große Aufmerksamkeit bei Print- und TV-Medien sorgte Ser -ge Alain Fobofou Tanemossu mit seiner Teilnahme am 65. Lin-dauer Nobelpreisträgertreffen. Nach einem mehr stufigen Aus -wahlverfahren durfte er in Lindau gemeinsam mit 600 Nach -wuchs wissenschaftlern aus aller Welt seine Forschungsergeb-nisse diskutieren.

Hoher Besuch am IPBHartmut Möllring, Minister für Wirtschaft und Wissenschaft desLandes Sachsen-Anhalt besuchte im Januar 2015 das Institut.Im Fokus seines Interesses standen dabei vor allem unsere an-wendungsorientierten Forschungsprojekte und die Zusamme-narbeit mit regionalen mittelständischen Unternehmen. Als sehr interessierter und sympatischer Präsident der Leibniz-Gemeinschaft stellte sich im April 2016 Matthias Kleiner allen

Podiumsdiskussion beim Lindauer Nobelpreisträgertreffen. Serge Alain Fobofou Tanemossu (3.v.l.) diskutiert zum Thema:Wie kann die Wissenschaft in Afrika vorangebracht werden?

Proteine in 3 DLeibniz-Präsident Professor Matthias Kleiner betrachtet ge-meinsam mit Anne Steimecke Proteinmodelle in Aktion.

Lange Nacht der Wissenschaft 2016Das Infiltrieren von Pflanzen mit Wasser gehörte zu den High-lights im Experimentalprogramm des Instituts.

Mehrfach griff die Presse auf die Bilder unserer Ausstellungenzurück. Hier zu illustrativen Zwecken für die Händelfestspiele.

Page 47: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

9392 9392

te sie die schönsten Motive aus 14 Langen Wissenschafts näch -ten und ließ sie im Großformat auf Aluminiumplatten drucken.Diskussionsfreudige Erwachsene und vor allem stau nen de Kin -der, die mit leuchtenden Augen die Welt der Wissenschaft ent-decken, beleben jetzt das Foyer und die Flure. Die Ausstellungist eine Hommage und auch ein Dankeschön an alle Handwer -ker, Gärtner, Technische Assistenten und Wissen schaftler, diejedes Jahr mit großem Engagement an der Planung, Organisa-tion, Vorbereitung und Durchführung der Langen Nacht be tei -ligt sind und dafür sorgen, dass dieses Ereignis reibungslos underfolg reich über die Bühne geht.

Hohe Feste und Hoch-Zeiten Feste und Feiern steigern die interne Kommunikation, den per-sönlichen Wohlfühlfaktor und auch die generelle Identifi zie rungder Mitarbeiter mit ihrem Institut. Dies geschah sowohl zum Fest -

kolloquium anlässlich des 70. Geburtstages unseres ehemaligenGeschäftsführenden Direktors Dieter Strack (im November 2015)als auch zur Verabschiedung unseres langjährigen Massenspek-trometrie-Experten Jürgen Schmidt in den Ruhestand (im Juli2015). Beide Veran staltungen brachten Jung und Alt an aus-gedehnten Stehtisch runden zusammen und wurden von allen alssehr gelungen empfunden.Besonders beliebt sind zudem unsere Weihnachtsfeiern, diejedes Jahr von vielen Mitarbeitern enga giert und einfallsreich vor-bereitet werden. Neben den Honig-, Glühwein-, Gebäck- undHandarbeitsständen gehört vor allem das kulturelle Rahmenpro-gramm zu den Highlights der Veranstaltung. 2016 spielten dieHobbymusiker der IPB-Combo bereits das dritte Jahr in Folge ihrfrenetisch beklatschtes Programm aus rockigen Weihnachts lie -dern. Das ganze Institut war eingeladen mitzusingen - und dastat man auch. Mit großer Begeisterung.

Weihnachtsfeier 2015: Die IPB-Kombo in Aktion. Vorne, v.l.n.r.: Antje Hellmuth (Klavier), Luz Irina A. Calderón Villalobos (Gitarre),Annegret Laub (Akkordeon) Sylvia Pieplow und Theodor Mainka (Gitarre), Felix Ölke (E-Gitarre), David Edeler (Westerngitarre)und in der zweiten Reihe die Sängerinnen: Anne-Katrin Bauer, Anke Dettmer, Bettina Hause und Ines Stein; gefolgt von ClemensMundo (Geige), Alain Tissier (Oboe) und den beiden Geigern Nadine Strehmel und Martin Weyhe.

Artikel 201513.01.2015Fuhrmann, C. Drei Minuten für Erklärung ei nesProjektes. Mitteldeutsche Zeitung, S. 20, Cam-pusseite.

19.01.2015Pieplow, S. Wenn es Pflanzen zu heiß wird.Pressemitteilung des IPB.

Im Netz:cities.eurip.comwww.biologie-seite.dewww.derstandart.atwww.deutsche-botanische-gesellschaft.dewww.dvz24.dewww.firmenpresse.dewww.gabot.dewww.gaertner-und-florist.atwww.innovations-report.dewww.internet-intelligenz.dewww.klimaschutz-netz.dewww.landschaftsplanung.netwww.leibniz-gemeinschaft.dewww.pressekat.dewww.prmaximus.dewww.restaurant-catalog.comwww.schattenblick.dewww.twitter.comwww.uni-protokolle.dewww.weinbergcampus.dewww.wissenschaft-in-halle.dewww.wissenschaftler.dewww.wissenschaftsmanagement.de

27.01.2015Fuhrmann, C. Erwärmung des Klimas stresstNutzpflanzen. Mitteldeutsche Zeitung, S. 20,Campusseite.

Februar 2015Wirkstofffabrik Pflanze. Imagebroschüre desLandes Sachsen-Anhalt, S. 45.

Unibroschüre, Science in Halle, S. 44-45.

03.03.2015Pieplow, S. Wie Pflanzen ihre Feinde erkennen.Pressemitteilung des IPB.

Im Netz:808 se – dach science, science news from ger-man speaking europehttp://blog.coach4biotech.dehttp://science.newzs.dehttps://twitter.com/hashtag/biowissenschaftwww.altmetric.comwww.analytik.dewww.chemiker.dewww.cnchemicals.comwww.deutsche-botanische-gesellschaft.de

www.facebook.comwww.forschung-suche.dewww.innovations-report.dewww.juraforum.dewww.klinkner.dewww.laborpraxis.vogel.dewww.leibniz-gemeinschaft.dewww.leibniz-verbund-biodiversitaet.dewww.medizin-aspekte.dewww.mynewsdesk.comwww.nature.comwww.pflanzenforschung.dewww.sciencenewzs.dewww.seedquest.comwww.supersonntag.dewww.tum.dewww.vbio.dewww.weinbergcampus.dewww.wissenschaft-in-halle.dewww.wissenschaftler.de

März 2015Pflanzenstress. Leibniz-Journal 1/2015, S. 8.

Neuer Wirkstoff-Cluster. Leibniz-Journal 1 /2015, S.48.

11.03.2015Pieplow, S. Wie Pflanzen ihre Feinde erkennen.Wochenspiegel, S. 3.

13.03.2015Kunath, T. Interdisziplinäres Team geht aufWirk-stoffsuche. Pressemitteilung des HKI.

21.04.2015Pieplow, S. Pflanzenwurzel trifft auf eisernenWiderstand. Pressemitteilung des IPB.

Im Netz:808.se (Dach Science, Science News from Ger-man Speaking Europe)http://blog.coach4biotech.dehttp://diseasesresearchgroup.xonl.dewww.deutsche-botanische-gesellschaft.dewww.extremnews.dewww.gabot.dewww.innovations-report.dewww.juraforum.dewww.lapa-net.dewww.leibniz-gemeinschaft.dewww.leibniz-verbund-biodiversitaet.dewww.newsfisher.iowww.pflanzenforschung.dewww.schattenblick.dewww.seedquest.comwww.vbio.dewww.weinbergcampus.dewww.wissenschaft-in-halle.de

22.04.2015Falgowski, M. Forscher lösen ein Rätsel derPflanzen. Mitteldeutsche Zeitung, S. 12.

28.04.2015Fuhrmann, C. Wie Pflanzen mit Stress umge-hen. Mitteldeutsche Zeitung, S. 20, Campus-seite.

04.05.2015Internationale Bioökonomiekonferenz. Presse -mitteilung des WCH

28.05.2015Pieplow, S. Zwei Hormone für den Pollen.Pressemitteilung des IPB.

Im Netz:http://blog.coach4biotech.dewww.analytik.dewww.chemiker.dewww.deutsche-botanische-gesellschaft.dewww.frag-den-spatz.dewww.gabot.dewww.innovations-reportwww.juraforum.dewww.klinkner.dewww.pflanzenforschung.dewww.schattenblick.de

Artikel und Printprodukte des IPB

Page 48: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

95

07.09.2015Es ist angemauert.

09.09.2015Menschenbilder am Pflanzeninstitut

11.09.2015Leibniz Plant Biochemistry Symposium

30.09.2015Marcel Quint geht an die Uni

06.10.2015Neue Referentin am IPB

07.10.2015Festkolloquium für Jürgen Schmidt

08.10.2015Bester Absolvent

15.10.2015Jubiläumstreffen der Naturstoff-Forscher

05.11.2015Erfolg mit Stress

17.11.2015Viel Stress im Newsletter

23.11.2015Sind die Lichter angezündet

30.11.2015Zum 70. Geburtstag ein Festkolloquium

02.12.2015Mit Johanniskraut im Wettbewerb

07.12.2015Neue Sprecher am Start

10.12.20153D-Modell gewinnt den Preis

14.12.2015Rockige Weihnacht am IPB

15.12.2015ERASynBio – schlaue Pflanzen in der Pipeline

17.12.2015Hugo-Junkers-Preis: WissenschaftsCampuszweifach geehrt

Fernsehbeiträge 2015Februar 2015Taste modifiers – virtual screening and biocata -lytic production with rationally optimized en-zymes, Beilstein TV.

02.07.2015Serge Fobofou im Interview. ARD-alpha, 22:56Uhr

Print und Layout 2015Februar 2015, Newsletter 1/2015

März 2015Science in Halle, Broschüre des InternationalOffice der MLU, IPB-Seite

April 2015Anzeigengestaltung im Studienführer Sachsen-Anhalt

Mai 2015IPB-Symposium, Flyer und Poster

Juni 201570. Geburtstag D. Strack, Einladungskarten

September 2015- Scientific Report 2013-2014- Briefbögen, Geschäftspapiere

Oktober 2015- IPB Newsletter 2/2015- IPB-Flyer, deutsch

November 2015IPB-Flyer, englisch

Artikel 201601.02.2016Droll, S. Gewachsene Gesundheit. ApothekenUmschau 1. Februar 2016 A, S. 56-61.

Februar 2016Götze, I.Wie man winzige Fabriken in Pflanzeneinbaut. Hugo Junkers Preis 2015. Investitions-und Marketinggesellschaft Sachsen Anhalt, S. 16.

20.03.2016Falgowski, M. Asphaltwege entlang der Saale.Mit teldeutsche Zeitung, S. 10.

24.03.2016Schröder, T. Die Wirkstoff-Fahnder. Leibniz Ma -gazin, www.bestewelten/thema.de.

31.03.2016Gago Zachert, S. Auf der Suche nach gutenIdeen. Leibniz Magazin, www.bestewelten/men-schen.de.

März 2016Succesful German-Malaysien Research Coope -ration. DAAD Newsletter 3/2016, S. 4.

05.04.2016Lo que nos dice el estudio quimico de las plan-tas. Universidad del Norte, Columbien.

www.vbio.dewww.wissenschaft-in-halle.dewww.wissenschaftler.de

17.06.2015Fuhrmann, C. Jasmonat und Ethylen steuernPol lenreifung. Mitteldeutsche Zeitung, S. 20,Campusseite.

27.06.2015Pausch, K. Hallenser treffen Nobelpreisträgerin Bayern. Mitteldeutsche Zeitung, S. 18.

29.06.2015Pieplow, S. Blut oder Ketchup? Das ist hier dieFrage! Kinderprogramm zur Langen Nacht derWissenschaft. Pressemitteilung des IPB.

Im Netz: www.weinbergcampus.de

30.06.2015Burtscheidt, C. Drahtlose Kommunikation, Alz -heimer, Hanse und mehr. 28 Projekte erfolgreichbeim Wettbewerb der Leibniz-Gemeinschaft.Pressemitteilung der Leibniz-Gemeinschaft.

30.6.2015Mäder, A. Der erste afrikanische Forscher mitNobelpreis? Stuttgarter Zeitung, Online-Aus-gabe.

02.07.2015Christmann, S. Halles äußerst lebendige For -schungslandschaft. Wochenspiegel S.1 und 3.

Juli 2015Herbort-von Loeper, C. Pflanzenimmunität.Leibniz Journal 2/2015, S.8.

26.07.2015Kremming, R. Apotheke Regenwald. BerlinerKurier, S. 14-15.

21.08.2015Färber, D. Wir frühstücken mit. Willkommens -kultur, Infofoto mit Christiane Cyron. Mittel -deut sche Zeitung, S. 9.

01.09.2015Pieplow, S. Freie Fahrt für Radfahrer. Institut fürPflanzenbiochemie eröffnet gemeinsam mit derStadt den Saaleradweg. Pressemitteilung des IPB.

Im Netz:www.weinbergcampus.dewww.wissenschaft_in_halle.de

02.09.2015Seppelt, E. Saale-Radweg ab Freitag offiziell wie -

der frei: Stützmauer an der Schwanenbrückeist repariert. Hallespektrum, www.hallespek-trum.de.

02.09.2015Falgowski, M. An der Wilden Saale wird Wegwieder eröffnet. Mitteldeutsche Zeitung, S. 9.

04.09.2015Seppelt, E. Saale-Radwanderweg am Weinberg -ufer in Halle wieder frei. Hallespektrum. www. -hallespektrum.de.

05.09.2015Falgowski, M. Saaleradweg in Halle ist wiederfrei. Mitteldeutsche Zeitung, S. 2, Mantelseite.

05.09.2015Falgowski, M. Neue Mauer am Saalearm. Mittel -deutsche Zeitung, S. 12.

06.09.2015Richter, S. Saale-Radwanderweg. Sonntags nach -richten, S. 2.

09.09.2015Richter, S. Wieder entlang der Saale radeln.Wochenspiegel, S. 1. und S. 3.

09.09.2015Pieplow, S. Menschenbilder im Pflanzeninstitut.Pressemitteilung des IPB.

14.09.2015Mönchgesang, S. et al. Meeting Report: PlantScience Student Conference (PSSC) 2015 –Young Researchers in green biotechnology.Biotechnology Journal.

15.09.2015Radweg an Wilder Saale wieder befahrbar. Mit-teldeutsche Zeitung, S. 8.

29.09.2015Färber, D. Gemalte Realität. Mitteldeutsche Zei -tung, S. 8.

13.10.2015Färber, D. Kunst bei Leibniz. MitteldeutscheZeitung, S. 8

13.10.2015Bringmann, G. Jubiläumstreffen der Naturstoff-forscher/Anniversary Meeting of Natural Pro -ducts Scientists. einBlick, Onlinemagazin derUniversität Würzburg.

15.10.2015Kriese, M. Klima und Wachstum an Kultur -pflanzen erforschen. Scientia Hallensis 3/2015,

Meldungen für Aktuelles 201513.01.2015Neue Sprecher des WIR

14.01.2015Mauersanierung: Achtung Weg-Sperrung

14.01.2015Proteine im Fokus: 5. Halle-Konferenz bringtForscher und Industrie zueinander.

19.01.2015Wenn es Pflanzen zu heiß wird

04.02.2015Energiemanagement – es geht voran

03.03.2015Wie Pflanzen ihre Feinde erkennen.

21.04.2015Pflanzenwurzel trifft auf eisenharten Wider-stand

22.04.2015Wirkstoffforscher treffen sich in Hamburg

04.05.2015Internationale Bioökonomiekonferenz

28.05.2015Zwei Hormone für den Pollen.

29.06.2015Blut oder Ketchup? Das ist hier die Frage!

01.07.2015Drahtlose Kommunikation, Alzheimer, Hanseund mehr. 28 Projekte erfolgreich beim Wett -bewerb der Leibniz-Gemeinschaft

06.07.2015Vorstellung Bodenatlas

08.07.2015Heiße Wissenschaft zur Langen Nacht

09.07.2015Schwimmen – Fahren – Flitzen – Schwitzen!IPB-Team erfolgreich bei Firmentriathlon

21.07.2015Erste gemeinsame Juniorprofessur von IPB undMLU ausgeschrieben

01.09.2015Freie Fahrt für Radfahrer.

Artikel und Printprodukte des IPB

94

Page 49: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

9796 97

www.eawag.chwww.heinz-schmitz.orgwww.innovations-report.dewww.laborpraxis.vogel.dewww.leibniz-gemeinschaft.dewww.myscience.chwww.physiker.dewww.schattenblick.de

11.12.2016Schröder, T. Die Wirkstoff-Fahnder. Bild derWissenschaft 1-2017, S. 14-19.

15.12.2016Vortragsankündigung von Prof. Wessjohann zur13. International Conference on the Chemistryof Selenium and Tellurium (ICCST-B) in Gifu, Ja -pan.

17.12.2016Zöller, W. Dem Rosmarin auf der Spur. Mittel -deutsche Zeitung, S. 16, Campus-Seite.

Meldungen für Aktuelles 201622.01.2016Beste der möglichen Welten im Leibniz-Jahr

22.01.2016Die Ernte eingefahren

25.01.2016Leibniz Wirkstofftage

28.01.2016Save the Date: 5. International BioeconomyConference

29.01.2016Save the Date: 2. Leibniz Plant BiochemistrySymposium

15.02.2016Open Access: Freier Zugang zu Forschungs-daten

23.02.2016Neue Stühle für die Denker

24.02.2016AUX/IAA – ein Repressor, der polarisiert

25.02.2016Apotheken Umschau erreicht 20 MillionenMenschen: IPB ist mit dabei

16.03.2016Vermessung des Menschen am IPB-Gesund-heitstag

23.03.2016Internationale Open Access-Initiative

24.03.2016Die Wirkstoff-Fahnder in den Leibniz-Welten

31.03.2016Beste der möglichen Welten mit Selma GagoZachert

14.04.2016Bald: 2. Leibniz Plant Biochemistry Symposium

20.04.2016Leibniz-Präsident am IPB

21.04.2016Integration: Mit gutem Beispiel voran

25.04.2016Evolution: Hallesche Forscher finden uraltesgenetisches Muster auch in heranwachsendenPflanzen.

11.05.2016Halle grüßt Händel am Leibniz-Institut

13.05.2016Vierte Leibniz-Mentee

17.05.2016Sanduhr nach der Keimung

20.05.2016Pop-Art meets Händel

23.05.2016Tubugis ist Wirkstoff des Jahres beim Leibniz-Forschungsverbund

30.05.2016Tief entspannen mit dem Großmeister

08.06.2016Märchenwiese im Blütenrausch

20.04.2016Zöller, W. “Ich will etwas lernen” Wie sich einAsylbewerber aus dem Niger im Leibniz-Insti-tut für Pflanzenbiochemie in Halle auf eine Aus-bildung vorbereitet. Mitteldeutsche Zeitung, S.10.

25.04.2016Evolution: Hallesche Forscher finden uraltesgenetisches Muster auch in heranwachsendenPflanzen. Pressemitteilung der MLU.

11.05.2016Händel grüßt Halle am Leibniz-Institut. Pres -semitteilung des IPB.

Im Netz:www.weinbergcampus.dewww.wissenschaft-in-halle.de

15.05.2016Pieplow, S. Händel grüßt Halle am Leibniz-In-stitut. Supersonntag.

18.05.2016Pieplow, S. Händel besucht übers Festival Leib-niz, Mitteldeutsche Zeitung, S. 12.

23.05.2016Pieplow, S. Tubugis ist Wirkstoff des Jahres beimLeibniz-Forschungsverbund. Text für www.wis-senschaft-in-halle.de und www.weinbergcam-pus.de

24.05.2016Händel grüßt Halle, Tagestipp, MitteldeutscheZeitung, S. 12.

27.05. 2016 Färber, D. Halle fällt in Händels Hände. Mittel -deutsche Zeitung, S. 7.

05.06. 2016Zöller, W. Das grüne Gold. Mitteldeutsche Zei -tung, S. 22, Hochschulseite.

Juni 2016Wessjohann, L. Von der Pflanze zur modernenMedizin: Wirkstoffe für ein besseres Gedächt-nis. Mitteldeutsche Mitteilungen 3/ 2016, S. 15.

Wirkstoffe aus Algen – Algen gegen das Verges -sen. Mitteldeutsche Mitteilungen 3/2016, S. 16-17.

Vom Molekül zur Gesellschaft. MitteldeutscheMitteilungen 3/2016, S. 32-33.

16.06.2016Pieplow, S. Experten aus aller Welt tagen zumIPB-Symposium. Pressemitteilung des IPB.

Im Netz:www.juraforum.dewww.innovationsreport.dewww.bmdlifesciences.dewww.wissenschaft-in-halle.dewww.philosophiebuero.de

20.06.2016Pausch, K. Französische Delegation in Halle.Mit teldeutsche Zeitung, S. 10.

20.06.2016Pieplow, S. Johanniskraut gegen Alzheimer?Großes Mitmachprogramm am IPB zur LangenNacht der Wissenschaft. Pressemitteilung IPB.

22.07.2016Sonntag, N. Nature Communications: Spitzen-forschung aus Halle zur Regulation von pflanz -lichen Genen. Pressemitteilung des Wissen -schaftsCampus Halle

Im Netz:www.biotechnologie.dewww.bionity.comwww.innovations-report.dewww.pflanzenforschung.dewww.portal.uni-koeln.dewww.vbio.de

28.07.2016Schulze, S. Gemischtes Doppel. MitteldeutscheZeitung, S. 14.

09.08.2016Zöller, W. Forscher aus Halle erzielen Erfolg.Mitteldeutsche Zeitung, S. 21.

10.08.2016Pieplow, S. IPB erneut erfolgreich bei Chancen-gleichheit und Nachwuchsförderung. Presse -mitteilung des IPB.

26.09.2016Pieplow, S. Phänotyp auf Knopfdruck. Presse -mitteilung des IPB.

Im Netz:www.abitur-und-studium.dewww.deutsche-botanische-gesellschaft.dewww.innovationsreport.dewww.juraforum.dewww.leibniz-gemeinschaft.dewww.schattenblick.dewww.science.newzs.dewww.wissenschaft-in-halle.de

17.10.2016Pieplow, S.Von der Pflanze in den Mikroreaktor.Pressemitteilung des IPB.

17.10.2016From the plant to the microreactor. IPB pressrelease.

Im Netz:http://arzt-aspekte.dehttp://medizin-aspekte.dewww.bionity.comww.innovations-report.dewww.juraforum.dewww.laborpraxis.vogel.dewww.leibniz-gemeinschaft.dewww.vbio.dewww.nanobay.comwww.wissenschaft-in-halle.de

18.10.2016Pieplow, S. Hallenser publizieren in Nature. Mit-teldeutsche Zeitung, S. 8.

25.10.2016Phenotype at the push of a button. IPB pressrelease.

Im Netz:http://globalplantcouncil.org

01.11.2014Pieplow, S. Erster Juniorprofessor am Leibniz-Institut für Pflanzenbiochemie will neue En-zyme entwickeln. Pressemitteilung des IPB

Im Netz:www.juraforum.dewww.magazin.uni-halle.dewww.wissenschaft-in-halle.de

02.11.2016Ronneburg, D. Wasserball: Pacome Tissier: Ju-gendlicher Scharfschütze, Mitteldeutsche Zei -tung, Sport.

03.11.2016Pieplow, S. Juniorprofessor kommt ans Leibniz-Institut. Mitteldeutsche Zeitung, S. 14.

16.11.2016Pieplow,S. Wissenschaftler entwickeln Hashtagsfür Massenspektren. Pressemitteilung des IPB.

Im Netz:http://diseasesresearchgroup.xonl.dehttp://pasamiweb.appspot.complus.google.comwww.analytiker.dewww.bionity.comwww.cczwei.de (Computerplattform)www.chemie.dewww.chemie-link.dewww.chemiker.dewww.deutsche-botanische-gesellschaft.de

Artikel und Printprodukte des IPB

96

Foto: Bild der Wissenschaft

Page 50: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

9998 9998 99

Fernsehen 201631.08.2016Stephan, S. Gelungene Integration in Sachsen-Anhalt. Sachsen-Anhalt heute, mdr Fernsehen

Januar 2016IPB-Flyer, englisch

Februar 2016Poster IPB-Symposium

März/April 2016Poster Lange Nacht (4)Poster GesundheitstagHandouts Lange Nacht (2)Neue HinweisschilderWeinberg-Campus

Mai 2016Memorykarten für die LangeNacht

Juni 2016Newsletter 1/2016

August 2016neue Briefbögen

September 2016Weihnachtskarten 2016

Oktober 2016Lange-Nacht-Fotos auf Alu-platten

November 2016IPB-Kugelschreiber

Dezember 2016Newsletter 2/2016

16.06.2016Experten aus aller Welt tagen beim IPB-Sym-posium

21.06.2016Leibniz-Gemeinschaft und BBAW laden zurKonferenz der Arten

22.06.2016Johanniskraut gegen Alzheimer? SpannendesMitmachprogramm zur Langen Nacht der Wis-senschaft

22.07.2016Nature Communications: Spitzenforschung ausHalle zur Regulation von pflanzlichen Genen.

28.07.2016Über 500 Besucher zur Langen Nacht der Wis-senschaft

05.08.2016IPB erneut erfolgreich bei Gleichstellungspoli-tik und Nachwuchsförderung

01.09. 2016Gelungene Integration in Sachsen-Anhalt

14.09.2016Verabschiedung von kubanischem Gastprofes-sor

15.09.2016Gastwissenschaftler aus Kairo am Institut

26.09.2016Phänotyp auf Knopfdruck

29.09.2016Cantors Erben tagen in Halle

11.10.2016Breites Programm zum Naturstofftreffen

17.10.2016Von der Pflanze in den Mikroreaktor

17.10.2016From the plant to the microreactor

24.10.2016Neue Doktorandensprecher

25.10.2016New representatives of PhD students

25.10.2016Phenotype at the push of a button

01.11.2016Staatssekretär Willingmann: ZukunftsweisendeVerbundforschung unter dem Dach des Wis-senschaftsCampus Halle

01.11.2016Erster Juniorprofessor am Leibniz-Institut fürPflanzenbiochemie will neue Enzyme entwick-eln

16.11.2016Wissenschaftler entwickeln Hashtags für Mas -senspektren

19.12.2016Das IPB singt Halleluja

20.12.2016Neuer Newsletter: Massenspektrometrie imFokus

Artikel und Printprodukte des IPB

98

F

IPB Leibniz Institute of Plant Biochemistry

UUnnddeerrssttaannddiinnggPPllaannttss

y

e

Print und Layout 2016

Page 51: €¦ · 2 3 Department of Stress and Developmental Biology 46 Professor Dierk Scheel Molecular Communication in Plant-Pathogen Interactions 48 Wolfgang Knogge Cellular Signaling

100

HerausgeberLeibniz-Institut für PflanzenbiochemieWeinberg 306120 Halle

www.ipb-halle.de

Redaktion, Satz und LayoutSylvia PieplowPresse- und ÖffentlichkeitsarbeitTel.: (0345) 5582 1110Fax: (0345) 5582 [email protected]

Fotos und GrafikenAlle Bilder, wenn nicht anders vermerkt: IPB

TitelbildArabidopsispflanzen, Collage, Sylvia Pieplow

Copyright © September 2017Alle Rechte vorbehalten. Diese Publi ka tion sowie Teile derselben sind urheberrecht lichgeschützt. Jede Verwertung in an de ren als den gesetzlich zugelassenen Fällen ist ohnevorherige schriftliche Zu stim mung des Herausgebers nicht zulässig. Alle Daten- und Litera -tur angaben in die sem Bericht beziehen sich, soweit nicht aus drücklich anders erwähnt, aufdie Jah re 2015 und 2016.

Impressum